Table of Contents

- INTRODUCTION ... 3
- UNDERGRADUATE DEGREE PROGRAM .. 3
- DEGREE RECOGNITION ... 3
- ACADEMIC ADVISING .. 3
- AREAS OF RESEARCH .. 4
- CAREER OPPORTUNITIES ... ERROR! BOOKMARK NOT DEFINED.
- SCHEDULE OF CEE CURRICULUM, 240 ECTS UNITS .. 5
- DEGREE REQUIREMENTS .. 6
- COURSE DESCRIPTIONS ... 7
 - REQUIRED CEE COURSES ... 7
 - First Academic Year ... 7
 - Second Academic Year ... 8
 - Third Academic Year ... 9
 - Fourth Academic Year ... 11
 - CONSTRAINED ELECTIVE CEE COURSES ... 13
 - REQUIRED NON-CEE COURSES ... 16
 - First Academic Year ... 16
 - Second Academic Year ... 16
 - Third Academic Year ... 17
- FACULTY ... 18
- CURRICULA VITAE ... 18
INTRODUCTION

Civil and Environmental Engineering plays a significant role in building modern society in a sustainable future. It deals with the design, construction, management and maintenance of the infrastructure on which society relies. In addition to the buildings in which we live and work, the roads and the bridges we use everyday, society depends on civil and environmental engineers for providing clean water, energy, waste management and to protect the natural environment.

The Department of Civil and Environmental Engineering provides high quality degree programs at both undergraduate and postgraduate levels. The students study in a dynamic environment and have the opportunity to work with and learn from research teams at the forefront of science and technology. These programs emphasize fundamental principles in order to produce young engineers that are able to assume leading positions within a rapidly changing environment, full of problems, challenges and opportunities.

There are professional opportunities for civil and environmental engineers in both private and public sectors. Graduates may pursue careers in design, construction, maintenance, construction management of buildings and infrastructure, as well as in research and development.

UNDERGRADUATE DEGREE PROGRAM

The Department covers the traditional areas of Civil Engineering such as structures, building materials, earthquake engineering, construction management, geotechnical engineering, transportation, hydraulics as well as environmental issues such as protection of water resources, air pollution and management of solid and liquid waste. These areas have a direct impact on health and safety, tourism and local economy. The combination of Civil and Environmental Engineering disciplines in one department is appropriate since most of these areas are overlapping and have an impact on each other.

The program of studies at the Department of Civil and Environmental Engineering of the University of Cyprus is based on the European Credit Transfer and Accumulation System (ECTS), which has been adopted by the University. The ECTS is a student-centered system based on the student workload required to achieve the objectives of a program by attaching credit units to its components.

The program of studies is based on building strong foundations in Mathematics, Physics and Mechanics during the first two years, which are necessary for studying the applied and advanced topics covered during the following years. During the third year, the students take applied courses in the field of Civil and Environmental Engineering. The fourth year offers students the flexibility to choose from a wide array of advanced courses in Civil and Environmental Engineering according to their individual interests. Additionally, it contains the capstone design project, a comprehensive Civil and Environmental Engineering project the subject of which is set each year to cover a wide spectrum of areas within the discipline.

The Department offers an undergraduate Bachelor of Science (B.S.) degree in Civil and Environmental Engineering.

DEGREE RECOGNITION

The degree (B.S.) in Civil and Environmental Engineering is fully recognized by the Scientific and Technical Chamber of Cyprus (STCC), enabling the holder to become a member of STCC according to the applicable terms and thus to obtain the professional status and privileges of a Civil Engineer.

ACADEMIC ADVISING

Upon admission to the undergraduate studies in Civil and Environmental Engineering and before the first day of registration, each undergraduate student is assigned an academic advisor among the faculty of the CEE Department.
The academic advisor is the official contact point between the faculty and the student, helping the student to choose the courses that will allow him to successfully fulfill the requirements of the undergraduate program of studies.

