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Abstract

We develop semi- and non-parametric methods for estimation and inference in

nonlinear predictive regressions with persistent predictors. We �rst consider a semi-

parametric method, that we term Chronologically Trimmed LS (CTLS), for inference in

regressions where the nature and extent of persistence in the data is uncertain. CTLS

attains a sub-OLS convergence rate and has (mixed) Gaussian limit distribution in

situations where the data may be weakly or strongly persistent. In particular, we

allow for nonlinear predictive type of regressions where the regressor can be stationary

short/long memory as well as nonstationary long memory process or a nearly integrated

array. The resultant t-tests have conventional limit distributions (i.e. N(0, 1)) free of

(near to unity and long memory) nuisance parameters. In the case where the regressor

is a fractional process, no preliminary estimator for the memory parameter is required.

Therefore, the practitioner can conduct inference while being agnostic about the exact

dependence structure in the data. The CTLS estimator is obtained by applying certain

chronological trimming to the OLS instrument via the utilisation of appropriate kernel

functions of time trend variables. A speci�c version of CTLS also yields consistent

non-parametric estimates of time varying parameters (TVPs). The resultant non-

parametric estimator can be utilised for the development of non-parametric t-tests

with conventional limit distributions when predictors are stationary. In particular, we

allow for general stationary processes that can be of long memory, ARCH(∞) and

in some cases heavy tailed. The �nite sample performance of CTLS based t-tests is

investigated with the aid of a simulation experiment.
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The proposed methods are employed for investigating the predictability of SP500

returns. We consider four widely used predictors (i.e. dividend yield, earning-to-price

and book-to-market ratios, and realised variance) in the context of �xed parameter

(FP) and TVP regressions. In the case of FP speci�cations, we �nd stronger pre-

dictability evidence when nonlinear regressions of reduced growth are employed with

dividend yield and book-to-market ratio as predictors. Further, we �nd evidence of

time variability in the intercept as well as episodic predictability when realised variance

is utilised as a predictor in TVP speci�cations.

1 Introduction

Estimation and inference under temporal dependence is a challenging task. An enormous

literature in time series econometrics and statistical time series is dedicated to this topic.

Despite major advances in this area, relatively little progress has been made towards the

development of a comprehensive framework for inference in general models that allow for

�exible functional forms and regressors that may exhibit a wide range of persistence.

A major obstacle for a development of this kind has to do with the fact that parametric

estimators, under nonstastionarity and mild endogeneity, exhibit drastically di�erent limit

distributions than those under stationarity. As a consequence, inferential procedures devel-

oped for stationary data are not applicable under nonstationarity and vice versa. A number

of early studies in the area of nonstationary econometrics (e.g. Phillips and Hansen, 1990;

Johansen, 1995; Phillips, 1995) develop inferential procedures suitable for nonstationary

models with I(1) covariates, however these methods not only there are not valid under

stationarity, they are also non robust to local deviations from the unit root paradigm. In

particular, when there are local or larger deviations from a unit root, nuisance parameters

such as memory and near-to-unity feature in estimators' limit distributions, making infer-

ence challenging. Near-to-unity parameters are not estimable, rendering various statistical

tests non pivotal. On the other hand memory parameters can be estimated in general,

however more complicated procedures are required for valid inference.

Despite progress in recent years towards methodologies that partially robustify inference

to the persistence properties of the data, a unifying framework for inference that allows for

a wide range of persistence in the data and a wide range of model speci�cations remains

elusive. Certain studies in this area develop procedures that provide robust inference in

the presence of nearly integrated (NI) processes, in the context of reduced form type of

regressions i.e. regressions where the covariate is predetermined with respect to the regres-

sion error. For example, Cavanaght, Elliot and Stock (1995), Campbell and Yogo (2006),

Janson and Moreira (2006), Elliott, Müller and Watson (2015), develop procedures suitable

for parametric models with a NI covariate. The aforementioned papers propose test statis-

tics with limit distributions free of the nuisance near-to-unity parameter. This is achieved
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mainly1 via conservative inferential methods e.g. Bonferroni methods or by considering test

statistics averaged over a prespeci�ed range for the nuisance parameter space -for a review

see Mikusheva (2007) and Phillips (2014, 2015). Although these procedures provide valid

inference under local deviations from a unit root, their emphasis is on nearly integrated

(NI) models and may not be valid under large deviations from unity (see Phillips 2014).

Further, their implementation is more involved than that of conventional tests based on

studentised regression estimators (i.e. t-/F-tests). This is due to the fact that the related

test statistics can be more complex, but more importantly because limit distributions are

not conventional (e.g. N(0, 1), χ2). Therefore, critical values are not readily available from

commonly used statistical tables. The implementation of these methods becomes even more

di�cult in situations where the dimensionality of the nuisance parameter space increases

e.g. when the model involves multiple near unit roots and/or memory parameters (fractional

data), tail parameters (heavy tailed data), time varying parameters (TVPs), di�erent types

of nonlinearity in the regression function etc.

Another related literature focuses on valid inference in fractionally cointegrated systems

e.g. Robinson and Hualde (2003), Christensen and Nielsen (2006), Hualde and Robinson

(2010), Andersen and Varneskov (2020). The speci�cations under consideration are in gen-

eral structural (i.e. covariates may not be predetermined) and in some cases (e.g. Hualde

and Robinson, 2010; Andersen and Varneskov, 2020) both stationary and nonstationary

long memory is allowed. These methods are mainly semi-parametric with respect to the

short memory components of the system, and may attain sub-OLS convergence rates due

to bandwidth parameters. Regression estimators have mixed Gaussian or Gaussian limit

distributions and therefore inference is conventional in this framework, nevertheless, prelim-

inary memory estimators are required that makes implementation somewhat more involved.

Further, although the speci�cations are quite general, nonlinearities and nearly integrated

arrays are not ruled out. For instance, similarly to FMLS (e.g. Phillips, 1995), the spectral

LS method of Robinson and Hualde (2003) relies on (fractionally) di�erencing the data. It

is well known that this approach results in severe size distortions when there are near-unity-

parameters.

Nonlinearities can complicate inference in the presence of persistent data further. Park

and Phillips (1999, 2001), Chan and Wang (2015) and Hu, Phillips and Wang (2021) study

nonstationary regressions with nonlinear regressions of known form, while Wang and Phillips

(2009a,b) and Kasparis, Andreou and Phillips (2015), Lin, Tu and Yao (2020) consider

fully non-parametric models with regression functions of unknown form. Nonlinearities in

the regressions parameters are considered by Phillips, Li and Gao (2017) and Demetrescu,

Georgiev, Rodrigues and Taylor (2020). In particular, the latter two studies consider infer-

1Janson and Moreira (2006) consider coditional inference rather than conservative tests.
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ence in nonstationary regressions with time varying parameters (TVP). Although inference

in kernel regressions is conventional (e.g. Wang and Phillips 2009a,b; Kasparis et al. 2015),

for parametric models (e.g. Park and Phillips, 2001) and TVP models (Phillips et al., 2017)

limit distributions involve nuisance parameters. For instance, Phillips et al. (2017) show

that the limit distributions of non-paramertic estimators for TVP parameters in I(1) regres-

sions closely resemble that of OLS, and they propose a FMLS type of method (e.g. Phillips

and Hansen, 1990). It is well known that although this approach yields mixed normality

when data are exactly I(1), tests exhibit severe size distortions under local deviations from

unity. Implementation of inferential procedures in parametric nonlinear regressions can be

complicated even if the functional form and the integration order of the data are known.

Strong smoothness assumptions may be required for the validity of tests, and limit distribu-

tions may depend on the shape of the regression function (see for example Kasparis, 2008;

Choi and Saikkonen, 2010). The relevance of nonlinear regression functions in predictive

regressions has been emphasised in the recent work of Phillps (2015), among others, who

points out that nonlinear regressions may alleviate misbalancing issues between persistent

predictors and less persistent returns series. Further, economic theory models (e.g. Let-

tau and Ludvigson 2001; Menzly, Santos and Veronesi, 2004) suggest that the relationship

between returns and predictors such as dividend yield involve time varying parameters. Ne-

glecting nonlinearities in regression with persistent data may lead to substantial adverse

e�ects in inference. For example, misspeci�ng functional form in regressions with nonsta-

tionary data typically leads to diverging or vanishing estimators (see e.g. Kasparis, 2011;

Phillips, 2015). In this work we demonstrate that neglecting time variation in �nuisance�

regression parameters (e.g. the regression intercept) leads to diverging t-statistics under the

null hypothesis when regressors are long memory of order 0 < d < 1/2.

The current paper develops estimation methods that yield conventional inference in

predictive regressions that are nonlinear in variables, with nonlinearities of known form.

In this respect we built on the work of Park and Phillps (1999, 2001). In particular, we

consider two types of models: a) Models with �xed parameters that allow for a wide range

of dependence in the data including stationary or nonstaionary long memory as well as

fractionally nearly integrated arrays (e.g. Buchmann and Chan, 2007); b) models with

TVPs and a general stationary covariate that can be a long memory linear process, a

stationary ARCH (∞), and in some cases a heavy tailed linear process. Although these two

types of speci�cations are substantially di�erent with respect to the regression parameters,

the proposed estimation procedures involve similar instrumentation methods. In fact, the

proposed estimation method for TVP models is a special case of the instrumental variables

method considered for FP models. For TVP models, the instrumentation methods entail

the same type of kernel functionals utilised by Phillips et al. (2017) for nonparametric

estimation of TVP functionals in the I(1) case. To some extent, our results for TVP
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regressions are complementary to those of Phillips et al. (2017) who focus on a di�erent

area of the regressor space. Interestingly, although the instrumentation of Phillips et al.

(2017) does not lead to conventional free of nuisance parameters inference for TVPs in the

nonstationary case, certain generalisation of these instruments does lead to conventional

inference for �xed parameter models. The particular instruments are of attenuated signal

relative to OLS. This reduction in persistence leads to vanishing asymptotic endogeneity.

As a result, estimators for �xed slope parameters have mixed Gaussian limit distributions

and therefore conventional inference applies (see e.g. Phillips, 1991).

The proposed methods, that we term Chronologically Trimmed LS (CTLS hereafter), in

the FP case share the same underlying principle with the IVX method of Magdalinos and

Phillips (2009; MP hereafter). Both CTLS and IVX achieve mixed normal limit distributions

via a reduction in the persistence of the instruments. Recent advancements in generalised

martingale CLTs reveal that under certain conditions, a reduction in the persistence of

instruments may result in vanishing asymptotic endogeneity in large samples.2 This in turn

induces mixed asymptotic normality. The key feature of IVX methods is the utilisation of

instruments based on certain linear �ltering of the regressors. The so called IVX instruments

can be constructed to have arbitrarily weaker signal than that of the OLS instruments,

and this is su�cient for martingale CLT to operate. As a result, contrary to the OLS

estimator, in the presence of nonstationary data the IVX estimator has mixed Gaussian limit

distribution and studentised IVX estimators either N(0, 1) (t-tests) or χ2 (F-tests) limit

distributions. Therefore, conventional and nuisance parameter free inference is achieved

for a wide range of persistence in the data at the expense of a slight reduction in the

convergence rate. In particular, the IVX estimator attains a sub-OLS convergence rate.3 MP

consider multivariate regressions with mildly and nearly integrated data. The subsequent

work of Kostakis, Magdalinos and Stamotogiannis (2015; KMS) extends MP to stationary

short memory regressors, and also provides �nite sample improvement methods relating to

intercept demeaning. Demetrescu et al. (2020) develop predictability tests that allow for

TVPs under the alternative hypothesis that utilise IVX and other IV methods. Magdalinos

(2020) provides an explicit theory for the properties of IVX methods in predictive regressions

with GARCH(p,q) regression errors.

Similarly to IVX, CTLS achieve a reduction in the instruments signal by certain lin-

ear �ltering of the OLS instruments. In particular, this method entails OLS instruments

weighted by integrable kernel functionals of time trend variables. It is well known that

kernel methods are local (i.e. they extract information locally), and as a result they are

typically associated with slower convergence rates. This is the case for instance in density

estimation, kernel regression, long-run variance estimation. Similarly to IVX, CTLS in-

2Cf. Jeganathan (2008) and Wang (2014).

