ΜΑΤΘΑΙΟΣ ΖΕΡΒΟΣ
ΖΕΡΒΟΣ ΜΑΤΘΑΙΟΣ
ZERVOS MATTHEW
...
ΑΝΑΠΛΗΡΩΤΗΣ/ΡΙΑ ΚΑΘΗΓΗΤΗΣ/ΡΙΑ
Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής
Green Park
Λεωφ. Αγλαντζιας 91
Tel 22894509
+357 22894509
+357 22892254
www.ucy.ac.cy/

Προσωπικό Προφίλ

  Flowers 1  Wreath2  Full Flower  Tracks Embleem 
 
                                                                     Welcome to the Nanostructured Materials and Devices Laboratory !
               
The Nanostructured Materials and Devices Laboratory was set up in May 2008 for the growth of  semiconductor nanowires and devices. 
 
In the past we have grown a broad variety of semiconductor nanowires i.e. (a) metal oxide (MO) nanowires such as SnO2, In2O3, Sn :In2O3, Ga2O3, ZnO, V2O5 as well as InGaOx,InAlOx, PbSnOx (b) chalcogenides e.g. In2S3 ,SnS2, Cu2S (c) Core-shell p-n junction Cu2SnS3/SnO2, CuInS2/In2O3 nanowires  (c) nitrides like InN,GaN nanowires but also Sn3N4, Zn3N2 and recently (SnxSi1-x)3N4, (d)  Si and Si/SiO2 core-shell nanowires.
 
 

1.Metal Oxide Nanowires

Over the past years we have grown a broad variety of metal oxide nanowires such as ZnO, SnO2, In2O3, Sn doped In2O3, Ga2O3, V2O5 and CuO while more recently we have investigated Sn doped Ga2O3, Pb doped In2O3 etc. Typical images of SnO2, In2O3 and Sn doped In2O3 nanowires are shown below.

We have investigated the physical properties of these metal-oxide nanowires using a broad variety of methods. For instance we have shown that the SnO2 nanowires have a carrier density of 10^16cm-3 and mobility of 70 cm2/Vs determined by THz conductivity spectroscopy see, D.Tsokkou, A.Othonos and M.Zervos,’ THz conductivity spectroscopy of SnO2 nanowires’, Applied Physics Letters, 100p.133101(2012). Also published in the Virtual Journal of Ultrafast Science11, No. 4, April (2012).

In addition we have shown that the crystal structure and composition of Sn doped In2O3 nanowires may be tuned from pure SnO2 to In2O3 over a broad range by simply varying the Sn to In ratio of the metal sources as described by M.Zervos, C.Mihailescu, J.Giapintzakis, P.komninou, N.Florini and J.Kioseoglou ‘Broad compositional tunability of indium tin oxide nanowires grown by the vapor liquid solid mechanism’, Applied Physics Letters Materials, 2p.056104 (2014). These Sn doped In2O3 nanowires are optically transparent and have metalic like conductivities.  

SnO2 nanowires  Fig.1.1 SnO2 nanowires grown by the VLS mechanism 

 

In2O3 Fig 1.2 In2O3 nanowires

Copy of Fig 2Fig 1.3 Sn doped In2O3 nanowires 

 

 

2. Si and Si/SiO2 Core-Shell Nanowires

We have grown Si nanowires via the vapor liquid solid (VLS) mechanism according to Wagner and Ellis and have investigated the effect of thermal oxidation on the structural properties. In particular we were the first to look at the sections of a Si/SiO2 core-shell nanowire formed after thermal oxidation at temperatures between 900 to 1000C. A typical TEM image of the section of a Si/SiO2 core-shell nanowire obtained under O2 at 900C for 60 min is shown below from which one may observe the formaton of a trunctaed hexagon. A thermal oxidation mechanism of alternate vertices of the original hexagon was proposed [1]. 

 

fig-4   fig-3   fig-2

Fig.2 TEM section of Si/SiO2 core-shell NWs showing the mechanism for the thermal oxidation of a Si NW grown by the VLS mechanism using SiCl4 and H2 at 900C. Also shown high magnification image of Si NW with Au nanoparticles at its top. 