AREAS OF RESEARCH

Research in the Department of Civil and Environmental Engineering focuses on the following areas:

- Construction Materials
- Structural and Earthquake Engineering
- Construction Management
- Computer-Aided Civil Engineering
- Geotechnical Engineering
- Transportation Systems
- Management of Water Resources
- Environmental Fluid Mechanics
- Solid and Liquid Waste Management
- Environmental Pollution Control
- Environmental Management Systems
- Subsurface Remediation
SCHEDULE OF CEE CURRICULUM, 240 ECTS units

FIRST YEAR

<table>
<thead>
<tr>
<th>Fall Semester, 30 ECTS</th>
<th>Spring Semester, 30 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 101 Engineering Mechanics</td>
<td>5 ects</td>
</tr>
<tr>
<td>MAS 025 Mathematics for Engineers I</td>
<td>5 ects</td>
</tr>
<tr>
<td>MAS 029 Elements of Linear Algebra</td>
<td>5 ects</td>
</tr>
<tr>
<td>PHY 134 Physics for Engineers</td>
<td>5 ects</td>
</tr>
<tr>
<td>CS 033 Intro. to Programming Principles for Engineers</td>
<td>5 ects</td>
</tr>
<tr>
<td>ENG 100 General Advanced English</td>
<td>5 ects</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>Fall Semester, 30 ECTS</th>
<th>Spring Semester, 30 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 220 Structural Analysis II</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 230 Strength of Materials</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 232 Strength of Materials - Laboratory</td>
<td>2.5 ects</td>
</tr>
<tr>
<td>CEE 270 Fluid Mechanics for CEE</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 272 Fluid Mechanics Laboratory</td>
<td>2.5 ects</td>
</tr>
<tr>
<td>MAS 027 Mathematics for Engineers III</td>
<td>5 ects</td>
</tr>
<tr>
<td>XXX xxx Free elective Course</td>
<td>5 ects</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>Fall Semester, 30 ECTS</th>
<th>Spring Semester, 30 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 310 Construction Management I</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 320 Dynamics of Structures</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 340 Design of Reinforced Concrete Members</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 342 Design of Steel Structures</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 370 Hydraulics</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 381 Introduction to Environmental Engineering</td>
<td>5 ects</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>Fall Semester, 30 ECTS</th>
<th>Spring Semester, 30 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 400 Earthquake Engineering</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 460 Transportation Engineering</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE xxx Restricted elective course</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE xxx Restricted elective course</td>
<td>5 ects</td>
</tr>
<tr>
<td>XXX xxx Restricted elective course</td>
<td>5 ects</td>
</tr>
<tr>
<td>CEE 490 Thesis: Capstone Design Project I</td>
<td>5 ects</td>
</tr>
</tbody>
</table>

Restricted Elective Courses

<table>
<thead>
<tr>
<th>Civil Engineering</th>
<th>Environmental Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 411 Construction Management II</td>
<td>CEE 470 Water Resource Management</td>
</tr>
<tr>
<td>CEE 432 Masonry Building Materials</td>
<td>CEE 477 Coastal Engineering</td>
</tr>
<tr>
<td>CEE 441 Advanced Topics in the Design of Steel Structures</td>
<td>CEE 480 Wastewater Management</td>
</tr>
<tr>
<td>CEE 442 Prestressed Concrete</td>
<td>CEE 483 Flow Transport Processes in Env. Engineering</td>
</tr>
<tr>
<td>CEE 450 Geomechanics</td>
<td>CEE 451 Engineering Geology</td>
</tr>
<tr>
<td>CEE 475 Design of Hydraulic Systems</td>
<td>CEE 475 Design of Hydraulic Systems</td>
</tr>
</tbody>
</table>

16 October 2015
DEGREE REQUIREMENTS

The course of study leading to B.S. degree in Civil and Environmental Engineering requires the completion of at least 240 ECTS units, distributed as shown in the schedule of the CEE curriculum.

A student is awarded the B.S. degree in Civil and Environmental Engineering when he/she completes all the mandatory courses (195 ECTS), three free elective courses (15 ECTS) and six restricted elective courses (30 ECTS). The free elective courses should be taken from at least two different Schools of the University of Cyprus other than School of Engineering and they are meant to expose the student to different disciplines. The restricted elective courses belong to a group of CEE courses which are meant to offer specialization in advanced subjects within the CEE discipline.