3By sub-OLS we mean the OLS rate less an arbitrary slow regularly varying rate.
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struments can be chosen to yield sub-OLS convergence rates. Both methods can be seen as

semi-parametric (for FP models) in terms of generality and convergence rates. In particular,

for the implementation of inferential procedures based on CTLS no prior information about

the near-to-unity or memory parameters, is required. On the other hand convergence rates

are sub-parametric (e.g. slower than OLS) but faster than non-parametric regression (e.g.

Nadaraya-Watson estimator; see e.g. Wang and Phillips 2009a,b).

To illustrate how CTLS instrumentation achieves a signal reduction consider the follow-

ing FP predictive regression

yk = µ+ βf(xk−1) + ek, k = 1, ..., n (1)

where ek together with some �ltration Fk is a martingale di�erence error term, and xk is Fk-
measurable. Further, for convenience suppose that µ = 0. In this case CTLS instruments

for the estimation of β are arrays Zkn of the form

Zkn = K [cn (k/n− τ)] f(xk−1), (2)

where K > 0 is an integrable kernel function, 0 < τ < 1 and cn is a reciprocal bandwidth4

term such that c−1
n + cnn

−1 → 0. It can be readily seen that Zkn above utilises the OLS

instrument f(xk−1) weighted by certain kernel function. The weight function attenuates the

signal of the OLS instrument. In particular, due to the integrability of the kernel function,

less weight is given to the OLS instrument f(xk−1) when the argument of K(.) is away from

zero. For example set τ = 1/2 and K(0) = 1. In this case the kernel function fully extracts

information from the OLS instrument for observations near the middle of the sample i.e.

Zkn ≈ f(xk−1), when k ≈ n/2. Moreover, Zkn ≈ 0 when k is far from n/2. In other words

certain chronological trimming applies around the �chronological point τ �. By allowing the

cn sequence to diverge at an arbitrarily slow rate (i.e. cn → ∞), the resultant IV (CTLS)

estimator attains an arbitrarily slower convergence rate relative to the OLS estimator. To

see this note that for f linear and xk ∼ I(1) the CTLS instrument is (using the convention

x0 = 0)
n∑
k=1

|K [cn (k/n− τ)]xk−1| = Op(n
3/2c−1

n ), (3)

while the OLS instrument
n∑
k=1

|xk−1| = Op(n
3/2). (4)

4Alternatively we can write

Zkn = K

{
k/n− τ
hn

}
f(xk−1), with hn = c−1n .
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The reduction in persistence in (3) relative to (4) is due to the fact that for integrable K,

K (x) → 0 as |x| → ∞. This reduction in the signal of the CTLS instruments, translates

into vanishing endogeneity and therefore to mixed Gaussian limit distributions. Table 1

provides a comparison between the instrumentation of OLS and other methods that yield

mixed Gaussian limit distributions via signal reduction.

As mentioned above, instruments similar to those shown in (2) have been also considered

in the recent work of Phillips et al. (2017) who study estimation and inference in linear

regressions with TVPs and I(1) regressors. In the context of (1), TVPs can be formulated

as β(k/n), with β : (0, 1] → R. Indeed, due to the presence of the kernel functionals in

the instrument of (2), the functional form of β(k/n) can be consistently estimated for each

chronological point τ i.e. β̂(τ) →P β(τ), τ ∈ (0, 1]. Nevertheless, in models with multiple

parameters and non stationary covariates, the utilisation of kernel functionals with a single

chronological point τ (cf. (2)) yields estimators with a singular limit variance matrix5. Due

to this degeneracy, estimators have limit distributions determined by stochastic integrals i.e.

limit theory is similar to that of the OLS estimator. Therefore, limit distributions depend

on nuisance parameters (e.g. near to unity), and statistical tests are not pivotal. Phillips

et al. (2017) propose a FMLS type of modi�cation to get usable statistical tests, which

is known to lack robustness under local deviations from unity. Here we demonstrate that

this degeneracy does not occur when regressors are stationary (e.g. I(d), with |d| < 1/2).

Therefore, CTLS based TVP estimators can be used for inference in the stationary case

without complications. Nevertheless, CTLS estimators that utilise a single chronological

point do not yield pivotal tests for |d| > 1/2 or in situations where data are NI arrays.

For consistent nonparametric estimation of TVPs, utilising a single chronological point

τ is crucial and cannot be avoided. Nevertheless, for the estimation of FP models, multiple

chronological points can be employed. In fact, in the context of FP models, we resolve the

degeneracy in limit variance matrix mentioned above by considering a more general class

of instruments that involve multiple chronological points (cps hereafter). In principle, it is

possible to extract information around multiple cps of the form 0 < τ1 < ... < τln < 1,

where ln is either �xed or ln →∞ such that ln = o(cn). In this case the relevant instrument

is

Zkn =
ln∑
j=1

K [cn (k/n− τj)] f(xk−1). (5)

An instrument that utilises multiple cps extracts information more evenly over the sample

period, locally to each cp, in a piecewise fashion (see Figure 1). To see the e�ects of

additional cps on the instruments' signal suppose that xk ∼ I(1). In this case the order

5See Phillips et al. (2017) and Remark 12 below.
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of magnitude of
∑n

k=1 |Zkn| in (5) for linear f is Op(c
−1
n lnn).6 If the number of cps is too

large, i.e. ln = O(cn), CTLS is asymptotically equivalent to OLS. However, under the

requirement cn → ∞, ln = o(cn), Zkn exhibits a weaker signal than the OLS instrument

f(xk−1), and as a result asymptotic mixed Gaussianity applies. Figure 1 provides plots of

the weights/trimming functionals
∑ln

j=1 K [cn (k/n− τj)] against k/n with k = 1, ..., n. Note

that the weight function in OLS instrumentation in unity. From Figure 1 we can deduce

the information utilised by various CTLS instruments relative to that by OLS. The total

information extracted by CTLS instrumentation over the whole sample period corresponds

to the dark area whilst the total information conveyed by OLS instrumentation is unity (i.e.

the sum of the dark and grey area).

It should be emphasised that utilising multiple cps, in the estimation of FP models,

is crucial for avoiding a singular limit variance matrix in situations where data are non

stationary and multiple parameters need to be estimated. In particular, the number of cps

needs to be at least the same as the number of the regression parameters. A non singular

variance matrix in turn ensures the limit distribution is mixed Gaussian. In the current

work we consider models with a single predictor and an intercept, therefore at least two cps

will be required (i.e. ln ≥ 2). To ensure that the CTLS estimator has mixed Gaussian limit

distribution, the number of cps must be su�cient to avoid a singularity in the limit variance

matrix, but not too many in order to allow for a martingale CLT to operate i.e. ln = o(cn).

Overall, the following requirement is imposed on cn, ln

(1 + ln) c−1
n + cnn

−1 → 0, (6)

with the additional restriction ln ≥ # regression parameters, for FP models. This re-

quirement is similar to Assumption T of Andersen and Varneskov (2020) how also consider

semi-parametric methods with dual bandwidth terms. It is readily obvious from (6) that

the sequences cn and ln are independent of the regression covariates.

In general, there is trade-o� between size and power when it comes to the choice of cn and

ln. It follows from the above that smaller cn (and larger ln) leads to CTLS estimators that

resemble the asymptotic behaviour of the OLS estimator which attains better convergence

rates but has non conventional limit distribution. Better size control is achieved when cn is

large and ln small at the expense of slower convergence rate and less powerful tests. This

trade-o� is illustrated diagrammatically in Figure 1. Note for smaller values of cn, more

information is extracted i.e. CTLS instruments exhibit stronger signal. More information

6In view of (3), it can be readily seen that if multiple cps are utilised,

n∑
k=1

K

[
cn

(
k

n
− τ1

)]
xk + ...+

n∑
k=1

K

[
cn

(
k

n
− τln

)]
xk = ln ·OP (n3/2c−1n ).

8



Figure 1: Signal of CTLS Instruments Vs OLS

The total signal of the CTLS instruments equals the dark area;

The total signal of the OLS instruments equals the dark + grey area;

cn = nq, q = {0.25, 0.35, 0.45}; l = {1, 2, 3}; l = number of equispaced cps.

can be also extracted by utilising additional cps. In situations where the dark area is large

CTLS estimators attain faster convergence rates at the expense of worse size control and

vice versa.

It can be readily seen from Figure 1, that the same information (in terms of area)

can be extracted by di�erent combinations of cn and ln. Developing methods that yield

optimal bandwidth selection for inferential purposes is very challenging from a technical

point of view. For instance Sun, Phillips and Sainan (2008) develop optimal bandwidth

choice methods for HAC studentisation of t-statistics, where the optimality criterion is

based on type I and type II errors. Despite the fact that the aforementioned work considers

only simple location problems, i.e. regressions that involve a single unknown parameter

corresponding to an intercept, the technical exposition is substantial. Developing similar

techniques for optimally choosing cn and ln is even more di�cult given the complexity of our
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theoretical framework. Instead we recommend values for cn and ln based on simulations.

Simulations results show that a better size-power trade-o� is achieved when ln →∞. Note

that in general, a larger number of cps leads to a more even extraction of information over

the sample period -see for instance Figure 1(d)-(f).
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Table 1: Strength of various instruments and convergence rates for eq. (1) (I(1) data; µ = 0, known).

Estimation
Method

Parameter
of Interest

Instrument Zkn
(xk ∼ I(1))

∑n
k=1 |Zkn| Order

of Magnitude
Mixed
Normality

Estimator's
Convergence Rate

OLS β (f linear) xk−1 Op(n
3/2) No

n
(parametric)

IVX β (f linear)

∑k−1
j=0

(
1 + cz

nb

)j
(xk−1−j − xk−2−j),

cz < 0, b ∈ (0, 1)
Op(n

1+b/2) Yes
n1/2+b/2

(semi-parametric)

Nadaraya-Watson β · f(.)
K
(
xk−1−x
hn

)
, K integrable,

hn + h−1
n n−1/2 → 0

Op(hnn
1/2) Yes

h
1/2
n n1/4

(non-parametric)

CTLS (single
trimming point)

β (f linear)
K
(
k/n−τ
hn

)
xk−1, K integrable,

hn + h−1
n n−1 → 0, τ ∈ (0, 1)

Op(hnn
3/2) Yes

h
1/2
n n

(semi-parametric)

CTLS (mutliple
trimming points)

β (f linear)

∑ln
j=1 K

(
k/n−τj
hn

)
xk−1, K integrable,

(1 + ln)hn + h−1
n n−1 → 0, {τj} ∈ (0, 1)

Op(lnhnn
3/2) Yes

(lnhn)1/2 n
(semi-parametric)

hn = c−1n
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In Section 3 we explore the properties of the CTLS estimator and related t-tests in

nonlinear regressions like the one given in eq. (1) with et being a martingale di�erence error

possibly conditionally heteroscedastic e.g. ARCH (∞), and (µ, β) either FP or TVPs of the

form (µ, β) : (0, 1]2 → R2. In particular, for �xed slope parameters, we consider CTLS based

inference with multiple cps (ln ≥ 2) and the predictive variable can either be a stationary

or nonstationary fractional processes (e.g. I(d), −1/2 < d < 3/2) or a NI fractional array.

For TVP models we consider CTLS with a single cp and stationary predictors. In all cases

the CTLS estimator attains a sub-OLS convergence rate and has a (mixed) Gaussian limit

distribution. To summarise the limit properties of CTLS suppose for the sake of simplicity

that f is linear and µ = 0 (known). In this case the CTLS estimator is of the form

β̂ =
∑n

k=1 Zknyk/
∑n

k=1 Zknxk−1 for both FP and TVP models. For the former �rst suppose

that xk is a nonstationary process such that for t ∈ [0, 1] and some dn →∞, d−1
n xbntc ⇒ Xt

in D[0, 1] where Xt is a continuous process (i.e. an FCLT holds). For example, Xt can be

a fractional BM or a fractional Ornstein-Uhlenbeck process, depending on some memory

and/or some near-to-unity nuisance parameter that are unknown. Then for cn and ln as in

(6), the CTLS estimator for β satis�es

dn

√
nln
cn

(
β̂ − β

)
→d MN

(
0,

E (e2
1)
∫
RK

2(x)dx(∫
RK(x)dx

)2 1
ln

∑ln
j=1X

2
τj

)
,

with 1
ln

∑ln
j=1X

2
τj
≡
∫ 1

0
X2
t dt, if ln is not �xed and diverging. Because cn → ∞, cn = o(n)

and ln = o(cn), the convergence rate of the CTLS is slower than that of the OLS estimator

(dn
√
n). Nuisance parameters (e.g. the near-to-unity, fractional parameters) a�ect the

limit distribution only via the mixing variate
[

1
ln

∑ln
j=1 X

2
τj

]−1

and as a consequence the

studentised CTLS estimator has a N(0, 1) limit distribution. Note that the limit process

Xt is allowed to be a fractional Ornstein�Uhlenbeck process that depends on dual nuisance

parameters i.e.

