Εισαγωγή στο Simulink

Διδάσκοντες:
Αλέξης Κυριάκου
Στέλιος Βραχίμης

Reference: Todd Atkins, tatkins@mathworks.com
Simulink Applications
Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamical systems

• Block diagram editing
• Nonlinear simulation
• Hybrid (continuous and discrete) models
• Asynchronous (non-uniform sampling) simulation
• Fully integrated with MATLAB, MATLAB toolboxes and blocksets.
Simulink

- Accurately design, implement, and test:
 - Control systems
 - Signal Processing systems
 - Communications systems
 - Embedded systems
 - Physical systems
 - other Dynamical systems
Launching Simulink
Simulink Library Browser
Finding Blocks
Getting Help

- Context sensitive help
- Simulink documentation
Demo

- Working with a simple model
- Changing block parameters
- Labeling blocks and signals
- Running a simulation
- Defining parameters with MATLAB variables
- Saving/opening a model

\[y = 4 \times \sin(t) - 10 \]
How Simulink Works

- Engine provides variable-step and fixed-step ODE solvers
- Block Diagram representation of dynamic systems
- Blocks define governing equations
- Signals are propagated between blocks over time
Simulink Solvers

- **Solver?**
 - Determines solution at current time step
 - Determines the next simulation time step

- **Solver options:**
 - Fixed-Step
 - Ode1
 - Ode2
 - Ode3
 - Ode4
 - Ode8
 - Variable-Step
 - Ode45
 - Ode23
 - Ode113
 - Ode15s
 - Ode23s
 - Ode23t
 - Ode23tb
Creating Subsystem

- Context menu → Create Subsystem
- Subsystem ports
- Inside a subsystem
Subsystems

Why?
- Reduce blocks displayed in a model window
- Keep functionally related block together
- Establish hierarchical block diagram
‘Continuous’ Library
Continuous systems: Time-Domain Representation using Integrator Block

\[\dot{x}(t) = 3x(t) + u(t) \]
Continuous systems: Frequency-Domain Representation using Transfer Function Block

\[\dot{x}(t) = 3x(t) + u(t) \Rightarrow \frac{X(s)}{U(s)} = \frac{1}{s - 3} \]
Demos for Continuous Systems

- Double Mass-Spring System
- Single Hydraulic Cylinder Simulation
- Thermal Model of a House
- Two Cylinder with Connecting Rod Simulation
Discrete Systems

- System that takes an input sequence of samples and outputs a sequence of samples
- Sampling

\[
\begin{align*}
y[k] &= 0.1x[k] + x[k - 1] \\
x[k + 1] &= -0.5x[k] + u[k]
\end{align*}
\]
‘Discrete’ Library
Discrete system example

- Second order FIR filter

\[y[k] = \frac{x[k] + ax[k - 2]}{2} \]
More on Simulink

- **Simulink Tutorials:**
- **Demos and Webinars:**
- **Documentation:**