Additionally, it is required to distribute the six restricted elective courses as follows:

- Three (3) restricted elective courses related to Civil Engineering to be selected from the following list:
 - CEE 401 Software Development for Engineering Application
 - CEE 411 Construction Management II
 - CEE 432 Masonry Building Materials
 - CEE 441 Advanced Topics on the Design of Steel Structures
 - CEE 442 Prestressed Concrete
 - CEE 450 Geomechanics
 - CEE 451 Engineering Geology
 - CEE 475 Design of Hydraulic Systems
 - CEE 496 Advanced Topics in Civil Engineering
 - CEE 497 Advanced Topics in Civil Engineering

- Three (3) restricted elective courses related to Environmental Engineering to be selected from the following list:
 - CEE 401 Software Development for Engineering Application
 - CEE 470 Water Resource Management
 - CEE 477 Coastal Engineering
 - CEE 480 Wastewater Management
 - CEE 483 Flow Transport Processes in Environmental Engineering
 - CEE 494 Advanced Topics in Environmental Engineering
 - CEE 495 Advanced Topics in Environmental Engineering

It should be noted that Independent Studies (CEE 492 and CEE 493) are only offered for exchange program students.

Under special circumstances and after prior approval by the Undergraduate Committee of the CEE Department, following a written request by the student signed by his/her academic advisor, a student can be credited up to 5 ECTS, in addition to the 15 ECTS of the required free elective courses, that correspond to restricted elective course offered by another department or a graduate course offered by the Department of Civil and Environmental Engineering.

Within the terms of an exchange program and only after prior approval by the Board of the CEE Department, following a written request by the student, an undergraduate student can attend up to two semesters at another University with study load per semester ranging between 25 and 30 ECTS.

A transferred undergraduate student can be credited up to 120 ECTS units from her/his undergraduate studies prior to the transfer after the approval by the Undergraduate Committee of the CEE Department, following a justified petition by the student, signed by his/her academic advisor.
COURSE DESCRIPTIONS

Example of course description

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 381</td>
<td>Introduction to Environmental Engineering</td>
<td>Introduction to Environmental Engineering, technical calculations, material balances with a single material, material balances with reactions, energy fundamentals, environmental chemistry, biogeochemical cycles, water pollutants, water and wastewater treatment, solid waste management.</td>
</tr>
<tr>
<td></td>
<td>Number of credit units</td>
<td>Per week: 3 hours lecture 0 hours laboratory 6 hours home work</td>
</tr>
</tbody>
</table>

Required CEE Courses

First Academic Year

Fall Term

CEE 101 Engineering Mechanics
5 ECTS:3-0-6

Spring Term

CEE 113 Land Surveying
5 ECTS:3-2-4

CEE 121 Structural Analysis I
5 ECTS:3-0-6
Second Academic Year

Fall Term

CEE 220 Structural Analysis II
(Prerequisite: "CEE 121")
5 ECTS:3-0-6

CEE 230 Strength of Materials
5 ECTS:3-0-6

CEE 232 Strength of Materials – Laboratory
2.5 ECTS:0-2-3

CEE 270 Fluid Mechanics for Civil and Environmental Engineers
Introduction to Fluid Mechanics and its applications. Fluid statics, control volume approach, mass conservation and steady flow momentum equation, Bernoulli’s theorem, curved streamlines. Laminar and turbulent flow, boundary layer, friction in laminar and turbulent flow. First law of thermodynamics; flow heat transfer. Similarity, dimensional analysis, model tests.
(Prerequisites: "PHY134")
5 ECTS:3-0-6

CEE 272 Fluid Mechanics – Laboratory
(Prerequisites: "PHY134")
2.5 ECTS:0-2-3

Spring Term

CEE 201 Numerical Methods in Engineering
Differential equations – initial value problems. Software implementation and usage with numerical applications in problems from the area of civil and environmental engineering.