Xt =

∫ t

0

ec(t−r)dWd(r),

with c ∈ R being a near to unity parameter, and Wd(r), d > 1/2, a fractional Brownian

motion (see e.g. Bunchmann and Chan, 2007). For stationary xk (e.g. I(d), |d| < 1/2) and

FP models we have√
nln
cn

(
β̂ − β

)
→d N

(
0,

E (x2
1e

2
2)
∫
RK

2(x)dx(∫
RK(x)dx

)2
[E (x2

1)]
2

)
,

It should be emphasised that the restrictions on sequences cn and ln of eq. (6) are inde-

pendent of xk and therefore practitioners can implement the method while being agnostic

about the persistence level in the data.
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For TVP models we consider estimators and related nonparametric t-statistics for TVPs

and their derivatives. Derivative estimators are useful for testing time invariance hypotheses

of the form H0 : ∂µ(τ)/∂τ = 0 and H0 : ∂β(τ)/∂τ = 0. To illustrate the limit theory for

TVP models, suppose that (1) holds with µ = 0 (known) and slope parameter β(k/n). The

for a stationary regressor the TVP estimator (single cp τ) is

√
n

cn

(
β̂(τ)− β(τ)

)
→d N

(
0,

E (x2
1e

2
2)
∫
RK

2(x)dx(∫
RK(x)dx

)2
[E (x2

1)]
2

)
,

for each τ ∈ (0, 1]. Further, the TVP estimator for the derivative of the slope parameter

satis�es a limit result of the form√
n

c3
n

(
∂β̂(τ)

∂τ
− ∂β(τ)

∂τ

)
→d N (0, ϑ) ,

for some ϑ > 0 that can be consistently estimated. Both estimators can be utilised for

construction of non parametric tests. The derivative estimator attains a slower convergence

rate7, and therefore yields less powerful tests, nevertheless, the implementation of time

invariance tests is very easy and can be done in conjunction with tests for the predictability

hypothesis.

Before proceeding to the next section, we provide some further discussion about the

CTLS, for FP models, relative to IVX. First, as explained earlier, both estimators enjoy

(mixed) Gaussian distribution by utilising instruments of reduced signal, and in this sense

they belong to the same class of estimators. The treatment of the regression intercept

is however di�erent and this has some practical consequences in the implementation of

tests. IVX is utilising conventional demeaning for the intercept but requires additional

studentisation based on long run variance estimators (see Kostakis et al., 2015 for more

details). One the other hand CTLS requires CTLS-type of instrumentation for the intercept

as well. MP show that IVX can accommodate NI, MI covariates while the most recent

work of Kostakis et al. (2015) extends the method to stationary short memory processes.

Further, some preliminary theoretical results suggest8 that IVX, probably after some minor

modi�cation, is also valid for fractional processes. For FP models we only consider univariate

regressions. From this point of view our framework is less general than Kostakis et al. (2015).

Nevertheless, our theoretical framework readily allows for fractional predictors and nonlinear

regression functions. The current results could be generalised to multivariate regressions but

this would require more complicated limit theory. We leave an extension to this direction for

future work.9 In terms of implementation, both methods appear to be of similar complexity.

7This result is standard in for non-parametric derivative estimators see e.g. Li and Racine (2006).
8See Theorem 3.2 in Du�y and Kasparis (2018).
9An extention of TVP methods to multi-covariate regressions is provided in the Appendix.
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Both procedures employ studentised estimators. CTLS involves an additional bandwidth

type of parameter (ln) that determines the number cps, however it does not require long-run

variance estimators that also involve bandwidth terms.

The remaining of this work is organised as follows. Section 2 provides basic limit theory

for chronologically trimmed functionals of stationary and nonstationary processes. This

limit theory is utilised in Section 3 for the development of estimation and inferential proce-

dures for predictive regressions with persistent predictors. In particular, Section 3.1 consid-

ers nonlinear predictive regressions with �xed parameters and general predictors that can

be either stationary or nonstationary, whilst Section 3.2 focuses on nonlinear TVP predic-

tive regressions with stationary predictors. Section 3.3 provides some discussion about the

consequences of ignoring time variation in regression parameters. A simulation study for

the methods of Section 3.1 and 3.2. is reported in Section 4. Finally, empirical applications

to the predictability of stock returns is the subject of Section 5. All proofs are provided in

the Appendix (Sections 6-8).

Throughout this paper, we make use of the following notation. For two deterministic

sequences an and bn, an ∼ bn denotes limn→∞ an/bn = 1. 1 {A} is the indicator function

on set A. We may write the integral
∫
R f(x)dx as

∫
f . ⇒ denotes weak convergence in

the space D[0, 1]. For a vector x, ‖x‖ is its inner product norm and x′ its transpose. By

[x] we denote the integer part of a positive number x. Finally, diag{a1, ..., ap} denotes

a p × p diagonal matrix with elements {a1, ..., ap} on the main diagonal, →d denotes the

convergence in distribution and Y := MN(0,Σ) denotes a Gaussian variate (mixing normal)

with characteristic function ψ(t) = Eeit
′Y = Ee−t

′Σt/2.

2 Asymptotics for Chronologically Trimmed Sample Func-

tionals

This section develops basic limit theory for chronologically trimmed (CT hereafter) sample

functionals of stationary and nonstationary processes. Let {xk}1≤k≤n be a scalar time series

process and {Xnk}1≤k≤n,n≥1 be some scalar random array. Further, let K be an integrable

kernel function and g(.) = [g1(.), ..., gp(.)]
′, where, for each i = 1, ..., p, gi is a measurable

function. For l ∈ N, 0 < τ1 < ... < τl < 1 and m = 0, 1 or 2, set

S
(m)
1n,l =

cn
n

n∑
k=1

g(xk−1)σmk

{
1

l

l∑
j=1

K [cn(k/n− τj)]

}
,

M1n,l =

√
cn
n

n∑
k=1

g(xk−1)

{
1√
l

l∑
j=1

K [cn(k/n− τj)]

}
σkuk,
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S
(m)
2n,l =

cn
n

n∑
k=1

g(Xn,k−1)σmk

{
1

l

l∑
j=1

K [cn(k/n− τj)]

}
,

M2n,l =

√
cn
n

n∑
k=1

g(Xn,k−1)

{
1√
l

l∑
j=1

K [cn(k/n− τj)]

}
σkuk,

where cn is a sequence of positive constants, l either �xed or l → ∞ as n → ∞, and uk

together with an appropriate �ltration {Fk} forms a martingale di�erence sequence so that

Xnk, xk are Fk-measurable and σk is Fk−1-measurable.

The asymptotics of
{
S

(m)
jn,l ,Mjn,l

}2

j=1
are utilised in Section 3 for the asymptotic anal-

ysis of the CTLS estimators. In particular, limit theory for the functionals
{
S

(m)
1n,l ,M1n,l

}
is relevant for stationary regressors whilst

{
S

(m)
2n,l ,M2n,l

}
for nonstationary. Indeed, it is

assumed that xk is a stationary random sequence, but Xnk satis�es some functional cen-

tral limit theorems (FCLT). σk is set to be strictly stationary so that the asymptotics of{
S

(m)
jn,l ,Mjn,l

}2

j=1
are applicable when the regression errors exhibit conditional heteroscedas-

ticity (e.g. GARCH, ARCH(∞) etc). It should be mentioned that the term S
(0)
2n,l resembles

certain functionals considered by Phillips, Li and Gao (2017) who study the estimation

of cointegrated models with smooth time varying parameters (TVP). The aforementioned

work utilises statistics of the form

cn
n

n∑
k=1

X2
nkK [cn(k/n− τ)] , 0 < τ < 1,

where Xnk is an I(1) process normalised by
√
n. Under our assumptions, Xnk can be an

appropriately normalised I(d), d > 1/2, process or a NI array (possibly driven by fractional

errors). Therefore, the limit results provided in this section are also relevant to the esti-

mation of TVP models for the case where the covariate is either a stationary process or a

general nonstationary process satisfying some FCLT as set in Assumption A3 below.

To facilitate basic limit results, we make use of the following conditions.

A1 (innovations): {ηk,Fk}k≥1, where η
′
k = (ξk, uk) and Fk = σ(uk, uk−1, ..., u1; ξj, j ≤ k),

forms a 2-dimensional martingale di�erence satisfying the following conditions:

(a) supk≥1E(u2
kI(|uk| ≥M)|Fk−1) = oP (1), as M →∞;

(b) supk≥1E(ξ2
kI(|ξk| ≥M)|Fk−1) = oP (1), as M →∞;

(c) for all k ≥ 1, E(u2
k|Fk−1) = 1.

A2 (stationary process): xk is a functional of ξk, ξk−1, ... and σk is adapted to Fk−1, where

Fk is de�ned as in A1, so that g(xk−1)σmk (m = 0, 1 or 2, respectively) is an ergodic

(strictly) stationary random sequence with E
{
‖g(x1)‖+ σ2

2

[
1 + ‖g(x1)‖2

]}
<∞.
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A3 (nonstationary process and invariance principle):

(a) Xnk = d−1
n xk , where 0 < d2

n = var(xn)→∞ and xk is a functional of ξk, ξk−1, ...

(depending on n is allowed) so that, on DR3 [0, 1], 1√
n

[nt]∑
k=1

ξk,
1√
n

[nt]∑
k=1

ξ−k, Xn,[nt]

⇒ [B1t, B2t, Xt] , (7)

where B1t and B2t are two independent Gaussian process with mean zero and

stationary independent increments, and Xt is a continuous process that depends

only on functionals of {B1t}0≤t≤1 and {B2t}0≤t≤1;

(b) σk is adapted to Fk−1 and a sequence of ergodic (strictly) stationary variables

satisfying Eσ4
1 <∞, where Fk is de�ned as in A1.

A4 (kernel function and restrictions on τj, ln and cn):

(a) K(x) is a positive real function having a compact support with 0 <
∫
K <∞;

(b) 0 < cn →∞ and cn/n→ 0;

(c) τj = j/(ln + 1) where j = 1, ..., ln with c−1
n ln + l−1

n → 0.

We remark that the innovation process {ηk,Fk}k≥1 used inA1 is standard in literature so

that bothM1n,l andM2n,l have a martingale structure. The uniform integrability conditions

(a) and (b) are weak in comparison with the high moments used in previous works. See, for

instance, Wang (2014) andWang and Phillips (2009a, b). InA1(c), we impose E(u2
k|Fk−1) =

1 for the convenience of notation. In fact, if σ2
1k := E(u2

k|Fk−1) 6= 1, it is routine to see

that our results still hold when σk is replaced by σk σ1k. Examples of processes that satisfy

A2 include short and long memory (fractional) processes. 10 Indeed, when xk and σk are

(strictly) stationary relying on ξk, ξk−1, ..., we also have g(xk−1)σmk is an ergodic (strictly)

stationary random sequence. Typical examples on nonstationary processes satisfying A3(a)

have the form:

xk = ρnxk−1 + wk,

where ρn = 1 + κ/n with κ ∈ R and wk being a stationary linear process, possibly of long

memory, with innovations ξk ). Under some additional regularity conditions, (7) holds with

Xt being a possibly fractional Ornstein-Uhlenbeck process e.g. Buchmann and Chan (2007),

Wang and Phillips (2009a, b) and Wang (2015). We assume strictly stationary for σk of

A3(b) to avoid the complicity in notation. It is readily seen that A3(b) allows for strictly

stationary GARCH, ARCH(∞) models (e.g. Francq and Zakonian, 2010; Section 2.2). The

10e.g. xk =
∑∞
i=0 φiξk−i, ξi ∼ iid(0, σξ),

∑∞
i=0 φ

2
i <∞.
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compact support requirement of A4, for the kernel function K(x), can be relaxed under

some additional conditions on ln as follows:

A4∗ (kernel function and restrictions on τj, ln and cn):

(a) K(x) is a bounded positive and eventually monotonic real function11 with 0 <∫
K <∞;

(b) 0 < cn →∞ and cn/n→ 0;

(c) τj = j/(ln + 1) where j = 1, ..., ln with c−1
n ln log n+ l−1

n → 0.