[1] J.Kioseoglou, P.Komninou and M.Zervos ‘Thermal oxidation and facet formation mechanisms of Si/SiO2 core-shell nanowires, Physica Status Solidi Rapid Research Letters8, p.307 (2014).

 

3. Metal Oxide/Chalcogenide Nanowires

Recently we investigated the effect of H2S on the stuctural, electrical and optical properties of SnO2, Sn doped In2O3 and Ga2O3 nanowires. More importantly we have deposited Cu over the metal oxide nanowires and converted these into Cu2SnS3/SnO2 and CuInS2/In2O3 nanowires. The Cu2SnS3/SnO2 nanowires exhibited photoluminescence at 3.7 eV close to the band gap of SnO2 by breaking the dipole forbiden rule via the formation of SnO2 quantum dots as described in detail in  E.Karageorgou, M.Zervos and A.Othonos, ‘UV emission from low resistance Cu2SnS3/SnO2 and CuInS2/In2O3 nanowires‘, Applied Physics Letters Materials 2,116107(2014). The room temperature PL spectra of the Cu2SnS3/SnO2 nanowires are shown in Fig 3.1 below. These nanowires are attractive candidates for the fabrication of quantum dot sensitised solar cells described below.

In addition the Ga2S3 nanowires obtained by processing Ga2O3 nanowires under H2S have been used for improving the efficiency of Si solar cells as described in  M.Zervos, A.Othonos, V.Gianneta, A.Travlos and A.G.Nassiopoulou  ‘Sn doped Ga2Oand Ga2S3 nanowires with red emission for solar energy spectral shifting' Journal of Applied Physics, 118, p.194302(2015) and shown below in Fig 3.2

Furthermore In2S3 nanowires have been found to exhibit near infrared emission after the exposure of M=Al or W/In2O3 core-shell nanowires to H2S above 500C. A typical PL spectrum is shown in Fig 3.3 showing the near IR emission which is related to deep donor to acceptor transitions similar to the case of Ga2S3. For more details see M.Zervos, C.Mihailescu, J.Giapintzakis, A.Othonos and A.Travlos, Sulfur doped M=Al,W/Sn:In2O3 nanowires with near infra red emission', AIP Advances, 5, p.097101 (2015). 

 

Fig3 

Fig 3.1 Room temperature PL spectra and ultra violet emission from Cu2SnS3/SnO2 nanowires obtained from the deposition of Cu over SnO2 nanowires and post growth processing under H2S at 100,200,300,400 and 500C. The inset shows the corresponding XRD traces.  

 Fig  5Ga2S3 PL

Fig 3.2 I-V characteristics obtained from a Si solar cell with and without Ga2S3 nanowires on its surface.We obtained an open circuit voltage of VOC = 0.42 V, short circuit current density JSC = 27.2 mA/cm2,  fill factor 63%, and a conversion efficiency of  8.3%. Also shown on the left temperature dependent PL from the Ga2S3 nanowires obtained from Ga2O3 under H2S at 900C. The Ga2S3 nanowires exhibited visible red emission even at room temperature upon excitation with 260 nm. 

 

Fig4

Fig 3.3 PL and near IR emission from Al/In2O3 nanowires after processing under H2S at 500C, 700C and 900C. The top left inset shows the time resolved PL at 10 K while the two insets on the right show the PL obtained from W/SnO2 and W/In2O3 after processing under H2S. The near IR emission appears only in the case of W/In2O3 due to its conversion into In2S3

   

 

4.Quantum Dot Sensitised Solar Cells (QDSSCs)

The CuS/SnO2 and CuS/In2O3 core-shell nanowires described above have been employed as counterelectrodes in quantum dot sensitised solar cells (QDSSCs) as shown below in Fig 4.1. We have observed negative differential resistance in connection with the TiO2 barriers of the QDSSc as described in detail  by Zervos et al. 'Current transport properties of CuS/SnO2 versus CuS/In2O3 nanowires and negative differential resistance in quantum dot sensitized solar cells‘, doi.org/10.1021/acs.jpcc.5b08306, J.Phys.Chem.C (2015).