CEE 221 Matrix Structural Analysis
(Prerequisite: CEE 220)

CEE 231 Construction Materials

CEE 233 Construction Materials – Laboratory
Laboratory experiments for aggregates, concrete, steel, wood, and composites.

CEE 251 Soil Mechanics

CEE 253 Soil Mechanics – Laboratory
Soil classification methods. Determination of physical and mechanical properties of soils. Laboratory tests: determination of plasticity and liquidity limits, compaction test, sand cone test, measurement of hydraulic conductivity, direct shear test, consolidation test, triaxial compression test.

Third Academic Year

Fall Term

CEE 310 Construction Management I
(Open elective course)
CEE 320 Dynamics of Structures
(Prerequisite: CEE 220)
5 ECTS:3-0-6

CEE 340 Design of Reinforced Concrete Members
(Prerequisites: CEE 121, CEE 230)
5 ECTS:3-0-6

CEE 342 Design of Steel Structures
(Prerequisite: CEE 230)
5 ECTS:3-0-6

CEE 370 Hydraulics
5 ECTS:3-0-6

CEE 381 Introduction to Environmental Engineering
Introduction to Environmental Engineering, technical calculations, material balances with a single material, material balances with reactions, energy fundamentals, environmental chemistry, biogeochemical cycles, water pollutants, water and wastewater treatment, solid waste management.
5 ECTS:3-0-6

Spring Term

CEE 325 Computer-Aided Structural Analysis
(Prerequisite: CEE 221, CEE 320)
5 ECTS:3-0-6

CEE 341 Design of Reinforced Concrete Structures
(Prerequisite: CEE 340)
5 ECTS:3-0-6

CEE 353 Foundation Engineering
(Prerequisite: CEE 251 or CEE 253)
5 ECTS:3-0-6

CEE 371 Hydrology
5 ECTS:3-0-6

CEE 383 Environmental Impact Assessment
Environmental impact assessment from projects and anthropogenic activities. Cyprus and European legislative framework. Methodologies for the estimation of the impact on air, soil, water, flora and fauna. Case studies related to the construction, energy, agricultural and industrial sector.
5 ECTS:3-0-6

Fourth Academic Year

Fall Term

CEE 400 Earthquake Engineering
(Prerequisite: CEE 320)
5 ECTS:3-0-6

CEE 460 Transportation Engineering
Application of physical laws of motion and energy as they relate to calculations of resistances to motion, power, and energy requirements. Acceleration-deceleration limits. Capacity of various modes of transportation. Techniques of analysis and planning for transportation services. Demand-supply interactions. Evaluation of transportation alternatives. Integrated model systems. Demand estimates for transportation system. Location, design, and operations of transportation facilities. People participation in decision making; proposal writing.
5 ECTS:3-0-6

CEE 490 Thesis: Capstone Design Project, I
The project (a two-semester senior capstone design experience in civil engineering) is intended to serve as a capstone experience in preparing students to address challenging engineering problems, and requires student collaboration and integration of their engineering knowledge from various thematic
areas. In the first semester, a project involving integration of the civil engineering subdisciplines will be described and presented. Working groups will be established and students will work on preparing engineering design and environmental impact assessment studies for the project. Lectures will be devoted to particulars of the project, presenting specialized topics and specific design applications that may not have been addressed in other courses. During the first semester, each group will be expected to prepare and present a preliminary professional proposal for design and construction of the project, including an environmental impact study.

(Prerequisite: Senior status or advisor’s approval, CEE 341, CEE 342, CEE 353, ARH 331)

5 ECTS:1-2-6

Spring Term

CEE 461 Road Design and Construction

5 ECTS:3-0-6

CEE 491 Thesis: Capstone Design Project, II

This is the second semester of a two-semester senior capstone design experience in civil engineering. Lecture sessions will be used to present specialized material of relevance to the project(s) assigned and to allow student groups to present progress reports on their work. Each group will be expected to prepare a complete design report addressing all assigned aspects of the project, with functional design drawings and specifications, environmental studies, construction schedules, cost estimates, and health and safety plans. All projects will include a written report, and they will be verbally presented and defended. The projects must be of sufficient depth and incorporate the state-of-the-art in the subject topics.