We next present the limit theory for CT sample functionals. Limit results for stationary

and nonstationary functionals are given by Theorem 1 and Theorem 2 respectively.

Theorem 1. Suppose A2 and A4 or A4∗ hold. Then, as n→∞, we have

S
(m)
1n,ln

= E[σm2 g(x1)]

∫
K + oP (1). (8)

If in addition A1 holds, then, as n→∞,

M1n,ln →d N

(
0, E

[
σ2

2g(x1)g(x1)′
] ∫

K2

)
. (9)

Theorem 2. Suppose that A3 and A4 or A4∗ hold and g(.) is continuous. Then, as

n→∞, we have

S
(m)
2n,ln

= Eσm1

∫ 1

0

g(Xn,bntc)dt

∫
K + oP (1)→d Eσ

m
1

∫ 1

0

g(Xt)dt

∫
K. (10)

If in addition A1, jointly with (10), we have

M2n,ln →d MN

(
0, Eσ2

1

∫ 1

0

g(Xt)g(Xt)
′dt

∫
K2

)
. (11)

Remark 1. Theorem 1 can be trivially extended to the case where xk is a p-dimensional

process and g : Rp → Rp, . We omit the details since this only involves some routine

calculations. Theorem 2 could be also generalised to multivariate nonstationary processes

at the expense of somewhat more involved exposition. We leave the latter extension for

future work.

Remark 2. If we are only interested in limit results for the functionals S
(m)
1n,ln

and S
(m)
2n,ln

,

conditions A2 and A3 can be reduced. For instance, the result (10) still holds if only (7)

is replaced by Xn,[nt] ⇒ Xt on DR[0, 1]. A uni�ed general result is presented in Lemma 1

11i.e., there exists an A1 > 0 such that K(x) is monotonic on (−∞,−A1) and (A1,∞).
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of Section 4. Furthermore, if xk is a weakly nonstationary process (i.e., I(1/2) and mildly

integrated processes, where FCLTs do not apply) as considered in Phillips and Magdali-

nos (2007) and Du�y and Kasparis (2021), some preliminary calculations suggest (see also

Theorem 3.2 in Du�y and Kasparis, 2018) that

cn
n

n∑
k=1

g
(
d−1
n xk

){ 1

ln

ln∑
j=1

K [cn(k/n− τj)]
}
→d

∫
R
g(x+X−)ϕσ2

+
(x)dx

∫
K,

where ϕσ2
+

(x) is the density of a N
(
0, σ2

+

)
variate (σ2

+ > 0) and X− ∼ N
(
0, σ2

−
)
(σ2
− ≥ 0).

Discussions toward this kind of generalization are left for future work.

Remark 3. The continuity requirement on g(x) in Theorem 2 is not essential for (10) and

(11). These results can be extended to the case where g is locally Lebesgue integrable, if

we impose more smoothness conditions on Xnk. This kind of generalisation involves more

complicated derivations and will not be pursued here in order to keep the paper under

reasonable length.

Remark 4. Following the proof of Theorem 1, it is easy to see that results (8) and (9) still

hold if A4 (c) or A4∗ (c) is replaced by τj = j/(l+1) where j = 1, ..., l, i.e., if ln ≡ l is �xed.

As for (10) and (11), if A4 (c) or A4∗ (c) is replaced by τj = j/(l + 1) where j = 1, ..., l,

we have

[
S

(m)
2n,l , M2n,l

]
→d

[
Eσm1
l

l∑
j=1

g(Xτj)

∫
K, MN

(
0,

Eσ2
1

l

l∑
j=1

g(Xτj)g(Xτj)
′
∫
K2
)]

.

Theorem 2 provides a limit theory for rescaled functionals of nonstationary processes

(i.e. Xnk = d−1
n xk as given in A3). For the purposes of regression analysis, limit theory for

non rescaled processes (i.e., Xnk is replaced by xk) is more relevant. Following Park and

Phillips (1999, 2001), we assume that the function g(.) = [g1(.), ..., gp(.)]
′ is asymptotically

homogeneous, i.e. for large λ

gi(λx) ≈ πi(λ)Hi(x), i = 1, ..., p

where πi (positive real valued function) is the �asymptotic order� of gi and Hi is the �asymp-

totic homogeneous function� of gi that is assumed continuous. Several speci�cations of

interest satisfy this conditions e.g. polynomial functions, logarithmic, indicator functions

and distribution type of functions e.g. see Park and Phillips (2001) for more details. Set

π (.) :=diag{π1 (.) , ..., πp (.)} and H(.) = [H1(.), ..., Hp(.)]
′. The following result is the coun-

terpart of Theorem 2 for additive transformations of non rescaled sequences.

Theorem 3. Suppose that:

(a) A1, A3 and A4 or A4∗ hold;
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(b) for each i = 1, .., p, there exist a continuous function Hi on R and a real function

πi : (0,∞)→ (0,∞) so that

gi(λx) = πi(λ)Hi(x) +Ri(λ, x),

where |Ri(λ, x)| ≤ ai(λ)(1 + |x|δ) for some δ > 0 and ai(λ)/πi(λ)→ 0, as λ→∞.

Then, as n→∞, we have

n∑
k=1

π (dn)−1 g(xk−1)
{ ln∑

j=1

K [cn(k/n− τj)]
} [ cn

nln
σmk ,

√
cn
nln

σk uk

]
=

n∑
k=1

H(Xn,k−1)
{ ln∑

j=1

K [cn(k/n− τj)]
} [ cn

nln
σmk ,

√
cn
nln

σk uk

]
+ oP (1) (12)

→d

[
Eσm1

∫ 1

0

H(Xt)dt

∫
K, MN

(
0, Eσ2

1

∫ 1

0

H(Xt)H(Xt)
′dt

∫
K2
)]
. (13)

Remark 5. As in Remark 4, if A4 (c) or A4∗ (c) is replaced by τj = j/(l + 1) where

j = 1, ..., l, we have

n∑
k=1

π (dn)−1 g(xk−1)σk

{ l∑
j=1

K [cn(k/n− τj)]
} [ cn

nl
σmk ,

√
cn
nl
σk uk

]
→d

[
Eσm1
l

l∑
j=1

H(Xτj)

∫
K, MN

(
0,

Eσ2
1

l

l∑
j=1

H(Xτj)H(Xτj)
′
∫
K2
)]

.

Furthermore, if K∗ is a real function satisfying A4 (a) or A4∗ (a), similar arguments as

in the proof of Theorems 2 and 3 show that, under the conditions of Theorem 3 with

g(.) = [g1(.), g2(.)]′,

(∫ 1

0

H1(Xn,[nt])dt, U1n, U2n

)
→d

(∫ 1

0

H1(Xt)dt,
√
Eσ2

1 MN (0, V )
)
, (14)

where

U1n =

√
cn
n

n∑
k=1

π2 (dn)−1 g2(xk−1)σk

{
1√
ln

ln∑
j=1

K [cn(k/n− τj)]

}
uk,

U2n =

√
cn
n

n∑
k=1

σk

{
1√
ln

ln∑
j=1

K∗ [cn(k/n− τj)]

}
uk,

V =

[ ∫ 1

0
H2

2 (Xt) dt
∫
K2

∫ 1

0
H2 (Xt) dt

∫
KK∗∫ 1

0
H2 (Xt) dt

∫
KK∗

∫
(K∗)2

]
.

The limit result of (14), together with Theorems 1-3, will be utilised in Section 3 next.
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3 CTLS Estimation and Inference in Predictive Regres-

sions with Persistent Data

This section utilises the limit theory presented in Section 2 for the asymptotic analysis of the

CTLS estimator and a related t-statistics in predictive regressions. We �rst develop methods

for a general CTLS estimator that is utilising multiple cps that is relevant for inference

in FP models with a general covariate (i.e. stationary or nonstationary). Subsequently,

we show that certain versions of this estimator that employ a single cp can be used for

non-parametric estimation and inference of TVP parameters. In particular, CTLS with a

single cp (CTLS1, hereafter) can provide a consistent estimation in predictive regression

with a general covariate, and conventional inference when the predictor is restricted to be

stationary process. While the later restriction on the regressor space is substantial, the

regressor space is general enough to accommodate a wide range of speci�cations that are

relevant for applied work. First, our framework allows for strictly stationary long memory

processes and transformations of such processes. Linear and nonlinear predictive regressions

with stationary long memory predictors have been considered by Christensen and Nielsen

(2006, 2007) and more recently by Bollerslev et al. (2013) among others. Further, we can

allow for transformations of heavy tailed predictors i.e. stationary covariates that may not

possess second or �rst moments. For a review of the relevance of heavy tailed processes in

�nance and economics see for example Ibragimov, Ibragimov and Walden (2015). Moreover

it should be mentioned that some preliminary theoretical results show that the proposed

inferential methods for TVP models are also valid for weakly nonstationary processes i.e.

MI and fractional d = 1/2 predictors (see e.g. Phillips and Magalinos (2007), MP and

Du�y and Kasparis (2021). Finally, we conclude this section by providing some theoretical

considerations that are relevant to applied work with regard to the use of FP versus TVP

speci�cations.

3.1 FP models with a general covariate

Consider the following FP nonlinear model

yk = µ+ βf(xk−1) + ek with ek = σkuk, k = 1, ..., n, (15)

where f is a known regression function (µ, β) unknown parameters and the covariate xk

can be a nonstationary or a stationary stationary process amenable to the limit theory of

Theorem 1 or Theorem 2 respectively. The process uk together with some �ltration Fk forms

a martingale di�erence sequence such that E (u2
k | Fk) = 1 a.s., and xk is Fk-measurable.

Finally, σk is a volatility process allowing for stationary GARCH e�ects (cf. Assumptions

A1-A3). σk is assumed to be Fk−1-measurable (i.e. predetermined w.r.t. to Fk). The exact
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properties of the these processes will be speci�ed in detail later. Similar nonlinear models

with a predetermined covariate have been considered for example by Park and Phillips

(1999, 2001) and Chan and Wang (2015), in a parametric set up, and by Wang and Phillips

(2009a,b, 2011, 2012) in a nonparametric set-up.12 For recent related results, we refer to

Wang (2021) and Hu et al. (2021) and references therein.

This section considers CTLS estimation of (15) with multiple cps. Let K be a kernel

function satisfying A4(a) or A4∗(a), and τj = j/(ln + 1), j = 1, ..., ln, cn and ln be deter-

ministic sequences satisfying A4(b,c) or A4∗(b,c). The number ln of cps is allowed to be

a �xed w.r.t. to n or ln → ∞. As explained in Section 1, a minimum of two cps will be

required to ensure that the CTLS estimator of µ, β has a full rank limit covariance matrix.

Set

Kkn :=
ln∑
j=1

K [cn (k/n− τj)] . (16)

Our aim is to estimate the unknown parameter β in (15) by using the following instrument

for f(xk−1)

Zkn := fkKkn := f(xk−1)Kkn.

A chronological trimming instrumentation is also utilised for demeaning {yk}, i.e. taking

into account the unknown intercept µ. Let K∗kn, k = 1, ..., n be additive functionals of

certain integrable kernel function de�ned by

K∗kn :=
ln∑
j=1

K∗ [cn (k/n− τj)] , (17)

whereK∗(x) is a kernel function that is speci�ed in later, whilst τj = j/(ln+1), j = 1, 2, ..., ln,

are given as above.13 For any sequence {ak}nk=1, let

a :=

∑n
k=1 akK

∗
kn∑n

k=1K
∗
kn

and ak := ak − a. (18)

12Here we consider nonlinear models in xk only. Our results can be generalised to models that are both
nonlinear in xk and the parameters along the lines of Chan and Wang (2015) for instance.

13It is also possible choosingK = K∗. For purposes of generality and presentation we will assume a distinct
kernel functional for intercept estimation. For the latter issue, a distinct kernel functional formulation
provides better illustration of the consequences of intercept instrumentation to the limit theory.
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De�ne the CTLS estimator14 for β as

β̂ :=

∑n
k=1 Zknyk∑n
k=1 Zknfk

. (19)

It should be mentioned that, when model (15) involves nonstationary components, the

employment of a chronologically trimmed sample mean (yk) is crucial for obtaining mixed

Gaussian limit theory. To see the reason, we rewrite β̂ as

β̂ = β +
1∑n

k=1 Zknfk

{
n∑
k=1

fkKknσkuk −
(
∑n

k=1 fkKkn)
∑n

k=1K
∗
knσkuk∑n

k=1K
∗
kn

}
.

