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Abstract

We adapt the Bierens (Econometrica, 1990) test to the I -regular models of
Park and Phillips (Econometrica, 2001). Bierens (1990) de�nes the test hypoth-
esis in terms of a conditional moment condition. Under the null hypothesis, the
moment condition holds with probability one. The probability measure used
is that induced by the variables in the model, that are assumed to be strictly
stationary. Our framework is nonstationary and this approach is not always ap-
plicable. We show that Lebesgue measure can be used instead in a meaningful
way. The resultant test is consistent against all I -regular alternatives.

1 Introduction

A series of consistent speci�cation tests for parametric regression functions has been
initiated by H. Bierens (e.g. 1982, 1984, 1987, 1988, 1990). The most appealing one
is that of Bierens (1990). Contrary to the other tests mentioned above, the latter
test has a tractable limit distribution. In addition, its consistency is not achieved
by randomisation of some test parameter. The test was originally developed for
i.i.d. data and was adapted to strictly stationary weakly dependent data by de Jong
(1996). To the best of our knowledge, there is no fully consistent test for some class of
nonstationary models. In this paper we propose a Bierens (1990) kind of test for the
I -regular family of Park and Phillips (2001) (P&P hereafter). This family comprises
models, where the regression function is some integrable transformation of a unit root
process. Kasparis (2004) and Marmer (2007) develop speci�cation tests for I -regular

�Earlier versions of this paper were presented at the University of York, June 2005, and at the
conference in the honour of P. Dhrymes in Paphos, June 2007. I would like to thank Jon Levellen
for sharing his data on NYSE returns. In addition, I would like to thank two referees for suggestions
that have substantially improved the previous version.
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models with a single covariate. The tests of the two aforementioned papers are not
fully consistent. The test proposed in this paper is a fully consistent test for the
I -regular class. In particular, we consider multi-covariate regressions with additively
separable I -regular components and exogenous regressors.
The test hypothesis of Bierens (1990) is determined by some probability measure.

Actually, the null hypothesis is de�ned in terms of a conditional moment condition.
Under the null hypothesis (correct speci�cation) the moment condition holds with
probability one. For stationary models, there is one-to-one correspondence between
the truth of the null/alternative hypothesis and the asymptotic behaviour of the
sample moment of the Bierens (1990) test statistic.
The equivalence mentioned above does not always hold when the model is I -

regular. In the context of I -regular models we show, that if the null hypothesis of
the Bierens test is de�ned in terms of the Lebesgue measure instead, there is one-
to-one correspondence between the truth of the null hypothesis and the asymptotic
behaviour of the sample moments of the Bierens test statistic. Our test detects
misspeci�cation in large samples, if the true response function di¤ers from the �tted
regression function on a set of non-zero Lebesgue measure.
The rest of this paper is organised as follows: Section 2 speci�es the test hypothesis

and provides some preliminary results. In Section 3, our main results are presented.
A Monte Carlo experiment is conducted in Section 4, while Section 5 provides some
empirical application to the predictability of stock returns. Before proceeding to the
next section, we introduce some notation. For a matrix A = (aij), is jAj the matrix
of the moduli of its elements. The maximum of the moduli is denoted by k:k. For a
function g : Rp ! R, de�ne the arrays

_g =

�
@g

@ai

�
; �g =

�
@2g

@ai@aj

�
;

to be vectors, arranged by the lexicographic ordering of their indices. By
R
f(s)ds,

we denote the Lebesgue integral of the function f . The Lebesgue measure of some
Borel set A on Rk is denoted by �[A]. Finally, 1f: 2 Ag is the indicator function of a
set A.

2 The model, the test hypothesis and preliminary
results

In this section we specify the model under consideration and the test hypothesis.
Some preliminary results are also provided. We assume that the series fytgnt=1 is
generated by the following additively separable regression model:

yt = co + f(xt) + ut; (1)
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where xt is a vector unit root process, co is a constant and f(x) =
JX
j=1

fj(xj) with fj(:)

being an I -regular function. The I -regular class, comprises integrable transformations
that are piecewise Lipschitz (see Park and Phillips, 2001, for full de�nitions). For a
statistical analysis of these models, the reader is referred to P&P and Chang et. al.
(2001). The variables xt, ut satisfy the following assumption:

Assumption A:
(i) Let xt = xt�1 + vt with x0 = Op(1) and

vt = 	(L)�t =
1X
s=1

	s�t�s;

with 	(I) 6= 0 and
P1

s=1 s k	sk < 1. The sequence �t is iid with mean zero and
E k�tk

r <1 with r > 4.
(ii) �t has distribution absolutely continuous with respect to Lebesgue measure and

has characteristic function '(�) = o(k�k��) as �!1, for some � > 0.
(iii) The random vector xt is adapted to some �ltration Ft�1:
(iv)

�
�0t =

�
ut; �

0
t+1

�
; Ft = � (�s;�1 � s � t)

	
is a martingale di¤erence sequence

with E [�t�
0
t j Ft�1] = �.

(v) E (u2t j Ft�1) = �2 < 1 a:s: and sup1�t�nE(jutj

 j Ft�1) < 1 a:s: for some


 > 2.

De�ne the partial sum processes Vn(r) and Un(r) as:

(Vn(r); Un(r)) =
1p
n

[nr]X
t=1

(vt; ut) :

The processes Vn(r) and Un(r) take values in the set of cadlag functions on the interval
[0; 1].

Assumption A yields strong approximation results for the empirical Brownian
motions introduced earlier. In particular (see P&P, p. 125 and 152), there is a �ner
probability space (
;F ;P)o supporting a (J+1)-dimensional Brownian motion (U; V )
and a partial sum processes (U on; V

o
n ) such that (Un; Vn)

d
= (U on; V

o
n ) and

sup
0�r�1

k(U on(r); V o
n (r))� (U(r); V (r))k = op(1):

To avoid repetitious embedding arguments, we will assume that (Un; Vn) = (U on; V
o
n ),

instead of (Un; Vn)
d
= (U on; V

o
n ). Due to this convention, subsequent convergence in

probability results should be understood as converngence in distribution, unless the
limit is non-stochastic.
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For the purposes of our analysis, it is convenient to partition (U(r); V (r)) as
(U(r); V1(r); :::; VJ(r)). In addition, we need to introduce the (chronological) local
time process of the Brownian motion Vj up to time t de�ned as

Lj(t; s) = lim
�&0

1

2�

Z t

0

1fjVj(r)� sj � �gdr:

The reader is referred to Park and Phillips (2000, 2001) for further discussion about
the local time process and its relevance to econometrics.
We assume that the �tted model is given by:

yt = ĉ+ g(xt; â) + ût: (2)