(Prerequisite: Senior status or advisor’s approval, CEE 310, CEE 490)

5 ECTS:1-2-6
Restricted Elective CEE Courses

The course allocation per semester is only indicative. The Department reserves the right to offer these courses on different semesters as needed.

CEE 401 Software Development for Engineering Application
(Open elective course)
Introduction to computer-aided engineering. Object-oriented software design and development for engineering applications using C++, Java, or/and C#. Software implementation of common numerical methods and algorithms. Usage of data structures and databases in engineering modeling, visualization and internet computing. Modern methodologies for designing and developing engineering simulators. Term project: Implementation of a software solution that addresses a practical engineering problem.
(Prerequisites: CS 033 or equivalent)
5 ECTS: 3-0-6

CEE 411 Construction Management II
(Prerequisite: CEE 310)
5 ECTS: 3-0-6

CEE 432 Masonry Building Materials
5 ECTS: 3-0-6

CEE 441 Advanced Topics on the Design of Steel Structures
(Prerequisite: CEE 342)
5 ECTS: 3-0-6

CEE 442 Prestressed Concrete
(Prerequisite: CEE 340)
5 ECTS: 3-0-6

CEE 450 Geomechanics
Site exploration and in-situ testing: standard penetration test (SPT), cone penetration test (CPT), pressuremeter test. Critical state theory – advanced topics in soil behavior. The finite element method

(Prerequisite: CEE 251)
5 ECTS: 3-0-6

CEE 451 Engineering Geology

(Prerequisite: CEE 251 or CEE 253)
5 ECTS: 3-0-6

CEE 470 Water Resource Management
Water demand and supply. Distribution systems. Collection, transportation and storage of water resources. Pipe networks and pumps. Reservoirs and dams. Control of water resources by natural system functions, user actions, and influence of social, economic, and political institutions. Water resource policies. Case studies (e.g., flood/drought management).

(Prerequisites: CEE 370, CEE 371)
5 ECTS: 3-0-6

CEE 475 Design of Hydraulic Systems

(Prerequisites: CEE 370, CEE 371)
5 ECTS: 3-0-6

CEE 477 Coastal Engineering
5 ECTS: 3-0-6

CEE 480 Wastewater Management
 Constituents in wastewater, analysis and selection of wastewater flow rates and constituent loadings, process analysis, physical-chemical-biological unit operations, fundamentals of biological treatment, advanced treatment methods.
5 ECTS: 3-0-6

CEE 483 Flow Transport Processes in Environmental Engineering

(Prerequisites: CEE 270)
5 ECTS: 3-0-6
CEE 492 Independent Study
(Available in greek and english)
Individual study, research, or laboratory investigation under faculty supervision.
(Prerequisite: Undergraduate advisor’s approval, exchange program student status)
5 ECTS: 0-0-9

CEE 493 Independent Study
(Available in greek and english)
Individual study, research, or laboratory investigations under faculty supervision.
(Prerequisite: Undergraduate Advisor’s approval, exchange program student status)
5 ECTS: 0-0-9

CEE 494 Advanced Topics in Environmental Engineering
Advanced and contemporary topics of special interest in Environmental Engineering (Fall Term).
5 ECTS: 3-0-6

CEE 495 Advanced Topics in Environmental Engineering
Advanced and contemporary topics of special interest in Environmental Engineering (Spring Term).
5 ECTS: 3-0-6

CEE 496 Advanced Topics in Civil Engineering
Advanced and contemporary topics of special interest in Civil Engineering (Fall Term).
5 ECTS: 3-0-6

CEE 497 Advanced Topics in Civil Engineering
Advanced and contemporary topics of special interest in Civil Engineering (Spring Term).
5 ECTS: 3-0-6
Required Non-CEE Courses

These courses are offered by other Departments of the University of Cyprus and they are mandatory for fulfilling the requirements for the degree of Civil and Environmental Engineering.