The asymptotic behaviour of β̂ is clearly determined by two martingale terms in the rep-

resentation above, i.e.
∑n

k=1 fkKknσkuk and
∑n

k=1K
∗
knσkuk. When xk is nonstationary

(satisfying A3, say), and K∗ satis�es A4(a) or A4∗(a), the two martingale terms converge

jointly to a bivariate mixed Gaussian limit (e.g. see the proof of Theorem 5), which in

turn ensures mixed Gaussian limit theory for the CTLS estimator β̂. However, if instead

standard demeaning is employed (i.e. K∗ = 1), mixed Gaussian limit theory for β̂ is not

applicable since it is not true that[√
cn
nln

n∑
k=1

π(dn)−1fkKknσkuk,
1√
n

n∑
k=1

σkuk

]
→d MN (0, V ) ,

for some random matrix V (i.e. a joint mixed Gaussian limit does not exist), despite the

fact that each of the components on the l.h.s. above converges weakly to some (mixed)

Gaussian limit.

We next state the asymptotic properties of the CTLS estimator β̂. Theorem 4 considers

a stationary regressor while Theorem 5 provides limit theory for the nonstationary case.

Theorem 4. Suppose that:

(a) A1, A2 with g = f and A4 or A4∗ hold;

(b) K∗ satis�es A4(a) or A4∗(a).

Then, as n→∞, we have√
nln
cn

(
β̂ − β

)
→d N

(
0, C−2

1 A1V1A1
′) ,

14An equivalent formulation of the CTLS estimator is[
µ̂

β̂

]
=

[
n∑
k=1

[
1
fk

] [
K∗kn
fkKkn

]′]−1
·
n∑
k=1

[
K∗kn
fkKkn

]
yk
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where C1 :=
{
Ef 2(x1)− [Ef(x1)]2

} ∫
K, A1 :=

(
1, −Ef(x1)

∫
K/
∫
K∗
)
and

V1 := E

[
σ2

2f(x1)2
∫
K2 σ2

2f(x1)
∫
KK∗

σ2
2f(x1)

∫
KK∗ σ2

2

∫
(K∗)2

]
.

Remark 6. The limit result of Theorem 4 allows for conditional heteroscedasticity (e.g.

GARCH) in the regression error. Under conditional homoscedasticity (i.e. σ2
1 ≡ σ2 for some

non random σ2 ∈ (0,∞)), the matrix V1 simpli�es to

V1 = σ2E

[
f(x1)2

∫
K2 f(x1)

∫
KK∗

f(x1)
∫
KK∗

∫
(K∗)2

]
.

With a stationary regressor in model (15), Theorem 4 holds under nearly minimal as-

sumption on the regression function f (c.g. A2 with g = f). It is well known however

that for nonstationary regressions (e.g. Park and Phillips, 1999, 2001), di�erent regression

functions lead to di�erent convergence rates and limit theory. Following Park and Phillips

(2001), for nonstationary regressions we focus on locally integrable regression functions

(that are not integrable) and exhibit asymptotic homogeneity. This family of functions is

the most relevant to empirical work allowing for polynomial, logarithmic, threshold and

smooth transition (distribution type) transformations.

Theorem 5. Suppose that

(a) A1, A3 and A4 or A4∗ hold with ln →∞;

(b) there exist a continuous function H on R satisfying |H(x)| ≤ C (1 + |x|α) for some

α > 0 and a real function π : (0,∞)→ (0,∞) so that

f(λx) = π(λ)H(x) +R(λ, x),

where |R(λ, x)| ≤ a(λ)(1 + |x|δ) for some δ > 0 and a(λ)/π(λ)→ 0, as λ→∞;

(c) K∗ satis�es A4(a) or A4∗(a).

Then, as n→∞,√
nln
cn
π(dn)

(
β̂ − β

)
→d

√
Eσ2

1 MN
(
0, C−2

2 A2V2A
′
2

)
,

where

C2 =

{∫ 1

0
H2(Xt)dt−

[∫ 1

0
H(Xt)dt

]2
}∫

K, A2 =
[
1, −

∫ 1

0
H(Xt)dt

∫
K/
∫
K∗
]
,
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V2 =

[ ∫ 1

0
H2(Xt)dt

∫
K2

∫ 1

0
H(Xt)dt

∫
KK∗∫ 1

0
H(Xt)dt

∫
KK∗

∫
(K∗)2

]
.

Remark 7. Standard arguments (e.g. proof of Theorem 3.2 of Wang, 2021) yield that the

OLS estimator β̃OLS is
√
n(β̃OLS − β) = OP (1) and

√
nπ(dn)(β̃OLS − β) = OP (1), under

the conditions of Theorems 4 and 5, respectively 15. Therefore, convergence rate of CTLS

estimators for both stationary and nonstationary regressors is slower by a (ln/cn)1/2 rate.

Remark 8. Theorem 5 holds under the assumption ln → ∞. When l := ln ≥ 2 is

�xed, we have the same result with the limit terms
∫ 1

0
H(Xt)dt,

∫ 1

0
H2(Xt)dt replaced by

1
l

∑l
j=1H

(
Xτj

)
and 1

l

∑l
j=1 H

(
Xτj

)2
respectively.

Remark 9. It can be readily seen from Theorem 5 that under nonstationarity, conditional

heteroscedasticity in the regression error does not a�ect the limit variance of the CTLS

estimator in a material way. In particular, the volatility term Eσ2
1 is scaled out. As a

result conventional estimators for the limit variance can be employed for the construction of

t-statistics (see also Remark 11 below). This result is comparable with the recent �ndings

of Magdalinos (2020) how demonstrates that conditional heteroscedasticity has a material

e�ect in the limit distribution of the IVX estimator only under stationarity.

Next, we consider the following t-statistics for the hypothesis H0 : β = β0 (for some

β0 ∈ R)

T̂ := Cn
β̂ − β0√
AnVnA′n

, (20)

where

An :=

[
1, −

∑n
k=1 fkKkn∑n
k=1K

∗
kn

]
, Cn :=

n∑
k=1

Zknfk,

Vn :=

[ ∑n
k=1 ě

2
kK

2
knf

2
k

∑n
k=1 ě

2
kK
∗
knKknfk∑n

k=1 ě
2
kK
∗
knKknfk

∑n
k=1 ě

2
k (K∗kn)2

]
,

with ěk = yk − µ̃OLS − β̃OLS fk, and (µ̃OLS, β̃OLS) the OLS estimator of (µ, β). The limit

properties of T̂ under the null hypothesis are demonstrated by following theorem.

Theorem 6. Suppose that H0 : β = β0 is true, either the conditions of Theorem 4 or

Theorem 5 hold, and supk≥1Eu
4
k <∞. Then

T̂ →d N(0, 1).

15Asymptotic distribution can be explicitly obtained by using some additional notation (c.g. Theorem
3.2 of Wang, 2021). Since it is beyond the scope of this paper, we omit the details.
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Remark 10. The limit distribution of the test statistic under the null hypothesis is standard

normal for both stationary and nonstationary regressors. Under the alternative hypothesis,

the divergence rate of both t-statistics is determined by the convergence rate of the CTLS

estimator. In particular, for stationary xk it can be easily seen that T̂ = OP (
√
nln/cn). On

the other hand in the nonstationary case we have T̂ = OP (π(dn)
√
nln/cn), where dn =

√
n

for xk NI and dn = nd, xk for I(d), 1/2 < d < 3/2. Therefore, faster divergence rate is

attained for more persistence processes. This fact is also corroborated by our simulation

results (see Figure 3). In the nonstationary case, asymptotic power is a�ected by the

asymptotic order (i.e. growth rate) of f . Note that for logarithmic, or lower order polynomial

(e.g. f(x) = |x|p, p < 1) regression functions, slower power rates are attained relative to

linear and higher order polynomial transformations.

Remark 11. Note that the normalising matrix Vn allows for conditional heterscedasticity. If
however σ2

k = σ2 for all k then the following estimator can be used instead.

V̌n := σ̌2

[ ∑n
k=1 K

2
knf

2
k

∑n
k=1K

∗
knKknfk∑n

k=1 K
∗
knKknfk

∑n
k=1 (K∗kn)2

]
, σ̌2 := n−1

n∑
k=1

ě2
k. (21)

In view of Remark 9, V̌n provides also a consistent estimator under nonstationarity even if

the regression errors are conditionally heteroscedastic.

3.2 TVP models with a stationary covariate

We next focus on CTLS estimation of TVP predictive regressions of the form

yk = µ (k/n) + β (k/n) · f(xk−1) + ek, k = 1, ..., n, (22)

where µ, β : (0, 1] → R, the predictor xk is a strictly stationary process that may exhibit

long memory or could be heavy tailed. The error term ek is a martingale di�erence term as

in (15). Stochastic and deterministic TVP models have gained a lot of attention recently in

both econometrics and statistical time series due to their ability to accommodate structural

change e.g. see Dahlhaus (2000), Giraitis, Kapetanios and Yates (2014, 2018), Phillips,

Li and Gao (2017), Dahlhaus, Richter and Wu (2019), Demetrescu et al. (2020), among

others. A number of papers in this area consider (possibly vector) autoregressive type TVP

models with the autoregressive parameters' modulus bounded below unity (e.g. Giraitis et

al., 2014; Dahlhaus et al. 2019). These models behave like stable autoregressive processes,

when it comes to estimation, and therefore conventional inference applies.

The theoretical framework of Phillips et al. (2017) is more closely related to the spec-

i�cation of (22). The aforementioned work considers estimation and inference in non au-

toregressive TVP models with deterministic parameters and multiple I(1) covariates. The
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estimation methods of Phillips et al. (2017) are also related to the current work. In par-

ticular, these authors propose certain CTLS type of estimation that utilises a single cp

(CTLS1). As explained in the introduction, in multi-parameter regressions, CTLS1 results

in a singular limit covariance matrix and this renders inference non conventional with limit

distributions comparable to those OLS in regressions with I(1) covariates. To get pivotal

statistical tests, Phillips et al. (2017) propose CTLS1 regression of a �fully modi�ed � version

of the dependent variable yk (cf. Phillips and Hansen 1990). A similar speci�cation to that

of (22) has been also considered by Demetrescu et al. (2020) who develop predictability

tests for regressions with a deterministic and possibly time varying slope parameter under

the alternative hypothesis (predictability). These predictability tests are based on sup-

functionals of studentised IV estimators that utilise a combination of IVX and other time

trend instruments.

We consider CTLS1 estimation and related t-tests in the context of (22). An advantage

of the CTLS approach in this framework is that it can be used for both estimation and

testing. In particular, this method provides direct non-parametric estimators of TVP func-

tionals. In addition, studentised estimators can form the basis of non-parametric t-tests.

Implementation of these tests is very simple since test statistics are not complex, limit distri-

butions are free of nuisance parameters, and critical values readily available from statistical

tables. In order to keep technical complexity simple, in this Section we consider models with

a single regressor. Nevertheless the results can be easily extended to multivariate models

(see Remark 1). A generalisation to the multivariate case is provided in the Appendix 8.

The limit properties of TVP estimators and related test statistics are based on the

asymptotic theory developed in Section 2 for CT functionals of strictly stationary processes.

CTLS1 methods can provide consistent estimation of TVPs even for nonstationary covariates

however, as mentioned earlier, we need to restrict the regressors to be stationary processes

in order to ensure that the test statistics have conventional distributions free of nuisance

parameters. The regressor space under consideration is general enough to accommodate

several data generating processes relevant in empirical marcoeconomics and �nance such as

long memory linear processes, and GARCH, ARCH(∞). Further, due the the fact that we

are considering models that are nonlinear in variables, in some cases it is possible to allow

for heavy tailed linear processes.16 For instance, we can allow stationary linear processes of

the form

xk =
∞∑
i=0

φiξk−i, (23)

with either

16In situatations where the predictor xk is heavy tailed, a nonlinear regression function of reduced growth
may ensure that f(xk) has su�cient moments for the validity of Theorem .
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FR: ξi ∼ iid(0, σ2
ξ ),
∑∞

i=0 φ
2
i <∞; or

HT: (a) ξi ∼ iid in the domain of attraction of an α-stable law with α ∈ (0, 2],∑∞
i=0 |φi|

min{α′,1} <∞, α′ ∈ (0, α); and (b) Ef(x1)4 <∞.