The regression function is additively separable of the form g(x; a) =

JX
j=1

gj(xj; aj),

with gj(xj; aj) being an I -regular function on a compact set Aj � Rkj . Finally, (ĉ; â)
is the NLS estimator de�ned as

(ĉ; â) = arg min
(c;a)2R�A

Qn(c; a); A = A1 � :::� AJ ;

where

Qn(c; a) =
nX
t=1

(yt � c� g(xt; a))
2 :

We assume that the �tted regression components gj(xj; aj) are possibly �di¤erent�
than their true counterparts i.e. fj(xj). This is explained precisely later.
Before we present our test, we provide a concise review of the Bierens tests pro-

posed for strictly stationary data. Typically, speci�cation tests (e.g. Newey, 1985),
under the null hypothesis (correct speci�cation) impose a �nite number of moment
conditions of the form

E [(yt � c� g(xt; a))wi(xt)] = 0, for some (c; a) 2 R� A, (3)

where wi(:) i = 1; ::; l are weighting functions. In the stationary case, under misspeci-
�cation, a test statistic based on weighted residuals, T̂i say, in large samples typically
behaves as

T̂i �
p
nE [(yt � c� � g(xt; a

�))wi(xt)] ;

where c� and a� are pseudo-true values (i.e. the limit of the NLS estimator under
misspeci�cation). The test is consistent as long as the expectation shown above
is non-zero for some i = 1; :::; l. Clearly, the more weighting functions are used,
the more likely is that the condition of (3) will be violated under misspeci�cation.
Nonetheless, as pointed out by Bierens (1990), a test that utilises only �nite many
moment conditions cannot be consistent against all possible alternatives as it will
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always be possible to �nd data generating mechanisms such that misspeci�cation
cannot be detected. If in�nite many moment conditions were tested, the test could
be consistent against all possible alternatives.
Bierens (1990) essentially imposes an in�nite many moment conditions, by con-

sidering the following weighting function:

exp

 
JX
j=1

mj�(xj;t)

!
; mj 2M � R,

where �(:) is some bounded one-to-one transformation. Notice the expression above
entails in�nite many weight functions, when M is a continuum of real numbers. The
key result for the test consistency is the following. Bierens (1990) shows that under
certain regularity conditions, E [(yt � g(xt; a

�)) exp (m�(xt))] equals zero, only when
m belongs to a set of Lebesgue measure zero. Therefore, test consistency can be
achieved with a suitable choice of m. For instance, if m is chosen from some con-
tinuous distribution, the moment shown above will be non-zero a:s: (e.g. Bierens,
1987). Alternatively, a consistent test can be obtained by some appropriate func-
tional of the test statistic. Bierens (1982, 1984) and Bierens and Ploberger (1997)
consider the Cramér-Von Misses functional, while the Bierens (1990) test is based on
the Kolmogorov-Smirnov functional. The latter approach is followed here. It should
be also mentioned, that the choice of exponential function is not of crucial impor-
tance. There several families of weighting functions that can deliver consistent tests.
Stinchcombe and White (1998) show that any function that admits an in�nite series
approximation on compact sets, with non-zero series coe¢ cients, could be employed
in the place of the exponential function shown above (see also Escanciano (2006) for
further examples of families).
In the stationary framework, by virtue of the Law of Large Numbers, the sample

moment of the Bierens test statistic converges to some integral with respect to the
probability measure generated by the variables of the model. The null/alternative
hypothesis of the Bierens (1990) test is also de�ned in terms of the same probability
measure as shown below:

H0 : P [E [(yt � c� g(xt; a)) j xt] = 0] = 1 for some (c; a) 2 R� A:

H1 : P [E [(yt � c� g(xt; a)) j xt] = 0] < 1 for all (c; a) 2 R� A: (4)

Under stationarity, there is one-to-one correspondence between the truth of the
null/alternative hypothesis and the asymptotic behaviour of the sample moment of
the Bierens test statistic.
The limit behaviour of I -regular transformations however, is characterised by

integrals with respect to the Lebesgue measure. For instance suppose that J = 1 and
co = 0. Then under misspeci�cation and Assumption A, a residual based test statistic
asymptotically behaves as:
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T̂i � 4
p
n

Z 1

�1
[(f(s)� g(s; a�))wi(s)] dsL(1; 0); (5)

where L(1; 0) is the (chronological) local time the Brownian motion V up to time 1
at the origin. The local time at the origin is L(1; 0) > 0 a:s:, therefore the test is
consistent as long as the Lebesgue integral in (5) is non-zero. We show that under
Assumption A, when the null hypothesis of the Bierens test is de�ned in terms of
the Lebesgue measure, there is one-to-one correspondence between the truth of the
null/alternative hypothesis and the asymptotic behaviour of the sample moments of
the Bierens test statistic.
Next, we specify the test hypothesis. Under the null hypothesis, all the �tted

components gj(xj; aj), 1 � j � J are correctly speci�ed. In particular, we say that
a �tted component is correctly speci�ed, if the function gj(:; aj) di¤ers from its true
counterpart (i.e. fj(:)) on a set of Lebesgue measure zero at most. This is formally
stated below:

De�nition 1.
H0 : (correct speci�cation) For all 1 � j � J ,

� [fs : fj(s) 6= gj(s; aj)g] = 0;

for a some aj 2 Aj:
H1 : (incorrect speci�cation) For some 1 � j � J ,

� [fs : fj(s) 6= gj(s; aj)g] > 0;

for all aj 2 Aj:

Clearly, our formulation of the test hypothesis is in general di¤erent than that
of Bierens (1990). Nevertheless, if the covariate xt has certain properties, the two
approaches are equivalent. First, notice that under (1), the null hypothesis that
appears in (4) can written as

H0 : P [co + f(xt) = c+ g(xt; a)] = 1, for a some (c; a) 2 R� A:

The following lemma shows that the test formulation shown above is equivalent to
that of De�nition 1, under certain conditions.