Fig1

Fig 4.1 Fabrication of a QDSSC starting with (a) selective area location growth of ITO nanowires on Si or quartz (b),(c) deposition of Cu over the Sn doped In2O3 (d) conversion into Cu2S/In2O(e) metal contact deposition and (f) plan view of spacer positioned over the avtive area of the nanowires and optical image of finished counterelectrode (g) spin coating of TiO2 nanoparticles over ITO and SILAR depositin of CdS/CdSe quantum dots (h) opticalimage of photoanode with CdS (i) final assembly of the cell. 

HighlightsFig 5b

Fig 4.2 Negative differential resistance (NDR) observed from (i) n-type ITO nanowires in weak contact with p-type CuS show at the top and (ii) TiO2 barriers deposited on ITO in a QDSSC. Also shown on the left a HRTEM image of the SnO2 quantum dots that are responsible for the observation of UV emission described above in Fig 3.1

 

5. Nitrides

In the past we have grown InN and GaN nanowires and we showed that metal oxides such as Ga2O3 may be converted into GaN with clean emission at 3.4 eV. In addition we were the first to grow Sn3N4 nanowires by halide vapor phase epitaxy while more recently we have showed that the direct enegry band gap of SixSn3-xN4 may be tuned from 1.5 eV up to 6 eV. Our efforts are therefore  focused on earth abundant nitrides  

 

InN 

Fig 5.1 SEM image of InN nanowires on Si(001)

 

GaN

Fig 5.2 SEM image of GaN nanowires on Al2O3

Fig2a

Fig 5.3 SEM of first Sn3N4 nanowires on Si(001)

Cubic                                                            Hexagonal

            

Fig 5.4 Energy band structure of cubic SiSnN4 shown at the top and hexagonal SixSn3-xN4 at the bottom versus composition. The direct energy bandgap can be varied from 1.44 eV up to 5.8 eV. 

 

 

Profile Information

M.Zervos obtained his BEng (Honours) in Electrical and Electronic Engineering from the University of Surrey between 1987-1991 and MSc in Microelectronic Materials and Devices at the University of Manchester Institute of Science and Technology (UMIST) between 1991-1992. Completed a PhD in semiconductor physics on 'Delta–doping of InGaAs quantum wells grown by Molecular Beam Epitaxy' in the Department of Physics at the University of Wales,Cardiff between 1994-1998.

Has worked for STC Technology Ltd at Harlow in the UK and Philips Research Laboratories in Eindhoven the Netherlands, on compound semiconductors and nanotechnology but also for the University of Crete and the Foundation Of Research and Technology Hellas (FORTH) at the Institute of Electronic Structure and LASERs (IESL) in Greece.

He has a broad range of expertise covering synthesis, electrical ,structural and optical characterization of semiconductor materials, device processing including optical and electron beam lithography and computational semiconductor physics. M.Zervos joined the University in August 2006 and set up the Nanostructured Materials and Devices Laboratory in May 2008 for the growth of semiconductor nanowires and the study of their fundamental properties for energy related device applications . 

He currently teaches mechatronics as part of the undergraduate curriculum and semiconductor physics to postgraduates undertaking research in the materials science group of the department but also for postgraduates from other departments e.g. electrical engineering and physics.

Finally he is a chartered engineer (CEng) of the Institute of Electronic and Electrical Engineers (IEE) and also holds the title of chartered physicist (CPhys) of the Institute of Physics (IoP) in the UK.

 

Research activities are currently focused on the synthesis of n- and p-type metal oxide and chalcogenide semiconductor nanowires their structural, electrical and optical properties but also core-shell p-n junction nanowires for the fabrication of all-inorganic quantum dot sensitized nanowire solar cells, supercapacitors but also for the photocatalytic generation of hydrogen.

[1] M.L.Ke, X.Chen, M.Zervos, R.Nawaz, M.Elliott, D.I.Westwood and P.Blood, ‘Optical and electrical properties of selectively δ-doped strained InxGa1-xAs/GaAs quantum wells’, Journal of Applied Physics79, No 5 , p2627 (1996).