First Academic Year

Fall Term

MAS 025 Mathematics for Engineers I
As shown in the undergraduate prospectus of the Department of Mathematics and Statistics.
5 ECTS

MAS 029 Elements of Linear Algebra
As shown in the undergraduate prospectus of the Department of Mathematics and Statistics.
5 ECTS

PHY 134 Physics for Engineers
As shown in the undergraduate prospectus of the Department of Physics.
5 ECTS

CS 033 Introduction to Programming Principles for Engineers
As shown in the undergraduate prospectus of the Department of Computer Science.
5 ECTS

ENG 100 General Advanced English
As shown in the undergraduate prospectus of the Department of Foreign Languages and Literatures.
5 ECTS

Spring Term

ARH 123 Technical Drawing
As shown in the undergraduate prospectus of the Department of Architecture.
5 ECTS

MAS 026 Mathematics for Engineers II
As shown in the undergraduate prospectus of the Department of Mathematics and Statistics.
5 ECTS

ENG 104 Academic English: Technical Writing
As shown in the undergraduate prospectus of the Department of Foreign Languages and Literatures.
5 ECTS

Second Academic Year

Fall Term

MAS 027 Mathematics for Engineers III
As shown in the undergraduate prospectus of the Department of Mathematics and Statistics.
5 ECTS
Third Academic Year

Spring Term

ARH 331 Building Technology
As shown in the undergraduate prospectus of the Department of Architecture.
5 ECTS
FACULTY

- Stavroula Pantazopoulou, Professor
- Panos Papanastasiou, Professor
- Michalis Petrou, Professor
- Dimos Charmpis, Associate Professor
- Symeon Christodoulou, Associate Professor
- Ioannis Ioannou, Associate Professor
- Despo Fatta-Kassinos, Associate Professor
- Petros Komodromos, Associate Professor
- Marina Neophytou, Associate Professor
- Dimitrios Loukidis, Assistant Professor
- Panayiotis Roussis, Assistant Professor
- Loukas Dimitriou, Lecturer

Curricula Vitae

Stavroula Pantazopoulou, Professor

Dr. Pantazopoulou obtained her undergraduate degree in Civil Engineering from the National Technical University of Athens and subsequently earned MSc (1982) και PhD (1987) degrees from the University of California - Berkeley. She is a member of committees of the American Concrete Institute (ACI) and of the Fédération Internationale du Béton (FIB). She has been awarded the Moisseiff Award of ASCE for significant contribution in the field of Civil Engineering. Her research interests include the mechanics of reinforced concrete, estimation of lifetime of structures, earthquake engineering, seismic assessment and retrofitting of buildings using novel materials and technologies, strengthening of reinforced concrete structures using FRPs.

Panos Papanastasiou, Professor

Undergraduate studies at the National Technical University of Athens (Diploma in Civil Engineering, 1984), graduate studies at the University of Minnesota (M.Sc, 1986 and Ph.D, 1990 in Civil Engineering). He is Professor and Head in the Department of Civil and Environmental Engineering at the University of Cyprus (associate professor from 2002 to 2006). He has worked as a Research Scientist (1991-1992), Senior Research Scientist (1992-1999) and Principal Research Scientist (1999-2002) in Schlumberger Cambridge Research in U.K. His research interests and contributions are in the area of Applied and Computational Mechanics with applications in constitutive modeling of cohesive-frictional materials, micro-mechanics, fracture mechanics, environmental geomechanics, petroleum engineering and finite element analysis. He is editorial advisor in the International Journal of Geomechanics.