Lemma 1. Let q(:) : RJ ! R be Borel measurable.
(i) If the random vector x has absolutely continuous distribution with respect to

the Lebesgue measure, then:

�[s 2 RJ : q(s) 6= 0] = 0) P[q(x) = 0] = 1:
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(ii) If the random vector x satis�es P[x 2 D] > 0, for all Borel sets D � RJ of
positive Lebesgue measure, then:

P[q(x) = 0] = 1) �[s 2 RJ : q(s) 6= 0] = 0:

Therefore, when the conditions of Lemma 1 hold and q(:; a) = f(:) � g(:; a), it can
be seen easily that the Bierens test formulation is equivalent to that of De�nition 1.
Notice that condition (i) of Lemma 1 requires that the covariates are continuously
distributed. This is one of the maintained assumptions of the paper (Assumption A
above), which is also a standard assumption in the literature e.g. Park and Phillips
(1999, 2001), Jeganathan (2003), Pötscher (2004), de Jong (2004), de Jong and Wang
(2005). On the other hand, condition (ii) essentially requires that the covariates are
unrestricted. Clearly, it rules out bounded random variables. Condition (ii) can be
easily checked for random variables that possess almost everywhere positive density
functions (see for example Halmos, 1950 p. 104). For purposes of generality and
convenience, we formulate the test hypothesis as in De�nition 1 without any further
reference.
Finally, we present some preliminary results. In order to derive the asymptotic

properties of our test, we need to characterise the limit of the NLS estimator both
under the null and the alternative hypothesis. Let ��1Wj, 1 � j � J indepen-
dent standard Gaussian. In addition, Wj�s are independent of Lj(0; 1)�s and U . The
following lemma demonstrates the limit theory of the NLS under the null hypothesis:

Lemma 2. Suppose that:
(a) Assumption A holds.
(b) and H0 holds for some ao = (ao;1; :::; ao;J) 2 A
(c) For 1 � j � J :

(i) _gj and �gj are I-regular on Aj.
(ii)

R1
�1 (fj(s)� gj(s; aj))

2 ds > 0, for all aj 6= ao;j in Aj.
(iii)

R1
�1 _gj(s; ao;j) _gj(s; ao;j)

0ds > 0.
Then we have p

n (ĉ� co)
d! U(1)

and
4
p
n (âj � ao;j)

d!
�
Lj(0; 1)

Z 1

�1
_g(s; ao;j) _gj(s; ao;j)

0ds

��1=2
Wj;

as n!1:

To obtain the limit properties of the tests under the alternative hypothesis, we need
to establish that the NLS estimator has a well de�ned limit. Su¢ cient conditions for
this are provided by Marmer (2007) in the context of single covariate models. The
following result holds for multi-covariate models:
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Lemma 3. Suppose that:
(a) Assumption A and H1 hold.
(b) For j = f1; :::; Jg, there are a�j 2 Aj such thatZ 1

�1
(fj(s)� gj(s; aj))

2 ds >

Z 1

�1

�
fj(s)� gj(s; a

�
j)
�2
ds;

for all aj 6= a�j in Aj.
Then, as n!1, we have

ĉ
p! co and â

p! a�;

where a� = (a�01 ; :::; a
�0
J )
0.

Lemmas 2 and 3 are essential for the subsequent analysis as they establish that â has
a well de�ned limit both under H0 and H1.

Remark: (a) Notice that estimator for the intercept is consistent, even if some inte-
grable component is misspeci�ed.
(b) If the component gj(s; aj) is misspeci�ed, the NLS estimator âj converges to a

well de�ned quantity a�j that is in general di¤erent than the true parameter ao;j. It is
obvious from Lemma 3 however, that if a gj(s; aj) is correctly speci�ed, âj converges
to the true parameter, even if there are other misspeci�ed or omitted components.
This phenomenon is due to the fact that integrable transformations of di¤erent unit
root processes, are asymptotically orthogonal.

3 The test

As discussed earlier, the null hypothesis of our test is determined by the Lebesgue
measure rather some probability measure. Some basic results due to Bierens (1982,
1990) extend naturally to our framework, when the probability measure is replaced
by the Lebesgue measure. The handling of asymptotics however is di¤erent in our
case, as it relies largely on the asymptotic theory of Park and Phillips (2001) and
Chang et. al. (2001). In the remaining of this section we present our test statistic,
and derive its limit properties under the null and the alternative hypothesis.
The test statistic under consideration is based on the following sample moment:

n�1=4
nX
t=1

(yt � ĉ� g(xt; â))W(xt;m); m 2M

with M a compact subset of RJ , and

W(xt;m) =

JX
j=1

wj(xj;t) exp (mj�(xj;t)) :
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The functionwj(:) > 0 is I -regular, �(:) is bijective and bounded such thatwj(:) exp (mj�(:))
is I -regular. Just like Bierens (1990), the weight function employed is based in the ex-
ponential transformation. Nonetheless, there are two noticeable di¤erences between
the Bierens weighting function andW(xt;m). First, we utilise an additional weight-
ing function, wj(:), that is chosen to be I -regular. Bierens (1990) points out, that
an additional weighting might be employed to improve power against certain alter-
natives. Under the current framework, the use of an integrable weighting function is
necessary. The aim of residual based speci�cation tests is to detect abnormal �uctu-
ation in the residuals that typically arises when the model is misspeci�ed. Integrable
transformations of unit root process however, exhibit very weak signal. In particular,
the intensity of g(xt; a) is weaker than that of the error term1 (ut). As a result, the
functional part of the model is "obscured" by the error term. The employment of
some integrable weighting function resolves this problem, because wj(xj;t) and ut are
asymptotically orthogonal. The second di¤erence betweenW(xt;m) and the Bierens
(1990) weighting function is that the former is additively separable in the regression
variables. Clearly, this conforms with the structure of the models under consideration.
Whether a non-additive separable weighing function could form the basis of a con-
sistent test, is an open question, as no limit theory exists for multivariate integrable
functions.
Our test statistic is a functional of:

B̂(m) =
[
Pn

t=1 (yt � ĉ� g(xt; â))W(xt;m)]
2

&̂2(m)
; m 2M; (6)

where:

&̂2(m) = (n�1
Pn

t=1 û
2
t )
Pn

t=1 [An(â;m)C
�1
n (â) _g(xt; â)�W(xt;m)]

2 and &2(m) its
distribution limit.

An(a;m) = n�1=2
Pn

t=1 _g
0(xt; a)W(xt;m) and A(a;m) its distribution limit.

Cn(a) = n�1=2
Pn

t=1 _g(xt; a) _g
0(xt; a) and C(a) is its distribution limit.

C�1n (a) and C
�1(a) are the inverses of Cn(a) and C(a), when they exist.

The following result is analogous to Theorem 1 of Bierens (1990) and is essential
for the development of a fully consistent test for the I -regular family.

Theorem 1: Let q : R ! R integrable with q(s) 6= 0 on a set of positive Lebesgue
measure. Assume � : R! C is bijective and continuously di¤erentiable with C being
an open and bounded subset of R. Then, the set

M =

�
m 2 R :

Z
R
q(s) exp (m�(s)) ds = 0

�
has Lebesgue measure zero and is non-dense in R.
1Notice, for instance, that

Pn
t=1 g

2(xt) = Op(
p
n) while

Pn
t=1 u

2
t = Op(n).
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The integral of Theorem 1 corresponds to the numerator of the B̂(m) statistic, in
the limit. Under H1, the numerator of B̂(m) can be zero only on a set of Lebesgue
measure zero, in large samples. In fact,M is a set of isolated points of the real line.
The subsequent assumption is similar to one of the regularity conditions of Bierens

(1990). Its purpose is to ensure that the denominator of B̂(m) is non-zero asymptot-
ically.