[2] M.Zervos, A.Bryant, M.Elliott, M.Beck and M.Ilegems, ‘Magnetotransport of delta(δ)-doped In0.53Ga0.47As on InP(001) grown between 390°C -575°C by molecular beam epitaxy’, Applied Physics Letters72, No 20, p2601 (1998).

[3] M.Zervos, D.I.Westwood and M.Elliott, ‘Light induced mobility enhancement in delta(δ)-doped GaAs/In0.26Ga0.74As/GaAs quantum wells grown by molecular beam epitaxy on GaAs(001)’ Applied Physics Letters74, No 14, p2026 (1999).

[4] M.Zervos, M.Elliott and D.I.Westwood,’Surface micro-roughness and transport properties of Si δ-doped GaAs/InxGa1-xAs/GaAs (0.1≤x≤0.25) quantum wells grown by molecular beam epitaxy on GaAs(001) and GaAs(111)B, Applied Physics Letters , 75, No 16, p 2548 (1999).

[5] R.A.Shepherd, M.Elliott, W.G.Herrenden-Harker, M.Zervos and P.R.Morris, ‘Experimental observation of the de Haas-van Alphen effect in a multiband quantum well sample’, Physical Review B60, No 16, p 11277  (1999).

[6] S.Mikroulis, V.Cimalla, A.Kostopoulos, G.Konstantinidis, G.Drakakis, M.Zervos, M.Cengher, and A.Georgakilas,  ‘An Investigation of the nitridation of Al2O3(0001) substrates by a nitrogen radio frequency plasma source’.  Microelectronics, Microsystems & Nanotechnology Conference Proceedings MMN 2000, p.135 (2000).

[7] M. Zervos, A. Kostopoulos , G. Constantinidis , M.Kayambaki and A. Georgakilas, ‘An investigation into the charge distribution and barrier profile tailoring in AlGaN/GaN double heterostructures by self consistent Poisson-Schrödinger calculations and capacitance-voltage profiling’, Journal of Applied Physics, 91No 7, p 4387 (2001).

[8] M.Zervos, A.Kostopoulos, G.Constantinidis, M.Kayambaki, S.Mikroulis, N.Flytzanis and A.Georgakilas, ‘The pinch-off behavior and charge distribution in   AlGaN-GaN-AlGaN-GaN double heterostructure field effect transistors’, Physica Status Solidi (a), 188, No  1, p259-262 (2001).

[9] M.Androulidaki, A.Georgakilas, F.Peiro, K.Amimer, M.Zervos, K.Tsagaraki, M.Dimakis and A.Cornet, ‘Investigation of Different Si (111) Surface Preparation Methods for the Heteroepitaxy of GaN by Plasma-Assisted MBE’ Physica Status Solidi (a), 188, No  2, p515-518 (2001). 

[10] J.Simon, R.Langer, A.Barski, M.Zervos and N.T.Pelekanos, ‘Residual Doping Effects on the Amplitude of Polarization-induced Electric Fields in GaN/AlGaN Quantum Wells’ Physica Status Solidi (a), 188, No  2, p867-870 (2001).

[11] A. Georgakilas, S. Mikroulis, V. Cimalla, M. Zervos, A. Kostopoulos, Ph. Komninou, Th. Kehagias, Th. Karakostas , ‘Effects of the Sapphire Nitridation on the Polarity and Structural Properties of GaN Layers Grown by Plasma-Assisted MBE’ Physica Status Solidi (a), 188, No  2, p567-570 (2001).

[12] M.Zervos, ‘An investigation of spin-polarized resonant tunneling through ferromagnet/insulator double-barrier magnetic tunnel junctions by self-consistent solution of the Poisson-Schrödinger equations’, Journal of Applied Physics94, No 3,  p.1776-1782 (2003).Also published in the Virtual Journal of Nanoscale Science and Technology8, No.4  (2003).