Michalis Petrou, Professor

Dr. Michael F. Petrou has been an Associate Professor in the Department of Civil and Environmental Engineering at the University of Cyprus since 2004. Prior to this appointment, he worked as an assistant/associate professor at the University of South Carolina, U.S.A. and as an associate professor
at the University of Thessaly, Greece. He received a Diploma from the National Technical University of Athens, Greece in 1987 and a M.Sc. and Ph.D. from Case Western Reserve University, U.S.A. in 1991 and 1993 respectively. He has been the author/co-author of 72 research publications, including 32 refereed journal publications. He received more than $2.5 millions in research funding for a total of 25 projects. Funding sources include private, state, and federal agencies mainly from the U.S.A. such as the National Science Foundation, South Carolina Department of Transportation, Federal Highway Administration, U.S. Department of Transportation, Department of Energy, REA Construction Inc., Shaw Components Inc., Cox Wood Inc. and Westinghouse Savannah River Company. He received several awards including the A.S.E.E. Southeastern Section Outstanding Teaching Award, 2001 and the James M. Robins Excellence in Teaching Award, Chi Epsilon Southern District, 1999. He has been a member of several technical committees of the Prestressed Concrete Institute, American Concrete Institute, and Transportation Research Board. His research interests are in the general area of civil engineering materials and experimental methods, including behavior of reinforced and prestressed concrete, self-compacting concrete, high performance concrete, fiber reinforced polymer composites, high performance steel, laboratory and field testing of structures, structural modeling, and repair/strengthening of structures.

Dimos C. Charmpis, Associate Professor

He obtained a Diploma in Civil Engineering (5-year course) from National Technical University of Athens (NTUA) in Greece (1994). He also received a Master of Business Administration (MBA) from NTUA and Athens University of Economics and Business (1999). He then earned a Ph.D. degree from NTUA (2003) after completing a thesis on topics in the area of Computational Mechanics. As a postdoctoral researcher he worked together with research groups at NTUA, Technical University of Munich (Germany) and University of Innsbruck (Austria) during 2003-2005. Since August 2005 he is a Lecturer at the Department of Civil and Environmental Engineering of the University of Cyprus. His research interests cover various topics of Computational Mechanics and aim in the exploitation of innovative computing systems and numerical methods for the analysis and design of structures under static or seismic loading.

Symeon Christodoulou, Associate Professor

Undergraduate and graduate studies at Columbia University, New York City (B.Sc, 1991 on a Fulbright scholarship, M.Sc., 1993 and Ph.D., 1998). He has worked as a Civil Engineer/Project Manager for O’Brien Kreitzberg, the premier construction management firm in the U.S.A. (1995-1998), as an Assistant Professor at Polytechnic University, Brooklyn (1998 – 2003) and as an Industry Professor at Democritus University of Thrace, Xanthi (2003 – 2004). His extensive industry experience includes work on highways, buildings, airports and monorail systems in the USA. His principal research interests are in construction engineering and management, fully integrated and automated project processes, information technology, risk analysis and artificial intelligence for civil engineering and construction applications. He is the recipient of a number of research funds (including the National Science Foundation, NSF, USA), the author of several scientific publications, a recipient of an international research award (London, 1999), a reviewer of ASCE’s Journal of Computing in Civil Engineering and editorial board member of the International Conference on Artificial Intelligence in Civil Engineering (Rome, 2005).

Ioannis Ioannou, Associate Professor

He received a B.Sc. (First Class) degree in Construction Management (1999) from the University of Manchester Institute of Science and Technology (UMIST) while on a Commonwealth Scholarship. He then went on to complete a Ph.D. in Building Engineering (2002) at the same university, while on a joint Overseas Research Student (ORS) and UMIST Graduate School scholarship. Prior to his appointment at the University of Cyprus he was a Research Associate at the University of Edinburgh. Dr Ioannou is an Incorporate Member of the Chartered Institute of Building (C.I.O.B.). His research
interests have a particular emphasis on studies of water movement in porous construction materials and the associated problems of material durability. His recent work included the use of synchrotron radiation energy dispersive diffraction tomography (EDD-T) in the study of salt crystallization in stones.

Despo Kassinos, Associate Professor

Undergraduate studies at the National Technical University of Athens (Diploma in Chemical Engineering, 1993), graduate studies at the University of Athens and JRC Ispra (European Association for Environmental Management and Education, MSc in Environmental Management, 1995) and at the National Technical University of Athens (PhD in Chemical Engineering, 1999). She has worked as a research scientist (1999-2003) at the School of Chemical Engineering of the National Technical University of Athens. Her principal research interests are in the field of environmental science, technology and management and in particular in the areas of environmental monitoring, water and wastewater treatment, wastewater management systems, xenobiotics in the environment and environmental risk assessment.