Assumption B: There are integrable and Borel measurable functions �j(s), 1 �
j � J on R, such that the matrix

R
R kj(s)kj(s)

0ds is non-singular, with kj(s) =�
�j(s); _gj(s)

�0
.

The following lemma shows that the B̂(m) statistic has a well de�ned limit unless m
belongs in a null set.

Lemma 4: Under Assumption B, the set M� =
�
m 2 RJ : &(m)2 = 0

	
has Lebesgue

measure zero a:s:

Theorem 2 next, demonstrates the limit properties of the B̂(m) test statistic under
the null and the alternative hypothesis.

Theorem 2: Suppose that Assumptions A-B hold. Then, for almost all m 2 RJ , as
n!1 :
(i) Under H 0:

B̂(m)
d! �21;

(ii) Under H 1:

B̂(m)=
p
n

d! c(m),

with c(m) > 0 a:s:

In view of Theorem 2, the function c(m) can be zero only on sets of Lebesgue mea-
sure zero. Therefore, consistency can be achieved by choosing m from a continuous
distribution. A consistent test of functional form based on randomised m is proposed
by Bierens (1987). Alternatively, a consistent test can be based on an appropriate
functional of B̂(m). By virtue of Theorem 1, in the limit the numerator of the B̂(m)
can be zero only on null sets. Hence, any compact subset of RJ of positive Lebesgue
measure contains some m� such that c(m�) > 0. An obvious choice for m� is the
maximiser of B̂(m) over a compact interval. This is exactly the approach advocated
by Bierens (1990). Following Bierens (1990), we consider the Kolmogorov-Smirnov
functional of B̂(m):

sup
m2M

B̂(m), (6)

where M is a compact subset of RJ .
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Next, the limit properties of the sup-statistic are explored. Assumption B ensures
that a test statistic based on randomised m is well de�ned in the limit. Nonethe-
less, to ensure that the test statistic of (6) is well de�ned asymptotically, a stronger
assumption is required:

Assumption B0: infm2M &(m)2 > 0 a:s:

Theorem 2 essentially follows from the asymptotic theory of Park and Phillips (2001).
To obtain the limit distribution of the sup-statistic however, further limit results are
required. First, we need some additional assumption about the covariates of the
model:

Assumption C: The process, t�1=2xj;t, 1 � j � J has density function dj;t(x) that
is uniformly bounded2 i.e. supt�1 supx dj;t(x) <1.

In addition, de�ne zn(m) as

zn(m) =
n�1=4

Pn
t=1 [A(â;m)C

�1(â) _g(xt; â)�W(xt;m)]utp
s2(m)

:

The process zn(m) is asymptotically equal to B̂(m). Moreover, by virtue of Assump-
tion C, zn(m) is tight. This is formally stated in the subsequent lemma:

Lemma 5: Suppose that H 0 holds.
(i) Under Assumptions A and B 0, we have supm2M

���B̂(m)� z2n(m)
��� = op(1),

(ii) Under Assumptions A and C, zn is tight.

Next, we report our main result. Let C(M) be the space of all continuous functions
on M equipped with the metric �(c1; c2) = supm2M jc1(m)� c2(m)j. The following
theorem shows the limit distribution of our test statistic under the null hypothesis.
Moreover, it establishes that the sup-statistic diverges in probability against any I -
regular alternative.

Theorem 3: Let Assumptions A, B 0 and C hold. Then, as n!1, we have:

(i) Under H 0, B̂(m) converges to z(m)2, where z(m) is a mixed Gaussian element
of C(M) with covariance function

�(m1;m2) = E

"PJ
j=1

R1
�1Gj(m1; s)Gj(m2; s)dsp

s2(m1)s2(m2)

#
,

2By Lemma 3.1 in Pötscher (2004), the following requirement is su¢ cient for Assumption C: �j;t
has characteristic function 'j(r) such that limr!1 jrj� 'j(r) = 0, for some � > 1.
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where m1;m2 2M and for i = f1; 2g;
Gj(mi; s) = L

1=2
j (1; 0)

�
Aj(ao;j;mi;j)C

�1
j (ao;j) _gj(s; ao;j)� wj(s) exp (mi;j�(s))

�
and

s2(mi) =
PJ

j=1 Lj(1; 0)
R1
�1
�
Aj(ao;j;mi;j)C

�1
j (ao;j) _gj(s; ao;j)� wj(s) exp (mi;j�(s))

�2
ds:

In addition,
sup
m2M

B̂(m)
d! sup
m2M

z(m)2:

(ii) Under H 1,

sup
m2M

B̂(m)=
p
n

d! sup
m2M

c(m),

with supm2M c(m) > 0 a:s:

For stationary models (e.g. Bierens (1990), de Jong (1996)), the limit distribution of
B̂(m) under H 0 is Gaussian. In our case it is mixed Gaussian. In addition, under
stationarity the limit distribution of the sup-statistic is data dependent (see Bierens
(1990) and de Jong (1996)). This is true under the present framework as long as the
�tted model involves multiple covariates. The limit distribution depends on the local
times Lj(1; 0) that relate to the covariates of the model. Notice, however, that no
local time features in the limit, when the empirical model involves a single covariate.
In this instance the limit distribution is Gaussian rather than mixed Gaussian and
the covariance function �(m1;m2) depends only on the regression function and the
weighting employed. Under H 1 the test is consistent. In particular, the test statistic
diverges with rate

p
n which is slower than the rate attained for stationary data (n).

Theorem 3 suggests that the truth of H0 implies certain properties for the asymp-
totic moments of the sup-statistic. The following result is analogous to Corollary 1
of Bierens (1984). It demonstrates that there is one-to-one correspondence between
the truth of H0 and the asymptotic behaviour of the sup-statistic.

Lemma 6: H1 holds if and only if supm2M c(m) > 0 a:s:

The limit distribution of the sup-statistic is not pivotal. Bierens (1990) suggests a
modi�cation of the sup-statistic in order to obtain a tractable limit distribution under
the null hypothesis. The modi�ed test statistic has a chi-square limit distribution.
This approach is applicable to our models as well.