Condition FR, xk allows for stationary fractional process of memory parameter |d| < 1/2.

Condition HT(a) ensures that xk is a well de�ned possibly heavy tailed process (e.g. As-

trauskas, 1983) that possesses a �nite α′ moment. In the latter case, xk may not have a

�nite mean or variance. Condition HT(b) is a technical requirement that is utilised for

obtaining the limit distribution of CTLS1 estimators. In practice, f(x1)4 may have a �nite

moment even if the predictor is heavy tailed. For example, if f satis�es the reduced growth

requirement |f(x)| ≤ C(1 + |x|p), C ∈ (0,∞), p ∈ (0, 1/4), HT holds for all α ∈ (4p, 2].

Further, f(x) = ln(x)+ satis�es the aforementioned requirement for all values of the tail

parameter α in (0, 2].17 Logarithmic transformations and reduced polynomial growth re-

gression functions have been used a number of studies in the predictability of stock returns

(see Section 5 for more details). To some extent, our methods on TVP models are comple-

mentary to Phillips et al. (2017) who focus on di�erent area of the regressor space. In fact

the regressor space under consideration is comparable to that of Christensen and Nielsen

(2006, 2007), Bandi and Perron (2008), Bollerslev et al. (2013), Bandi et al. (2018) among

others, who consider models with stationary fractional predictors.

The CTLS1 estimator can be formulated as a local-level kernel regression estimator (cf.

Li and Racine, 2006; Section 2.1). In particular, for K = K∗ estimators for the TVPs of

(22) can be obtained from the minimisation of the objective function[
µ̂(τ)

β̂(τ)

]
=: θ̂(τ):= arg min

a∈R2

n∑
k=1

(yk − a′fk)
2
K [cn (k/n− τ)] , (24)

where τ ∈ (0, 1] and f ′k := [1, f(xk−1)]. This estimator is closely related to that considered by

Phillips et al. (2017).18 Set θ(τ)′ := [µ(τ), β(τ)] and de�ne the vector of derivatives θ(1)(τ) :=

∂θ(τ)/∂τ . We also consider the following TVP estimator:[
θ̃(τ)

θ̃(1)(τ)

]
:= arg min

(a′,b′)′∈R4

n∑
k=1

(
yk − a′fk − b′f1k

)2
K [cn (k/n− τ)] , (25)

where f1k = (k/n− τ) fk, and θ̃(τ) and θ̃(1)(τ) are CTLS1 type estimators for θ(τ) and

θ(1)(τ), respectively. The latter is a local-linear estimator (cf. Li and Racine, 2006; Section

17ln(x)+ := max(ln(x), 0).
18Phillips et al. (2017) consider a local level estimator for mulivariate TVP (linear in variable) models,

and a fully modi�ed version of the local level estimator that involves of modi�ed version of the dependent
variable along the lines of Phillips (1995).
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2.5) that exhibits reduced asymptotic bias, relative to the local-level of (24). Write

Q =

[
1 Ef(x1)

Ef(x1) Ef(x1)2

]
and Ω =

[
Eσ2

2 E
{
σ2

2f(x1)
}

E
{
σ2

2f(x1)
}

E
{
σ2

2f(x1)2
} ] .

The following theorem demonstrates the limit distribution of the local-level CTLS1 es-

timator (LLev, hereafter).

Theorem 7. Suppose that:

(a) {yk}k∈N is generated by (22);

(b) A1 holds and, in addition to A2 with g = f , P
[
f(x1) 6= Ef(x1)

]
6= 0;

(c) K satis�es A4(a) or A4∗(a);

(d) θ(.) is Holder continuous on (0, 1] of order γ ∈ [0, 1];19

(e) cn/n+ n/c1+2γ
n → 0, where γ is de�ned as in (d).

Then, for each �xed τ ∈ (0, 1],√
n

cn

(
θ̂(τ)− θ(τ)

)
→d N

(
0, Q−1

1 Ω1Q
−1
1

)
, (26)

where Q1 = Q
∫
K and Ω1 = Ω

∫
K2.

Remark 12. Note that P
[
f(x1) 6= Ef(x1)

]
6= 0 implies that

[
Ef(x1)

]2
< Ef 2(x1), i.e.[

Ef(x1)
]2 6= Ef 2(x1). The latter condition insures that Q (Q1) is of full rank under the

assumption that xk is a stationary process. Phillips et al. (2017) show that, if xk is an

I(1) process, a CTLS1 (local level) estimator has necessarily a singular covariance matrix.

This degeneracy is manifest for all fractional d > 1/2, as well as nearly integrated arrays.

Indeed, under nonstationarity (xk ∼ I(d), d > 1/2), it follows directly from Lemma 2 (see

also Remark 4) that the counterpart of the limit matrix Q is of the form[
1 f(Xτ )

f(Xτ ) f(Xτ )
2

]∫
K with Xt ∈ D[0, 1],

which is necessarily singular.

19i.e. ‖θ(x)− θ(y)‖ ≤ C ‖x− y‖γ , for x, y ∈ (0, 1]2 and C ∈ (0,∞). Note for constant θ(.), γ = 0.
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Remark 13. Preliminary theoretical results suggest that CTLS1 method is also valid in

situations where the the predictor is weakly non-stationary process (i.e. fractional d = 1/2

or MI). In this case (26) holds with Q1

Q1 =

[
1

∫
R f(x+X−)ϕσ2

+
(x)dx∫

R f(x+X−)ϕσ2
+

(x)dx
∫
R f(x+X−)2ϕσ2

+
(x)dx

]∫
R
K(x)dx,

where ϕσ2
+

(x) and X− as in Remark 2. Note that Q1 here is in general non singular.

The limit properties of the local-linear estimator (LLin, hereafter) are given by the

following result.

Theorem 8. Suppose that:

(a) {yk}k∈N is generated by (22)

(b) A1 holds and, in addition to A2 with g = f , P
[
f(x1) 6= Ef(x1)

]
6= 0;

(c) in addition to that K satis�es A4(a) or A4∗(a),
∫
x2K2 <∞;

(d) θ(.) has a uniformly bounded second derivative on (0, 1];

(e) cn/n+ n/c5
n → 0;

Then, for each �xed τ ∈ (0, 1],

Dn

([
θ̃(τ)

θ̃(1)(τ)

]
−

[
θ(τ)

θ(1)(τ)

])
→d N

(
0, Q−1

2 Ω2Q
−1
2

)
, (27)

where Dn = diag

{√
n
cn
,
√

n
cn
,
√

n
c3n
,
√

n
c3n

}
,

Q2 =

[
Q
∫
K Q

∫
xK

Q
∫
xK Q

∫
x2K

]
and Ω2=

[
Ω
∫
K2 Ω

∫
xK2

Ω
∫
xK2 Ω

∫
x2K2

]
.

Remark 14. The smoothness assumptions on the TVP θ(.) of Theorems 7 and 8 are standard.

Note that for the LLin estimator more restrictive assumptions are required. Nevertheless,

LLin attains smaller `asymptotic bias', relative to the LLev estimator. In general, kernel

regression type of estimators entail nonlinearity induced asymptotic `bias'. In the current

framework, this type of bias is due to increments of the form

n∑
k=1

{θ(τ)− θ(k/n)} .
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In particular, the l.h.s. of (26) entails an asymptotic bias term of order OP (
√
n/c3

n), whilst

the corresponding bias term in (27) is OP (
√
n/c5

n). Note that when the parameters are �xed,

with respect to time, the bias terms equal zero for all n. In can be readily seen that for both

estimators there is a trade-o� between convergence rate and bias. An additional advantage

of the LLin is that entails estimates for the derivatives of the TVPs. These estimates can

be readily utilised for testing hypotheses about parameter constancy with respect to time

(see also Remark 19 below).

Remark 15. As noted in Remark 12, Q (Q1) is of full rank. This, together with
( ∫

xK
)2 6=∫

K
∫
x2K due to 0 <

∫
K <∞, implies thatQ2 is also of full rank, indicating the limitation

in (27) is well de�ned. If K is symmetric, i.e.,
∫
xK = 0 and

∫
xK2 = 0, we further have

that the limit distributions of θ̃(τ) and θ̃(1)(τ) are independent.

Remark 16. As mentioned above the limit results of Theorems 7 and 8 can be readily

generalised to additively separable multi-covariate models with stationary regressors of the

form

yk = µ(k/n) +

p−1∑
j=1

βj (k/n) · fj(xk−1,j) + ek, k = 1, ..., n,

with p ≥ 2, xk,j ∼ I(dj), |dj| < 1/2. More details on this generalisation are provided in the

Appendix (Section 8).

Remark 17. It can be readily seen from Theorems 7 and 8 that the limit variance of the TVP

estimators is independent of the regression point τ . This is in contrast to non-parametric

density and regression estimators where limit variance does depend on location, and as

a result there is a deterioration in estimation accuracy when functionals are estimated at

regression points away from the origin. For TVP estimates however con�dence intervals are

not a�ected by the value of the chronological point τ even if the latter assumes boundary

values. This theoretical result is also corroborated by our simulation study, that shows only

minor oversizing close to boundary values in large sample sizes.

We next consider t-tests, based on the LLev and LLin estimators. Before presenting the

test statistics under consideration, we introduce some notation. For a vector a let ai be

its ith element, and for a square matrix A, [A]ii denotes its i
th diagonal element. The test

hypothesis under consideration is of the form

H0 : θi(τ) = η(τ), (28)

and

H0 : θ
(1)
i (τ) = η(τ), (29)

for i = {1, 2}, some prespeci�ed η : (0, 1] → R and τ ∈ (0, 1]. In particular, (28) entails

a hypothesis for µ(τ) and β(τ), whilst (29) concerns the derivatives of the aforementioned
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parameters. The proposed tests utilise the estimators of (26) and (27). Set

{
Q̂n, Ω̂n

}
:=

{
n∑
k=1

fkf
′
kKkn,

n∑
k=1

ê2
kfkf

′
kK

2
kn

}

with êk := êk(τ) := yk − θ̂(τ)′fk, and recall that in this Section, Kkn = K [cn (k/n− τ)].

Further, we let {
Q̃n, Ω̃n

}
:=

{
n∑
k=1

f̃k f̃
′
kKkn,

n∑
k=1

ẽ2
k f̃k f̃

′
kK

2
kn

}

where f̃k =
(
f ′k, f

′
1k

)′
with f1k = (k/n− τ) fk and ẽk := ẽk(τ) := yk − θ̃(τ)′fk. The proposed

test statistics can be constructed as

t̂i(τ) =
θ̂i(τ)− η(τ)√[
Q̂−1
n Ω̂nQ̂−1

n

]
ii

, t̃i(τ) =
θ̃i(τ)− η(τ)√[
Q̃−1
n Ω̃nQ̃−1

n

]
ii

, i = 1, 2,

for the null hypothesis (28), and

t̃
(1)
i (τ) =

θ̃
(1)
i (τ)− η(τ)√[
Q̃−1
n Ω̃nQ̃−1

n

]
jj

, i = 1, 2, j = i+ 2,

for the null hypothesis (29). The following theorems establish the limit properties of the

these test statistics.

Theorem 9. Suppose that, in addition to the conditions of Theorem 7,
∫
x2K2 < ∞,

supk≥1Eu
4
1 <∞ and Ef 4(x1) +E

{
σ2

2

[
1 + f 2(x1)

]}
<∞. Under H0 : θi(τ) = η(τ), we have

t̂i(τ)→d N(0, 1). (30)

Theorem 10. Suppose that, in addition to the conditions of Theorem 8,
∫
x4K2 < ∞,

supk≥1Eu
4
1 <∞ and Ef 4(x1) +E

{
σ2

2

[
1 + f 2(x1)

]}
<∞. Under H0 : θi(τ) = η(τ), we have

t̃i(τ)→d N(0, 1), (31)

and under H0 : θ
(1)
i (τ) = η(τ),

t̃
(1)
i (τ)→d N(0, 1). (32)

Remark 18. The alternative hypothesis of all tests can be either two-sided or one-sided.

The asymptotic power rates of the test statistics under consideration are determined by the
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convergence rates of the CTLS1 estimators involved. In particular, it can be easily checked

that t̂i(τ )̇, t̃i(τ) = OP

(√
n/cn

)
under H1, whilst t̃

(1)
i (τ) = OP

(√
n/c3

n

)
. Therefore, tests

for the parameter derivatives are less powerful. These results are standard in the non

parametric literature (e.g. see Li and Racine, 2006).