[13] M.Zervos and L.F.Feiner, ‘Electronic structure of piezeoelectric  InAs/InP/InAs/InP/InAs (111) nanowires’  Journal of Applied Physics,  95No.1,p.1-11, January 1  (2004). Cited in Nature Materials 3, 769–773 (1 November 2004).

[14] M.Zervos, C.Xenogianni, G.Deligeorgis, M.Androulidaki, P.Savidis, Z.Hatzopoulos and N.Pelekanos, ‘InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates’ Phys.Stat.Sol (c) 3, p 3988-3991,(2006).

[15]  E.Iliopoulos, M.Zervos, A.Adikimenaki, K.Tsagaraki and A.Georgakilas, ‘Properties of Si doped GaN and AlGaN/GaN heterostructures grown by RF MBE on high resistivity Fe doped GaN’ SuperLattices and Microstructures40 p.313 (2006).

[16] G.E. Dialynas, G. Deligeorgis, M. Zervos, and N.T. Pelekanos, ‘Influence of polarization field on the lasing properties of III-V nitride quantum wells’, Physica E : Low dimensional systems and nanostructures32 , p.558(2006).

[17] M.Zervos, ‘Properties of the ubiquitous p-n junction in semiconductor nanowires’, Semiconductor Science and Technology, 23 , p.075016 (2008).

[18] M.Zervos, N.Pelekanos ‘One-dimensional transfer matrix calculation of current transport in semiconductor nanowires with built-in barriersJournal of Applied Physics104, 054302-1(2008).

[19]  G.E.Dialynas, G. Deligeorgis, M. Zervos, and N.T. Pelekanos, ‘Internal field effects on the lasing characteristics of InGaN/GaN quantum well lasers’ , Journal Of Applied Physics104, p.113101(2008).

[20] A.Othonos, M.Zervos and M.Pervolaraki, ‘Ultra fast carrier relaxation of InN nanowires grown by reactive vapor transport’, Nanoscale Research Letters4, p.122-129 (2009).

[21] M.Zervos, D.Tsokou, M.Pervolaraki and A.Othonos, ‘Low temperature growth of In2O3 and InN nanocrystals on Si(111) by chemical vapor deposition via the sublimation of NH4Cl ’, Nanoscale Research Letters4, p. 491 (2009).

[22] A.Othonos, M.Zervos and D.Tsokkou, ‘Femtosecond carrier dynamics in In2O3 nanocrystals’, Nanoscale Research Letters4, p.526 (2009).

[23] A.Othonos, M.Zervos and D.Tsokkou, ‘Tin oxide nanowires : Influence of trap states on ultra fast carrier relaxation’, Nanoscale Research Letters4, p.828 (2009).

 [24] M.Zervos and A.Othonos, ‘Synthesis of tin nitride nanowires by chemical    vapor deposition’, Nanoscale Research Letters , 4, p.1103 (2009).

[25] D.Tsokkou, A.Othonos and M.Zervos, ‘Defect states of CVD grown GaN nanowires : Effects and mechanisms in the relaxation of carriers’, Journal of Applied Physics 106, p.054311 (2009).

[26] D.Tsokou, M.Zervos and A.Othonos, ‘Ultrafast spectroscopy of In2O3 nanowires grown by the vapor-liquid-solid method ’, Journal Of Applied Physics 106, p. 084307(2009). 

[27] A.Othonos and M.Zervos, ‘Carrier relaxation dynamics in tin nitride nanowires grown by chemical vapor deposition’, Journal of Applied Physics, 106 p. 114303(2009).

[28] M.Zervos, P.Papageorgiou and A.Othonos, ’High yield-low temperature growth of indium sulphide nanowires via chemical vapor deposition‘, Journal Of Crystal Growth,312,p.656 (2010).

[29] A.Othonos and M.Zervos, ‘Carrier dynamics in indium sulphide nanowires grown by chemical vapor deposition’, Physica Status Solidi A 207, p.2258(2010).

[30] M.Zervos and A.Othonos, ‘Hydride assisted growth of GaN nanowires on Au/Si(001) via the direct reaction of Ga with NH3 and H2‘, Journal of Crystal Growth312, p.2631(2010).