Lemma 7: Let Assumptions A-B hold. Choose independently of the data generating
process 
 > 0, � 2 (0; 1=2) and some mo 2M . Let m̂ = argmaxm2M B̂(m) and let

~m = mo if B̂(m̂)� B̂(mo) � 
n� and ~m = m̂ if B̂(m̂)� B̂(mo) > 
n�:

Then as n!1 we have:
(i) Under H0; B̂( ~m)

d! �21,

(ii) Under H1; B̂( ~m)=
p
n

d! supm2M c(m):
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In view of Lemma 6, the modi�ed statistic B̂( ~m) has a pivotal limit distribution and
yields a consistent test. It is reasonable to expect that the penalty term 
n� a¤ects
the properties of the test in �nite samples. In fact, a small penalty term should result
in size larger than the nominal one. The sensitivity of the test on the choice of the
penalty term is explored in the simulation experiment of Section 4.
It follows from Bierens (1990) that any test based on conditional moment con-

ditions can be converted into a fully consistent (under strict stationarity). This is
true for I -regular family as well. Marmer (2007) proposes a RESET type of test for
I -regular models. In particular, the regression residuals are regressed on integrable
polynomials (basis functions) of a unit root covariate. The aim of the polynomials is
to approximate neglected nonlinear components. The signi�cance of the basis func-
tions is checked with the aid of an F-test. Marmer�s test is not a fully consistent one,
but it can be converted into a fully consistent test. Under misspeci�cation Marmer�s
test has power as long as the inner product of f (f is a neglected I -regular term) and
at least one of the basis functions ( k�s) employed is non-zero i.e.Z 1

�1
f(s) k(s)ds 6= 0,

Clearly, a Bierens weighting function can be added in Marmer�s test statistic to ensure
that the above is true i.e.Z 1

�1
f(s) k(s) exp(m�(s))ds 6= 0.

4 Simulation Evidence

Next, we assess the �nite sample properties of Bierens tests presented in the previ-
ous section. Our simulation experiment is based on 5000 replications. The data is
generated by the following I -regular model:

yt = f(xt) + ut; xt = xt�1 + vt with�
vt�1
ut

�
� i:i:d: N

�
0;

�
1 0
0 1

��
.

and f is chosen as follows:

f1(x) = 1 f0 < x < 1g
f2(x) = (1� 0:5x) 1 f0 < x < 2g
f3(x) = x21

�
0 < x < 31=3

	
f4(x) = 2�(x+ 0:25)� �(x� 0:75) (� is the standard Gaussian density)
f5(x) = x
f6(x) = ln(0:1 + jxj)
f7(x) = exp(x)(1 + exp(x))

�1

13



The functions f1-f4 are the same as those used in the simulation experiment of Marmer
(2007). In addition, we consider f5-f7 in order to investigate the power properties of
our tests against non-integrable alternatives. The �tted speci�cation is:

yt = ĉ+ ût (7)

Our test statistic utilises the following weight functions: w(s) = (1 + s2)�1 and
�(s) = tan�1(s=10). The set M is the interval [�15; 15]. Finally, mo (Lemma 7) is
chosen from a uniform distribution over M .
Table 1 shows the �nite sample properties of the Bierens modi�ed test (B̂( ~m))

and the Bierens randomised test (B̂(mo)). For the construction of the B̂( ~m) statistic
we have used three di¤erent penalty terms. For n = 500, the randomised test has
size very close to the nominal one. The modi�ed test has good size in most cases,
but overrejects the null hypothesis, when the penalty term is small. Clearly, the size
properties of the tests improve, when sample size increases. Both Bierens tests have
good power properties. In many cases however, the modi�ed test has signi�cantly
superior power than that of the randomised test. Table 2 shows the �nite sample
properties of Marmer�s RESET test. This test has good �nite sample properties as
well. It is not our objective to make close power comparisons between the Bierens and
the RESET tests3. It seems however, that the Bierens modi�ed test has better power
than the RESET test, for the particular choice of weighting and basis functions4.
The RESET test performs better, when f = f4. Notice that in this case, the basis
function used resembles the neglected component and as a result it provides a good
approximation. It should be stressed again that the RESET test can be converted
into a fully consistent test. We expect that the employment of a Bierens weighting
function, in the RESET test statistic, could improve power.
It follows from our simulation experiment, that all the tests under consideration

have reasonable power in the presence of a neglected locally integrable component.
Hong and Phillips (2005) and Kasparis (2008) develop speci�cation tests that have
power against locally integrable alternatives but have no power, when there is some
neglected integrable term. Contrary to the tests proposed in the two aforementioned
papers, our Bierens tests (as well as the Marmer�s test) provide valid testing proce-
dures for both families of transformations.

5 Application

The question whether certain �nancial ratios (i.e. dividend yield (DY), book-to-
market (BM) and equity-to-price ratio (EP)) can predict stock returns has received
much attention over the years. A substantial body of applied work in this area focuses

3Clearly, for a close comparison, we should consider a variaty of basis and weighting functions.
4The basis functions utilised for the RESET test are  k(x) = xk�(x), k = f1; 2; 3g.
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on the following linear model (see for example Levellen (2004) and the references
therein):

rt = co + aoxt�1 + ut;

where rt is stock returns and xt is some �nancial ratio. Stambaugh (1999), Levellen
(2004), Goyal and Welch (2003) among others, explore the predictability of NYSE
returns by testing the signi�cance of the slope parameter ao.
A simple inspection of the NYSE data, reveals that the returns and the �nan-

cial ratios series have very di¤erent properties. Namely, the NYSE returns series
exhibits mean reversion, constant variance and little autocorrelation. On the other
hand �nancial ratios, exhibit no mean reversion, strong persistence and time varying
variance. Actually, the �nancial ratio series are reminiscent of integrated processes.
The fact that two sets of series exhibit very di¤erent characteristics give support to
a possible non-linear relationship between returns and �nancial ratios. A non-linear
transformation applied to some trending series may attenuate its intensity and bound
its variance.
Marmer (2007) studies the relationship between NYSE stock returns and the

dividend yield. Marmer proposes the following non-linear model:

rt = co + f(xt�1) + ut;

with f being some integrable transformation and xt a unit root process. An inte-
grable transformation applied to an integrated process attenuates the intensity of the
process. Integrable transformations of unit root processes tend to be non-zero, when
the process is in the vicinity of some spatial point and zero, when the unit root is
away from that point. Therefore, f(xt) takes non-zero values rarely, due to the null-
recurrent behaviour of xt. An integrable transformation added to some stationary
sequence produces a seemingly stationary process. In view of this, Marmer (2007)
points out that the above model provides a small deviation from the martingale di¤er-
ence hypothesis. It should be mentioned that locally integrable transformations (see
Park and Phillips (2001)) may also reduce the intensity of some integrated process,
but to a lesser extend. Therefore, integrable transformations produce smaller devi-
ations from the martingale di¤erence hypothesis. Marmer tests for predictability of
returns by regressing returns on an intercept term and then applies his RESET test
to check for some neglected integrable function of the DY variable. The RESET test
provides evidence for a neglected non-linear component relating to the DY.
In this section we employ the Bierens tests to investigate whether returns are