Remark 19. Note that t̃
(1)
i (τ) can be used for testing parameter constancy with respect to

time i.e. H0 : θ
(1)
i (τ) = 0, for each τ ∈ (0, 1].

3.3 Neglecting time variation in regression parameters: some the-

oretical considerations

We conclude this section with some brief discussion about the consequences of neglecting

time variation in regression parameters of predictive models. The issues pointed out here,

are useful for the interpretation of the empirical results of Section 5. For instance, in

our empirical application we �nd that in FP models realised variance does not provide

signi�cant predictability, while in TVP models it does. A plausible explantation for these

con�icting results is provided by certain theoretical facts discussed next. Sketch proofs for

the subsequent theoretical results are provided in the Appendix (Section 9).

Although substantial progress has been made recently in the development statistical

methods for TVP models, time variation in parameters has attracted little attention in

the returns predictability literature. They key advantage of TVP models is that they can

accommodate structural change. It is reasonable to expect that structural change may occur

due external shocks or during di�erent phases of the business cycle. In practice, structural

change is more likely to occur in situations where the data sets' span is very long, as it is in

the case of Welch and Goyal (2008) who consider predictability of stock returns using data

from 1926 to 2005. In this work we use an updated data set due to this authors from 1926

to 2018.

Neglecting time variation in the parameters has consequences to both estimation and

testing, even if time variation is present only in some nuisance regression parameter -i.e. in

some regression parameter that is not the focus practitioner's analysis e.g. the regression

intercept or the slope parameter of some other covariate-. In general neglecting time varia-

tion in the parameter of interest leads to inconsistent estimates, and undermines the power

of predictability tests. Surprisingly neglecting time variation in a nuisance parameter may

have even more severe consequences. It can be shown that the latter type of misspeci�ca-

tion not only results in size distortions, but also renders test statistics divergent under the

null hypothesis when the predictor has memory parameter strictly greater than zero. We

demonstrate the above for OLS based inference for regressions with stationary predictors,

but we expect that similar phenomena also apply to other FP methods e.g. CTLS (mul-
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tiple cps), IVX, conservative predictability tests, when covariates are either stationary or

nonstationary.

We �rst demonstrate the consequences of neglecting time variation in the parameter of

interest by considering the following simple linear regression

yk = β(k/n)xk−1 + ek,

where, xk is stationary long memory satisfying (23) and condition FR. Then under certain

regularity conditions, it follows easily from Lemma 1, and some additional arguments that

the OLS estimator from regressing yk on xk−1 is

√
n

(
β̃OLS −

∫ 1

0

β(τ)dτ

)
→d

(
Ex2

1

)−1 ·N
(

0, E
(
e2

2x
2
1

)
+

∫ 1

0

β(τ)2dτ · V ar(x2
1)

)
.

The OLS estimator converges to the pseudo-true value
∫ 1

0
β(τ)dτ which is a chronological

average of the TVP. As a result, OLS based t-test are likely to have poor power in situations

where predictability is episodic. To see this note that under the alternative hypothesis

(predictability)

t̃OLS =
√
n

∫ 1

0

β(τ)dτ ·OP (1)

The value of the pseudo-true value
∫ 1

0
β(τ)dτ will tend to be small as episodic predictability

events are averaged out over time. Further, it is possible that positive predictability events

(i.e. β(.) > 0) are cancelled out by negative ones (i.e. β(.) < 0).

Next, we illustrate the e�ects of neglecting time variation in the intercept when the

parameter of interest is the slope coe�cient in the following model

yk = µ(k/n) + βxk−1 + ek.

Suppose that we are interested testing H0 : β = 0, using OLS based inference. For con-

venience suppose that the coe�cients in (23) for long memory xk (i.e. 0 < d < 1/2)

are φi ∼ cons. · id−1 (see e.g. Johansen and Nielsen, 2012; p. 673). Further, without

loss of generality suppose that innovations with negative index in (23) are zero.20 In this

case, it is well known δn := [V ar(
∑n

k=1 xk)]
1/2 ∼ cons. · n1/2+d, with 0 ≤ d < 1/2, and

δ−1
n

∑n
k=1 xk →d N(0, 1) (for the latter see e.g. Ibragimov and Linnik, 1971; Thm 18.6.5 or

Peligrad and Utev, 1997). Then it can be shown that the OLS estimator

√
n

(
µ̃OLS −

∫ 1

0

µ(τ)dτ

)
→d N(0, E

(
e2

1

)
) (33)

20In this case xk is a type II long memory process see e.g. Phillips and Shimotsu, 2004.
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and
n

δn

(
β̃OLS − β

)
→d

(
Ex2

1

)−1
[
1,−

∫ 1

0

µ(τ)dτ

]
·N
(
0, E

(
ξ2

1

)
Ψ
)
, (34)

with

Ψ =

∫ 1

0

 {∫ 1

r
µ (1− s) (s− r)d−1 ds

}2

2
∫ 1

r
µ (1− s) (s− r)d−1 ds ·

∫ 1

r
(s− r)d−1 ds

2
∫ 1

r
µ (1− s) (s− r)d−1 ds ·

∫ 1

r
(s− r)d−1 ds{∫ 1

r
(s− r)d−1 ds

}2

 dr. (35)

for 0 < d < 1/2. Therefore, OLS estimator for β is consistent however there is a reduction

in the converge rate when the predictor is (stationary) fractional with memory parameter

strictly greater than zero. This reduction in the convergence rate does not e�ect asymptotic

power21, nevertheless it results in severe size distortions under the null hypothesis. To see

this note �rst that the regression error variance estimator is

1

n

n∑
k=1

ẽ2
k →P Ee

2
1 +

∫ 1

0

µ(τ)2dτ −
(∫ 1

0

µ(τ)dτ

)2

. (36)

Combining (33)-(36) it follows that under the null hypothesis,

∣∣t̃OLS∣∣→P ∞. (37)

In fact the divergence rate of the t-statistic is δn/n
1/2 = nd, 0 ≤ d < 1/2. Clearly, when

xk is a short memory process the test statistic is bounded under the null, nevertheless it

does not have a standard normal distribution and therefore OLS based t-tests exhibit size

distortions even in this case.

4 Simulations

We next explore the �nite sample properties of CTLS inferential methods with the aid of a

simulation study. First, we consider the no predictability hypothesis

H0 : β = 0 vs H1 : β 6= 0

for FP regressions of the form22

yk = βxk−1 + ek. (38)

21It follows from (33)-(36) that t̃ = OP (
√
n), under H1.

22Without loss of generality we set µ = 0. For FP models, estimators are numerically invariant to the
value of the intercept.
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Further, in the context of TVP models of the form

yk = µ(k/n) + β(k/n)xk−1 + ek, (39)

we consider the following test hypotheses

H0 : β(τ) = 0 vs H1 : β(τ) 6= 0,

and

H0 : ∂µ(τ)/∂τ = 0 vs H1 : ∂µ(τ)/∂τ 6= 0,

with τ ∈ T ⊂ (0, 1). Note that the latter is a time invariance hypothesis about the intercept

term. As discussed in Section 3.3 neglecting time variability in the intercept could result in

severe size distortions.

In all cases the signi�cance level is set at 5% and the number of replication paths is

10,000. For the purposes of this experiment the following vector of innovations is generated[
ξk

uk

]
∼ i.d.N

(
0,

[
1 δ

δ 1

])
,

δ ∈ (−1, 1). The predictor is either a NI array of the form

xk =
(

1 +
c

n

)
xk−1 + ξk, (40)

with c ≤ 0 and x0 = 0 or a type II fractional process (e.g. see Robinson and Hualde, 2003)

of the form

(I − L)d xk = ξk1 {k ≥ 1} . (41)

The regression error is

ek = σkuk,

with either

σ2
k = 1,

or

σ2
k = 0.01 + 0.45σ2

k−1 + 0.45e2
k−1, σ

2
0 = 0.01, (42)

which makes the regression error a strong GARCH(1,1).

Simulations for FP models. We �rst consider the �nite sample performance of CTLS

based t-tests of Section 3.1 for models with �xed regression parameters. In particular, we

report empirical size and power results for T̂ given in (20), and Ť which is a CTLS t-

stastistic that is utilising the variance estimator of (21). Note that the former provides

valid inference in the presence of GARCH regression errors while the second is in general
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relevant when the errors are (conditionally) homoscedastic. CTLS methods involve various

tuning parameters such as bandwidths and kernel functions that do a�ect �nite sample

performance. As explained in the Section 1 and 2, there is in general a trade-o� between

size and power when it comes to the choice of cn and ln, with better size control achieved in

general for larger values for cn and smaller for ln. We have conducted extensive preliminary

simulations involving various choices of tuning parameters. We only report results for the

set-up that attains the best size-power trade-o�, according to the preliminary simulations.23

Let ϕς(x) be the density of N(0, ς) variate. For FP models we consider the following kernel

functions and bandwidth terms

� Kkn =
∑ln

j=1 K [cn (k/n− τj)], K∗kn =
∑ln

j=1 K
∗ [cn (k/n− τj)], K(x) = ϕ0.1(x)1/2,

K(x)∗ = ϕ1(x)1/2;

� cn = n0.95, ln = c0.7
n ,

where {τj}lnj=1 are equispaced points on (0, 1).

Table 2 reports the empirical size of CTLS tests for NI predictors and σ2
k = 1. For

comparison with also consider an IVX test, that incorporates the �nite sample correction

of Kostakis et al. (2015), and an OLS based t-test. The IVX method appear to have

superior �nite sample performance relative to other methods for NI -see Kostakis et al.,

(2015) and Kasparis et al. (2015). Contrary to CTLS and IVX estimators, OLS does not

have a mixed normal distribution under nonstationarity, nevertheless OLS based methods

-or similar procedures appropriate only for stationary models (e.g. Gaussian MLE), are

routinely used in empirical work (see e.g. Stambaugh, 1999; Amihud and Hurvich, 2004;

Bandi and Perron 2008; Chen and Deo (2009), Bandi et al., 2018). Further, OLS provides

a natural benchmark for assessing the bene�ts in empirical size when mixed normality is

induced. It can be seen from Table 2 that in general, both CTLS test statistics result in good

size control with empirical size close to nominal in most cases. CTLS is somewhat oversized

relative to IVX when the near to unity parameter is c = 0, and endogeneity is strong.

Size however improves as sample size increases. We further investigate the empirical size of

T̂ for NI predictors and GARCH regression errors in Table 3. Simulations show that the

empirical size of T̂ in this case is comparable to that reported in Table 2 under conditional

homoscedasticity. Simulation results not reported here suggest that Ť and IVX exhibit

some moderate oversizing under GARCH regression errors, and large deviations from unity.

Finally, we consider (see Table 4) the size performance of T̂ for a wide range of fractional

predictors and conditionally homoscedastic regression errors. Again size control is in general

23In a previous version of this paper (arXiv.org> arXiv:2006.12595) we also consider a more complicated
data driven method for choosing the tuning parameters that appears to attain superior �nite sample per-
formance for a wide range of con�gurations. However, the particular approach requires further theoretical
investigation that we leave for future work.

36



good with some oversizing evident when the memory parameter is above unity. In all cases

the size of CTLS tests can be improved by choosing smaller ln or larger cn at the expense

of power performance. Additional simulation results, not reported here, show that the size

performance of T̂ in regressions with fractional predictors and GARCH regression errors is

very similar to those shown in Table 4.

Finally, we explore the empirical power of CTLS tests. We focus on the T̂ statistic that

is robust to conditional heteroscedasticity in the regression error. We �rst consider power

performance for when the predictor is NI. Figure 2 reports rejection probabilities for T̂ and

Kostakis et al. (2015) IVX t-statistic against various values for the slope parameter for

under strong endogeneity (i.e. δ = −0.95), c = 0,−10,−50 and two di�erent sample sizes.

Regression errors are conditionally homoscedastic. All tests are more powerful when the

persistence in stronger and sample size larger, as expected, with IVX attaining a better

performance. Figure 3 next, reports rejection probabilities for T̂ for the fractional case.

Again our limit theory is corroborated since superior performance is attained in situations

where persistence is stronger and sample sizes larger.