Petros Komodromos, Associate Professor

Undergraduate studies at the University of Patras (Civil Engineering Diploma, 1992), graduate studies at the Department of Civil and Environmental Engineering (CEE) at the University of California, Berkeley (1995-1996) and at the Massachusetts Institute of Technology (MIT) in the Department of CEE (M.S. in Structures, 1995 and Ph.D in Information Technology, 2001). Since September 2003 he joined the CEE Dept. of the University of Cyprus where he teaches structural analysis, computer-aided engineering, and software development courses. His research interests include modern earthquake resistant design, computer-aided engineering and utilization of information technology in engineering.

Marina Neophytou, Associate Professor

Undergraduate studies - BA (Honours) and MEng degrees - in Civil, Structural and Environmental Engineering at Cambridge University (UK) on a full-expense Cambridge Commonwealth Trust Scholarship (1993-97). During her undergraduate studies she has worked at the Schlumberger Cambridge Research Centre (Cambridge, UK) and Schlumberger-Dowell Research and Production Center (Paris, France) for which she has received the European Grant Award "Women in Technology". She obtained the MA and PhD degrees (2002) in the area of Environmental Fluid Mechanics from Cambridge University (UK) on academic and industrial scholarships. From 2002-2005, she has been a Post-doctoral Research Associate at Cambridge University (UK) and a Visiting Research Fellow (2002-2003) at the ICEHT/FORTH (Patras-Greece). Her principal research interests lie in the area of environmental fluid mechanics, in particular atmospheric pollution dispersion, environmental turbulence modelling, Computational Fluid Dynamics modelling at the local and urban scales, indoor air pollution, buoyancy-driven flows, building ventilation, sustainable building design.

Dimitrios Loukidis, Assistant Professor

Dimitrios Loukidis received his Diploma in Civil Engineering from the National Technical University of Athens (NTUA) in July 1999. Upon completion of his undergraduate degree, he pursued graduate studies at Purdue University in the area of geotechnical engineering, where he received his MSCE degree (December 2000) and PhD degree (May 2006). His PhD dissertation was about constitutive modeling of sands and its application to foundation engineering. After completion of his studies, he worked as a post-doctoral research associate at Purdue University (2006-2008). In January of 2009, he joined the faculty of Civil and Environmental Engineering Department of the University of Cyprus at the rank of Lecturer. His main research interests are in the areas of foundation engineering, computational geomechanics, and geotechnical earthquake engineering.
Panayiotis Roussis, Assistant Professor

Undergraduate studies at the National Technical University of Athens (Diploma in Civil Engineering, 1996) and graduate studies at Rice University, Texas (M.S., 1999) and the State University of New York at Buffalo (Ph.D., 2004). He held an appointment as a postdoctoral research associate (2004-2005) at the University at Buffalo and the Multidisciplinary Center for Earthquake Engineering Research (MCEER) in the United States. He is currently a Lecturer in the Department of Civil and Environmental Engineering at the University of Cyprus, where he teaches structural analysis, structural dynamics and earthquake engineering, and seismic-isolation and energy-dissipation systems. His research interests and contributions are in the area of earthquake engineering and structural dynamics, with a focus on seismic-isolation and energy-dissipation systems, performance-based earthquake engineering, earthquake-simulator testing and development of nonlinear dynamic analysis software.

Loukas Dimitriou, Lecturer

Dr. Loukas Dimitriou holds a Diploma in Civil Engineering from National Technical University of Athens (NTUA) and a Ph.D. from Dept. of Transportation Planning and Engineering, NTUA. For the period 2011-2013 he was appointed Assistant Professor at King Saud University, School of Civil Engineering, Prince Mohamed bin Naif Chair for Traffic Safety Research, Riyadh, Saudi Arabia. From 2014 he is appointed as Lecturer, in the Dept. of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus. His academic and professional activities relates to the design and analysis of civil and transportation infrastructure, the use of advanced methods and techniques for optimizing systems' design and performance and in developing frameworks for supporting decisions in his fields.