predictable. Apart from DY, we also consider BM and EP as possible predictors.
Our data are the same as those used by Levellen (2004). A series of stationarity
tests suggest that DY, BM and EP are integrated series (see Table 3). In addition,
the stationarity tests suggest that the returns series a stationary one. This is not
inconsistent with the I -regular formulation of returns. The Dickey-Fuller (DF) test
favours the stationary alternative, when performed on an I -regural series (see Park
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and Phillips, 1998). Partial sum tests like the KPSS and the CUSUM, also favour
stationarity (see Kasparis, 2008).
We apply the Bierens test on the residuals of a model that involves an intercept

term only. Table 4 provides results for the modi�ed Bierens statistic (B̂( ~m)). We also
provide results for Marmer�s RESET test5. The modi�ed statistic has been estimated
for M = [�15; 15]. Instead of using a randomised mo, we have chosen mo = 1,
15, in order to enable the reader to verify our results. We consider two weighting
functions: Wi(s) = (1 + s2)�1 exp (m�i(s)), i = 1; 2, with �1(s) = tan�1(s=10) and
�2(s) = tan�1(s=2). In addition, we consider two penalty terms, for the modi�ed
Bierens statistic.
Both the Bierens and the RESET tests indicate that the three �nancial ratios

have predictive power. The Bierens tests reject then null hypothesis at 5%, whenW2

is employed for all three variables. In addition the null is rejected at 1% level in most
cases for the particular weighting function. The null hypothesis is also rejected at
5% level in most occasions, whenW1 is employed. It is obvious from our simulation
experiment that, when a small penalty term is used, the B̂( ~m) statistic tends to be
signi�cantly larger B̂(mo). In this instance the modi�ed Bierens test may su¤er from
overrejection of the null hypothesis. Notice however, that in Table (4) B̂( ~m) equals
B̂(mo) in most cases, even when a small penalty term is employed.

6 Appendix

Lemma A. Let q(s) : R ! R be Borel measurable. The function �(s) : R ! C is
bijective and continuously di¤erentiable with C an open and bounded subset of R. If
q(:) is integrable, then

� [fs : q(s) 6= 0g] > 0 if and only if
Z
R
q(s)em�(s)ds 6= 0

for m 2 R in an arbitrarily small neighborhood of zero.

Proof of Lemma A: The �if�part is trivial. We show the �only if�part. Consider
the Borel measurable functions

q1(s) = max fq(s); 0g and q2(s) = max f�q(s); 0g

and notice that q = q1 � q2. Assume that

c1 =

Z
R
q1(s)ds > 0 and c2 =

Z
R
q2(s)ds > 0.

5We have used a single basis function (�) for the RESET statistic.
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De�ne the probability measures6 Fi, i = f1; 2g on the Borel �eld restricted on C (BC)
as

Fi(B) =
1

ci

Z
B

qi(�
�1(s))

��� _��1(s)��� ds, B 2 BC :
ThenZ

R
q(s)em�(s)ds =

Z
R
q1(s)e

m�(s)ds�
Z
R
q2(s)e

m�(s)ds

=

Z
C

q1(�
�1(s))ems

��� _��1(s)��� ds� Z
C

q2(�
�1(s))ems

��� _��1(s)��� ds
= c1

Z
C

emrdF1(r)� c2

Z
C

emrdF2(r)

= c1�1(m)� c2�2(m);

where the second equality above is due to Billingsley (1979, Theorem 17.2). Notice
that �i(m) is the moment generating function of Fi, i = f1; 2g. In view of this,
and using the same arguments as Bierens (1982, Theorem 1(I)) it can be shown that
� [fs : q(s) 6= 0g] > 0 implies

R
R q(s)e

m�(s)ds 6= 0 for some m 2 R. In addition,
because �(s) is bounded, the requisite result follows along the lines of Bierens (1982,
Theorem 1(II)).�

Proof of Lemma 1: The proof for part (i) is trivial (see for example Halmos (1950)
p. 104 and 128). For (ii) set D =

�
s 2 RJ : q(s) 6= 0

	
and suppose that �[D] > 0.

Then by assumption, P[x 2 D] > 0. Clearly this implies that P[q(x) = 0] < 1, which
is a contradiction. Therefore, �[D] = 0.�

Proof of Lemma 2: We �rst prove consistency. As in Marmer (2007), we consider
the concentrated objective function:

Qn(a) =
nX
t=1

(yt � ĉ(a)� g(xt; a))
2 ;

where ĉ(a) = n�1
Pn

t=1 (yt � g(xt; a)) = n�1
Pn

t=1 (f(xt)� g(xt; a))+n
�1Pn

t=1 ut+co.
Next,

sup
a2A

jĉ(a)� coj � sup
a2A

�����n�1
nX
t=1

(f(xt)� g(xt; a))

�����+
�����n�1

nX
t=1

ut

����� = op(1);

where the last equality above follows from Park and Phillips (2001, Theorem 3.2)
and Chang et. al. (2001, Lemma 3.1). This establishes consistency of ĉ. For â notice
that if xj;t has absolutely continuous distribution with respect to Lebesgue measure,

6Notice that
R
C
qi(�

�1(s))
��� _��1(s)��� ds = RR qi(s)ds = ci:
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then fj(xj;t) = gj(xjt; ao;j) a:s: Given this, Park and Phillips (2001, Theorem 3.2) and
Chang et. al. (2001, Lemma 3.1), it is easy to show that:

n�1=2 (Qn(a)�Qn(ao))
p!

JX
j=1

Lj(0; 1)

Z 1

�1
(gj(s; ao;j)� gj(s; aj))

2 ds

uniformly in a. In view of the above, condition c(ii) of Lemma 2 and condition CN1
of Park and Phillips (2001, p. 133) we get â

p! ao:
Given the consistency of the LS estimator, the limit distribution result follows

easily along the lines of Park and Phillips (2001, Theorem 5.1).�

Proof of Lemma 3: The consistency of ĉ can be established as above. Also, using
the same arguments as those in the previous proof, we get

n�1=2 (Qn(a)�Qn(a
�))

p!
JX
j=1

Lj(0; 1)

Z 1

�1

h
(fj(s)� gj(s; aj))

2 �
�
fj(s)� gj(s; a

�
j)
�2i

ds;

uniformly in a and the result follows. �

Proof of Theorem 1: The proof is similar to that of Bierens (1990). Suppose mo is
such that

R
R q(s)e

mo�(s)ds = 0. Notice that

�
��
s : q(s)emo�(s) 6= 0

	�
= � [fs : q(s) 6= 0g] > 0:

By Lemma A, there is � > 0 such that
R
R

�
q(s)emo�(s)

�
em�(s)ds 6= 0, for 0 < jmj < �.