[31] M.Zervos and A.Othonos , ‘Enhanced growth and photoluminescence properties of SnxNy ( x > y) nanowires grown by halide chemical vapor deposition’, Journal Of Crystal Growth316, p.25, (2011).

[32] A.Othonos, M.Zervos and C.Christofides, ‘Carrier dynamics in β-Ga2O3 nanowires’, Journal Of Applied Physics108, p.124302(2010). Also published in the Virtual Journal of Ultrafast Science10, No.1 (2011).

[33] A.Othonos, M.Zervos and C.Christofides, ‘A systematic investigation into the conversion of b-Ga2O3 to GaN nanowires using NH3 and H2 : Effects on the photoluminescence ’ Journal of Applied Physics, 108, p.124319(2010). Also published in the Virtual Journal of Ultrafast Science 10, No.1 (2011).

[34] M.Zervos and A.Othonos, ‘Gallium hydride vapor phase epitaxy of GaN nanowires’ Nanoscale Research Letters6, p.262 (2011).

[35] P.Papageorgiou, M.Zervos and A.Othonos, ‘An investigation into the conversion of In2O3 to InN nanowires ’ Nanoscale Research Letters6, p.311 (2011).

[36] M.Zervos and A.Othonos, ‘A systematic study of the nitridation of SnO2 nanowires grown via the vapor liquid solid mechanism’ Journal Of Crystal Growth 340,p.28(2012).

[37] A.Othonos and M.Zervos, ’Hole carrier relaxation dynamics in p-type CuO nanowires’, Nanoscale Research Letters 6 p.622 (2011).

[38] M.Zervos, C.Karipi and A.Othonos, ‘The nitridation of ZnO nanowires’,  Nanoscale Research Letters, 7,p.175 (2012).

[39] M.Zervos, M.Demetriou, T.Krassia , A.Othonos, ‘Metal-oxide nanowire growth using hybrid methacrylate noble metal : Au and Pd nanostructured catalysts’, RCS Advances, 2,p.4370 (2012).

[40] M.Zervos, C.Karipi and A.Othonos,’ Zn3N2 nanowires : Growth, properties and oxidation’, Nanoscale Research Letters8, p.221 (2013).

[41] D.Tsokkou, A.Othonos and M.Zervos,’ THz conductivity spectroscopy of SnO2 nanowires’, Applied Physics Letters, 100p.133101(2012). Also published in the Virtual Journal of Ultrafast Science11, No. 4, April (2012).

[42] Z.Viskadourakis, M.L. Paramês, O. Conde, M.Zervos and  J. Giapintzakis, ‘Very high thermoelectric power factor of a Fe3O4/SiO2/p-type Si(001) heterostructure’, Applied Physics Letters,101,p.033505(2012).  

[43]M.Zervos, A.Othonos, D.Tsokkou, J.Kioseoglou, E.Pavlidou and P.Komninou, ‘Structural properties of SnO2 nanowires and the effect of donor like defects on the charge distribution’ , Physica Status Solidi A210 p.226 (2013).

[44] M.Zervos, Z.Viskadourakis, G.Athanasopoulos, M.L. Paramês, O. Conde and  J. Giapintzakis, ‘Transport and thermoelectric properties of Fe3O4/SiO2/p-type Si(001) heterojunction devices’, Journal Of Applied Physics115, p.033709 (2014).   

[45] T.Krasia and M.Zervos, 'Hybrid metal nanoparticle semiconductor nanowire assemblies : Synthesis, properties and applications' , Chapter 5, Handbook Of Functional Materials, 1 : Synthesis and Modification, ISBN: 978-1-62948-364-1, Nova Science Publishers (2013).

[46] M.Zervos, ‘Delta (δ)-doping of GaAs nanowires’, Physica Status Solidi Rapid Research Letters, 7p.651(2013).

[47] M.Zervos, ‘Properties and tailoring of the ubiquitous core-shell p-n junction in semiconductor nanowires by δ-doping’ Physica Status Solidi Rapid Research Letters7, p.194(2013).