Therefore,
R
R q(s)e

m�(s)ds 6= 0, for 0 < jm�moj < �. Hence, infm2M;m 6=mo jm�moj >
0: This implies that M is a set of isolated points of the real line, and therefore is
countable. It is also straightforward to show that is non-dense in R.�

Proof of Lemma 4: By Lemma 3.1 of Chang et. al. (2001) the result can be proved
along the lines of Lemma 2 in Bierens (1990).�

Proof of Theorem 2: We start with the limit result under H0. By Lemma 3.1
of Chang et. al. (2001), the terms An(a;m) and Cn(a) have well de�ned limits,
A(a;m), C(a) say. Set D(a;m) = A0(a;m)C�1(a;m) and notice that D(a;m) can be
partitioned as D(a;m) = [D1(a1;m1); ::::; DJ(aJ ;mJ)]. Let �an, ~an be mean values of
â and ao. By Lemma 2, Lemma 3.1 of Chang et. al. (2001) and the mean value
theorem, the numerator of B̂(m) rescaled by n�1=2 is"

n�1=4
nX
t=1

(yt � ĉ� g(xt; â))W(xt;m)

#2

=

"
n�1=4

(
nX
t=1

�
A0n(�an;m)C

�1
n (~an;m) _g(xt; ao)�W(xt;m)

�
ut � (ĉ� co)

nX
t=1

W(xt;m)

)#2
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=

"
JX
j=1

n�1=4
nX
t=1

[Dj(mj; ao;j) _gp(xj;t; ao;j)� wj(xj;t) exp (mj�(xj;t))]ut +Op(n
�1=2)

#2
d!

"
JX
j=1

�
Lj(1; 0)

Z 1

�1
[Dj(mj; ao;j) _gj(s; ao;j)� wj(s) exp (mj�(s))]

2 ds

�1=2
W

#2
;

(A1)
whereW � N(0; �2) is independent of Lj(1; 0)�s. In addition, by Lemma 3.1 of Chang
et. al. (2001), the denominator of B̂(m) rescaled by n�1=2 is

n�1=2&̂2(m)
p! &2(m; ao)

� �2
JX
j=1

�
Lj(1; 0)

Z 1

�1
[Dj(mj; ao;j) _gj(s; ao;j)� wj(s) exp (mj�(s))]

2 ds

�
:(A2)

The result follows from (A1) and (A2).
By Lemma 3.1 of Chang et. al. (2001) and Lemma 3, under H1

n�1=2B̂(m)
p! c(m)

�

nPJ
j=1 Lj(1; 0)

R1
�1
��
fj(s)� gj(s; a

�
j)
�
wj(s) exp (mj�(s))

�
ds
o2

&2(m; a�)

�

nPJ
j=1 Lj(1; 0)qj(mj)

o2
&2(m; a�)

:

Set L = (L1(1; 0); :::; LJ(1; 0))
0 and consider any non-zero deterministic vector x (J�

1). The inner product L0x is a continuously distributed random variable. Hence
L0x 6= 0 a:s: In addition, by Theorem 1, each qj(mj) is non-zero for almost every
mj 2 R. In view of this and Lemma 4 the result follows. �

Proof of Lemma 5:
(i) Let Kn(a;m) = n�1=4

Pn
t=1 (yt � g(xt; a))W(xt;m). Then, the mean value

theorem gives

Kn(â;m)�Kn(ao;m) = n�1=2 _Kn(�a(m);m)n
1=4 (â� ao) ; (A3)

where supm2M k�a(m)� aok � kâ� aok = op(1). Also let

A(ao;m) =
JX
j=1

Lj(1; 0)

Z 1

�1
_gj(s; ao;j)wj(s) exp (mj�(s)) ds:

Next
sup
m2M




n�1=4 _Kn(�a(m);m)� A(ao;m)



 = op(1); (A4)
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by Theorem 3.2 of Park and Phillips (2001). By (A3) and (A4) we therefore have

sup
m2M



Kn(â;m)�Kn(ao;m) + A(ao;m)n
1=4 (â� ao)



 = op(1): (A5)

Also note that

sup
m2M






n1=4 (â� ao)� C(ao)
�1n�1=4

nX
t=1

_g(xt; ao)ut






 = op(1): (A6)

Now (A5) and (A6) give

sup
m2M

���Kn(â;m)� zn(m)
p
&2(m)

��� = op(1): (A7)

Next note that
sup
m2M

��&̂2(m)� &2(m)
�� = op(1); (A8)

by Theorem 3.2 of Park and Phillips (2001). Now the result follows by (A7) and (A8)
and the assumption that infm2M &2(m) > 0.
(ii) By Theorem 8.2 of Billingsley (1968), the following conditions are su¢ cient

for the requisite result:

C1: For any � > 0 and some mo 2M there is an � > 0 such that

sup
n
P (zn(mo) > �) � �:

C2: For any � > 0 and � > 0 there is a � > 0 such that

sup
n
P

 
sup

km1�m2k<�
jzn(m1)� zn(m2)j > �

!
� �:

Verifying C1 and is C2 is what we set out to do. Note that C1 holds trivially as
zn(mo) = Op(1) by Theorem 3.2 of Park and Phillips (2001). Next choose � < 1
and let Hj (m1;j;m2;j; xj;t) = wj(xj;t) [exp (m1�(xj;t))� exp (m2�(xj;t))]. Condition
C2 follows from the continuity of A(ao;m) and the fact that

E

(
sup

km1�m2k<�
n�1=4

�����
nX
t=1

JX
j=1

Hj (m1;j;m2;j; xj;t)ut

�����
)
� � �C; (A9)
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for some �C <1. The last result can be established as follows:

E

(
sup

km1�m2k<�
n�1=4

�����
nX
t=1

JX
j=1

Hj (m1;j;m2;j; xj;t)ut

�����
)

(A10)

� � exp

��
1 + sup

m2M
kmk

��
sup
s
j�(s)j

�� JX
j=1

E

(
n�1=4

�����
nX
t=1

wj(xj;t)ut

�����
)

� � exp

��
1 + sup

m2M
kmk

��
sup
s
j�(s)j

�� JX
j=1

8<:E
 
n�1=4

nX
t=1

wj(xj;t)ut

!29=;
1=2

� � exp

��
1 + sup

m2M
kmk

��
sup
s
j�(s)j

�� JX
j=1

(
E

 
n�1=2

nX
t=1

wj(xj;t)
2E
�
u2t j Ft�1

�!)1=2

� �� exp

��
1 + sup

m2M
kmk

��
sup
s
j�(s)j

�� JX
j=1

(
E

 
n�1=2

nX
t=1

wj(xj;t)
2

!)1=2
;

where the �rst inequality is due to equation (B9) in Bierens (1990), and second one
is due to Liapunov�s inequality. The last term above is:

JX
j=1

E

 
n�1=2

nX
t=1

wj(xj;t)
2

!
=

JX
j=1

n�1=2
nX
t=1

Z 1

�1
w2j (t

1=2x)dj;t(x)dx

=
JX
j=1

n�1=2
nX
t=1

t�1=2
Z 1

�1
w2(s)dj;t(s=t

1=2)ds

� 2
JX
j=1

sup
t�1
sup
x
kdj;t(x)k

Z 1

�1
w2j (s)ds+ o(1) <1;

where the last inequality is due to Assumption C. Therefore,
PJ

j=1E
�
n�1=2

Pn
t=1wj(xj;t)

2
�

is bounded. This together with (A10) establishes (A9). �

Proof of Theorem 3: The result under H0 follows easily from Lemma 4 and Lemma
3.1 of Chang et. al. (2001). The result under H1 follows directly from Theorem 3.2
Park and Phillips (2001) and Lemma 3.1 of Chang et. al. (2001).�

Proof of Theorem 4: (i) Note that [zn(m1); :::; zn(md)]
d! [z(m1); :::; z(md)] by

Theorem 3.2 of Park and Phillips (2001), for any �nite d. In view of Lemma 4(ii)
this ensures that zn converges in distribution to z. Moreover, because supm2M (:)

2 is
a continuous mapping from C(M) on R, the result follows.
(ii) The result under H1 follows directly from Theorem 3.2 of Park and Phillips

(2001). �
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Proof of Lemma 6: The result follows easily from Lemma A.�

Proof of Lemma 7: Same as the proof of Theorem 4 of Bierens (1990).�
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Table 1. Empirical size and power of the Bierens tests (5% level).
n = 200

Test B̂( ~m) B̂( ~m) B̂( ~m) B̂(mo)
(
; �) (1:5; 0:2) (1:5; 0:3) (2; 0:3) �
f = 0 0.1154 0.0551 0.0457 0.0434
f = f1 0.7920 0.7495 0.7235 0.5240
f = f2 1.0000 1.0000 1.0000 0.9555
f = f3 1.0000 1.0000 1.0000 0.9545
f = f4 0.6920 0.5825 0.5270 0.4145
f = f5 1.0000 1.0000 1.0000 0.9560
f = f6 1.0000 1.0000 1.0000 0.9400
f = f7 0.7490 0.7070 0.6787 0.5103

n = 500

B̂( ~m) B̂( ~m) B̂( ~m) B̂(mo)
(1:5; 0:2) (1:5; 0:3) (2; 0:3) �
0.0964 0.0512 0.0484 0.0476
0.8550 0.8205 0.8075 0.6480
1.0000 1.0000 1.0000 0.9610
1.0000 1.0000 1.0000 0.9695
0.8235 0.7475 0.7100 0.5540
1.0000 1.0000 1.0000 0.9607
1.0000 1.0000 1.0000 0.9613
0.8470 0.8227 0.8123 0.6660

Table 2. Empirical size and power of Marmer�s RESET test (5% level).
n = 200
k = 1 k = 2 k = 3

f = 0 0.0405 0.0469 0.0510
f = f1 0.2940 0.6920 0.6935
f = f2 0.8940 0.9300 0.9305
f = f3 0.9945 0.9940 0.9960
f = f4 0.6970 0.6595 0.6325
f = f5 0.8943 0.9383 0.9377
f = f6 1.0000 1.0000 1.0000
f = f7 0.1870 0.4347 0.4507

n = 500
k = 1 k = 2 k = 3
0.0439 0.0468 0.0486
0.4310 0.8045 0.8015
0.9065 0.9270 0.9245
0.9965 0.9950 0.9965
0.8330 0.8015 0.7875
0.9103 0.9310 0.9300
1.0000 1.0000 1.0000
0.3263 0.6233 0.6350

Table 3. Stationarity tests
Returns DY BM EP

ADF -24.172 -0.846 -0.710 -0.584
Phillips-Perron -24.613 -0.858 -0.693 -0.554
KPSS 0.050 2.894 2.175 1.302
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Table 4. Tests for the predictability of value weighted NYSE returns.
Predictor: DY
(
; �) = (1:5; 0:3) W1 W2

mo = 1
B̂( ~m) = 4:992��

B̂(mo) = 4:992
��

B̂( ~m) = 5:139��

B̂(mo) = 5:139
��

mo = 15
B̂( ~m) = 6:266��

B̂(mo) = 6:266
��

B̂( ~m) = 6:798���

B̂(mo) = 6:798
���

(
; �) = (0:5; 0:1) W1 W2

mo = 1
B̂( ~m) = 6:862���

B̂(mo) = 4:992
��

B̂( ~m) = 6:879���

B̂(mo) = 5:139
��

mo = 15
B̂( ~m) = 6:266��

B̂(mo) = 6:266
��

B̂( ~m) = 6:798���

B̂(mo) = 6:798
���

RESET = 6:856���

Predictor: BM
(
; �) = (1:5; 0:3) W1 W2

mo = 1
B̂( ~m) = 3:632�

B̂(mo) = 3:632
�

B̂( ~m) = 4:353��

B̂(mo) = 4:353
��

mo = 15
B̂( ~m) = 3:490�

B̂(mo) = 3:490
�

B̂( ~m) = 8:583���

B̂(mo) = 8:583
���

(
; �) = (0:5; 0:1) W1 W2

mo = 1
B̂( ~m) = 4:938��

B̂(mo) = 3:632
�

B̂( ~m) = 8:583���

B̂(mo) = 4:353
��

mo = 15
B̂( ~m) = 4:938��

B̂(mo) = 3:490
�

B̂( ~m) = 8:583���

B̂(mo) = 8:583
���

RESET = 4:271��

Predictor: EP
(
; �) = (1:5; 0:3) W1 W2

mo = 1
B̂( ~m) = 1:580

B̂(mo) = 1:580

B̂( ~m) = 6:815���

B̂(mo) = 6:815
���

mo = 15
B̂( ~m) = 7:518���

B̂(mo) = 7:518
���

B̂( ~m) = 5:949��

B̂(mo) = 5:949
��

(
; �) = (0:5; 0:1) W1 W2

mo = 1
B̂( ~m) = 1:580

B̂(mo) = 1:580

B̂( ~m) = 6:815���

B̂(mo) = 6:815
���

mo = 15
B̂( ~m) = 7:518���

B̂(mo) = 7:518
���

B̂( ~m) = 7:437���

B̂(mo) = 5:949
��

RESET = 6:881���

* signi�cant at 10% level. ** signi�cant at 5% level. *** signi�cant at 1% level.
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