[48] A.Othonos, C.Christofies and M.Zervos, Ultrafast spectroscopy of V2O5 nanowires, Applied Physics Letters103, p.133112(2013).

[49] M.Zervos, C.Mihailescu, J.Giapintzakis, P.komninou, N.Florini and J.Kioseoglou ‘Broad compositional tunability of indium tin oxide nanowires grown by the vapor liquid solid mechanism’, Applied Physics Letters Materials, 2p.056104 (2014).

[50]J.Kioseoglou, P.Komninou and M.Zervos ‘Thermal oxidation and facet formation mechanisms of Si/SiO2 core-shell nanowires, Physica Status Solidi Rapid Research Letters8, p.307 (2014).

[51] M.Zervos, ‘Delta (δ)-doping and charge control of III-V core-shell nanowires’, Applied Nanoscience, 5, p.629 (2015).

[52] M.Zervos, ‘Electronic properties of core-shell nanowire resonant tunneling diodes’, Nanoscale Research Letters9, p.509 (2014).

[53] E.Karageorgou, M.Zervos and A.Othonos, ‘UV emission from low resistance Cu2SnS3/SnO2 and CuInS2/In2O3 nanowires‘, Applied Physics Letters Materials 2,116107(2014).

[54]M.Zervos,C.Mihailescu, J.Giapintzakis, A.Othonos and C.Luculescu, ‘Sulphur passivation and the conversion of SnO2 to SnS2 nanowires’,  Materials Science and Engineering B, 198p.10 (2015).

[55]M.Zervos,C.Mihailescu, J.Giapintzakis, A.Othonos , A.Travlos, C.Luculescu, ‘Electrical, structural and optical properties of sulphurised Sn doped In2O3  nanowires’,Nanoscale Research Letters 10, p.307(2015).

[56] K.Othonos, M.Zervos, C.Christofidis and A.Othonos, ‘Ultrafast spectroscopy and red emission of Ga2O3/Ga2S3 nanowires, Nanoscale Research Letters , 10, p.304 (2015).

[57] T.Pavloudis, M.Zervos, Ph.Komninou and J.Kioseoglou, Ab initio electronic structure calculations of (SnxSi1-x)3N4Thin Solid Films, 10.1016/j.tsf.2015.09.072 (2015).

[58] M.Zervos, C.Mihailescu, J.Giapintzakis, A.Othonos and A.Travlos, Sulfur doped M=Al,W/Sn:In2O3 nanowires with near infra red emission', AIP Advances, 5, p.097101 (2015). 

[59] M.Zervos, A.Othonos, V.Gianneta, A.Travlos and A.G.Nassiopoulou  ‘Sn doped Ga2Oand Ga2S3 nanowires with red emission for solar energy spectral shifting', Journal of Applied Physics, 118, p.194302(2015).

[60] M.Zervos, A.Othonos, V.Gianneta and A.G.Nassiopoulou, Pb doping of In2O3  nanowires and their conversion to highly conductive PbS/In2O3  nanowires with infra red emission, Accepted, DOI : 10.1016/J.MatLet.2015.12.041 Materials Letters (2015).

[61] M.Zervos and A.Othonos, 'Compositional tuning, properties and the conversion of In2xGa2-2xO3 nanowires into I–III–VI2 chalcopyrite Cu(InxGa1-x)SAccepted,DOI10.15761/FNN.1000106, Frontiers in Nanoscience and Nanotechnology (2015). 

[62] M.Zervos, E.Vasille, Eu.Vasille, E.Karageorgou and A.Othonos, Current transport properties of CuS/SnO2 versus CuS/In2O3 nanowires and negative differential resistance in quantum dot sensitized solar cells‘, Accepted dx.doi.org/10.1021/acs.jpcc.5b08306, ACS Journal of Physical Chemistry C (2015).

[63] M.Zervos, E.Vasille, Eu.Vasille and A.Othonos, Core shell PbS/Sn:In2O3 and branched PbIn2S4 /Sn:In2Onanowires in quantum dot sensitized solar cells‘, Invited Paper in the Focus Issue on Nanowires, Nanotechnology IoP (2016).