Overall CTLS tests appear to have reasonably good sample size performance. IVX tests

appear to be more powerful, nevertheless the CTLS procedures under consideration are

readily available for fractional predictors, nonlinear regressions and in situations where there

is conditional heteroscedasticity in the regression error. Some preliminary simulations show

that IVX also has good performance in the fractional case. This can be partly explained by

Theorem 3.2 of Du�y and Kasparis (2018) that yields basic limit theory for functionals of

MI processes driven my long memory innovations. A formal investigation of IVX methods in

presence of fractional processes is under development by the authors of the aforementioned

work.

37



Table 2: Empirical Size of FP CTLS Tests (nominal size 5%; NI regressor, cond. homoscedastic regression errors)

δ -0.95 -0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS
c = 0 250 0.084 0.089 0.059 0.278 0.059 0.062 0.056 0.117 0.051 0.055 0.050 0.053 0.061 0.063 0.056 0.113 0.087 0.091 0.061 0.295

500 0.077 0.080 0.062 0.287 0.059 0.061 0.054 0.114 0.054 0.054 0.054 0.054 0.060 0.061 0.058 0.116 0.080 0.084 0.055 0.279
750 0.076 0.078 0.058 0.272 0.059 0.058 0.052 0.109 0.052 0.052 0.050 0.051 0.059 0.061 0.055 0.111 0.080 0.081 0.057 0.277
1000 0.070 0.069 0.053 0.278 0.054 0.056 0.051 0.111 0.049 0.049 0.051 0.053 0.059 0.060 0.050 0.108 0.075 0.077 0.053 0.277

δ -0.95 -0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS
c = −5 250 0.061 0.068 0.062 0.116 0.051 0.054 0.056 0.072 0.050 0.052 0.050 0.051 0.057 0.063 0.059 0.074 0.068 0.074 0.066 0.123

500 0.060 0.064 0.063 0.117 0.051 0.053 0.059 0.073 0.051 0.053 0.052 0.054 0.056 0.057 0.057 0.071 0.062 0.065 0.058 0.116
750 0.063 0.066 0.060 0.116 0.058 0.060 0.059 0.070 0.056 0.058 0.056 0.053 0.059 0.059 0.058 0.073 0.065 0.067 0.062 0.119
1000 0.058 0.058 0.060 0.116 0.049 0.051 0.054 0.066 0.047 0.048 0.050 0.051 0.050 0.052 0.052 0.066 0.059 0.061 0.058 0.115

δ -0.95 -0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS
c = −10 250 0.058 0.064 0.062 0.086 0.051 0.056 0.055 0.063 0.049 0.056 0.051 0.052 0.056 0.062 0.057 0.063 0.063 0.069 0.065 0.090

500 0.058 0.060 0.063 0.088 0.051 0.052 0.058 0.065 0.047 0.049 0.052 0.052 0.050 0.054 0.055 0.060 0.056 0.059 0.057 0.085
750 0.058 0.059 0.060 0.087 0.058 0.059 0.056 0.064 0.055 0.056 0.056 0.053 0.056 0.058 0.055 0.062 0.058 0.063 0.062 0.088
1000 0.053 0.056 0.058 0.084 0.049 0.051 0.053 0.059 0.046 0.048 0.050 0.051 0.049 0.047 0.051 0.058 0.054 0.056 0.058 0.088

δ -0.95 -0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS
c = −20 250 0.056 0.062 0.060 0.069 0.052 0.059 0.051 0.057 0.051 0.056 0.050 0.050 0.055 0.061 0.055 0.058 0.061 0.066 0.060 0.071

500 0.054 0.055 0.060 0.072 0.050 0.051 0.054 0.058 0.048 0.050 0.051 0.052 0.049 0.051 0.055 0.058 0.053 0.059 0.056 0.067
750 0.053 0.053 0.059 0.071 0.056 0.059 0.060 0.060 0.052 0.057 0.056 0.053 0.056 0.057 0.055 0.058 0.057 0.059 0.062 0.074
1000 0.052 0.055 0.057 0.071 0.047 0.049 0.050 0.056 0.048 0.049 0.048 0.049 0.048 0.050 0.049 0.053 0.052 0.054 0.055 0.070

δ -0.95 -0.5 0 0.5 0.95

n Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS Ť T̂ IVX OLS
c = −50 250 0.053 0.059 0.054 0.058 0.052 0.058 0.050 0.051 0.049 0.058 0.049 0.049 0.052 0.060 0.050 0.053 0.055 0.062 0.055 0.058

500 0.052 0.055 0.054 0.059 0.052 0.053 0.051 0.053 0.048 0.051 0.047 0.048 0.050 0.053 0.050 0.050 0.053 0.056 0.055 0.059
750 0.051 0.053 0.059 0.064 0.053 0.055 0.055 0.055 0.053 0.056 0.053 0.052 0.057 0.056 0.056 0.058 0.057 0.059 0.059 0.063
1000 0.054 0.056 0.055 0.061 0.051 0.054 0.053 0.053 0.050 0.051 0.050 0.050 0.050 0.052 0.049 0.050 0.051 0.053 0.053 0.058

Ť : CTLS test statistic for conditionally homoscedastic errors; T̂ : CTLS test statistic for conditionally heteroscedastic errors
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Table 3: Empirical Size of FP-CTLS tests: T̂
(nominal size 5%; NI regressor, GARCH(1,1) regression errors)

c = 0 c = −5
δ -0.95 -0.5 0 0.5 0.95 -0.95 -0.5 0 0.5 0.95

n=250 0.083 0.060 0.052 0.062 0.087 0.062 0.054 0.050 0.060 0.069
500 0.077 0.057 0.050 0.061 0.077 0.060 0.051 0.051 0.055 0.059
750 0.070 0.059 0.052 0.058 0.070 0.060 0.056 0.058 0.057 0.061
1000 0.065 0.054 0.048 0.056 0.069 0.054 0.051 0.045 0.049 0.055

c = −10 c = −20
δ -0.95 -0.50 0.00 0.50 0.95 -0.95 -0.50 0.00 0.50 0.95

n=250 0.057 0.053 0.055 0.058 0.062 0.056 0.054 0.056 0.056 0.058
500 0.055 0.049 0.048 0.050 0.055 0.053 0.049 0.047 0.049 0.053
750 0.055 0.055 0.055 0.057 0.055 0.050 0.051 0.053 0.056 0.055
1000 0.052 0.049 0.048 0.046 0.053 0.052 0.048 0.045 0.047 0.053
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Table 4: Empirical Size of FP-CTLS tests: T̂ (nominal size 5%; fractional regressor, cond. homoscedastic regression errors)

d = 0.25 d = 0.5 d = 0.75 d = 0.8
δ -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0

CTLS n=250 0.053 0.052 0.053 0.056 0.051 0.049 0.067 0.053 0.049 0.071 0.056 0.049
500 0.052 0.052 0.050 0.055 0.050 0.047 0.064 0.053 0.049 0.069 0.054 0.052
750 0.051 0.055 0.056 0.056 0.055 0.055 0.066 0.057 0.055 0.067 0.057 0.056
1000 0.051 0.052 0.049 0.051 0.049 0.049 0.059 0.052 0.050 0.061 0.052 0.050

OLS n=250 0.050 0.052 0.052 0.074 0.059 0.053 0.158 0.085 0.051 0.184 0.093 0.052
500 0.052 0.050 0.048 0.072 0.055 0.051 0.161 0.085 0.054 0.184 0.091 0.055
750 0.052 0.051 0.052 0.068 0.058 0.053 0.155 0.081 0.053 0.178 0.086 0.051
1000 0.050 0.048 0.049 0.067 0.053 0.047 0.155 0.077 0.049 0.183 0.086 0.049

d = 0.9 d = 1 d = 1.1 d = 1.2
δ -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0 -0.95 -0.5 0

CTLS n=250 0.077 0.057 0.051 0.084 0.059 0.051 0.089 0.060 0.052 0.089 0.063 0.053
500 0.073 0.058 0.052 0.077 0.059 0.054 0.081 0.063 0.054 0.082 0.061 0.051
750 0.073 0.058 0.054 0.076 0.059 0.052 0.078 0.060 0.051 0.079 0.061 0.051
1000 0.066 0.054 0.050 0.070 0.054 0.049 0.072 0.055 0.050 0.072 0.054 0.051

OLS n=250 0.235 0.107 0.053 0.278 0.117 0.053 0.308 0.121 0.052 0.325 0.126 0.052
500 0.242 0.102 0.054 0.287 0.114 0.054 0.319 0.120 0.055 0.337 0.123 0.056
750 0.230 0.098 0.052 0.272 0.109 0.051 0.301 0.117 0.051 0.322 0.119 0.053
1000 0.229 0.102 0.053 0.278 0.111 0.053 0.310 0.118 0.054 0.327 0.120 0.055
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Figure 2: Empirical Power of CTLS-FP tests: T̂ (5% nominal size; δ = −0.95; NI regressor, cond. homoscedastic regression errors)
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Figure 3: Empirical Power of CTLS-FP tests: T̂
(5% nominal size; δ = −0.95; fractional regressor, cond. homoscedastic regression errors)
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Simulations for TVP models. We next report results for the �nite sample per-

formance of CTLS1 based tests in the context of predictive regressions as per (39). As

mentioned above, we consider two hypotheses. First, the no predictability hypothesis

H0 : β(τ) = 0, τ ∈ (0, 1) against H1 : β(τ) 6= 0. Under H1 we choose β(.) to be ei-

ther a periodic function, capable of reproducing periodic episodic predictability events, or

a smooth transition function that is more relevant when predictability is related to some

regime switching event. For this kind of hypothesis we consider both LLev and LLin tests.

Second, we test the time invariance hypothesis for the interceptH0 : ∂µ(τ)/∂τ = 0, τ ∈ (0, 1)

against H1 : ∂µ(τ)/∂τ 6= 0 using the LLin based test.

We consider stationary fractional predictors of memory parameter d = 0.35 and d = 0.45.

We also consider the case d = 0.55 which is slightly above the nonstationarity threshold

(d = 0.5) that determines the minimal value of the memory parameter for which the limit

distribution of the tests is N(0, 1).24 For nonstationary predictors, the CTLS1 estimators

under consideration do not possess mixed Gaussian limit distribution and therefore some

size distortion in likely. It is reasonable to expect size distortions become more severe for

larger values of the memory parameter. In certain data sets, some predictors (e.g. realised

variance, in�ation) appear to be long memory with memory parameter close to 0.5. We

therefore consider the value d = 0.55 in order to assess the robustness of the proposed

methods when predictors are close to the nonstationarity threshold.

Figure 4: LLin TVP estimates
(δ = −0.95; fractional regressor d = 0.45, n = 1000, GARCH(1,1) regression errors)

24As mentioned before, some preliminary theoretical results suggest that the proposed methods are also
valid for weakly nonstationary predictors i.e. long memory with d = 0.5 or mildly integrated processes.
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Bandwidth choice is very important for both estimation and testing. As mentioned be-

fore, in general there is a trade-o� between size and power when it comes to bandwidth

choice. Nevertheless, the aforementioned trade-o� is more subtle for non-parametric meth-

ods (e.g. CTLS for TVP models) than for semi-parametric methods (e.g. IVX, CTLS

for FP models, etc). Other things being equal, for CTLS methods larger values of cn

(under-smoothing) result in better size control, while smaller values of values of cn (over-

smoothing) result in better power, because TVP estimators attain faster convergence rates

in the latter case. There are however situations where under-smoothing may result in both

better size and power. For instance, if the TVP varies wildly (e.g. when there are abrupt

episodic predictability events) then over-smoothing may under estimate the variation in a

TVP, and this may lead to power loss. This e�ect is illustrated in Figure 4 that shows

LLin estimates of regression parameters and their derivatives for various bandwidth choices

(i.e. cn = nq, q = {0.2, 0.3, 0.35}), and {µ(τ), β(τ)} = {sin(2πτ), cos(2πτ)}. Note that this
choice of TVPs entails periodic functions of period one over their domain (i.e. (0, 1]). It can

be readily seen from Figure 4 that when over-smoothing is employed (e.g. q = 0.2) sudden

changes in the TVPs are smoothed out. Another �nding from Figure 4, that is worth noting,

is that the derivative estimators appear to exhibit non trivial asymptotic bias at boundary

points i.e. for τ ≈ 0, 1. This appears to impact inference related to TVP derivatives, and

for this reason this issue will be revisited later.

For the �nite sample evaluation the tests we consider the following two possibilities for

the bandwidth parameter cn = nq

q =

{
0.3, 0.4, Local Level

0.3, 0.35, Local Linear
.

As mentioned before, larger values of for cn (under smoothing) provide better size control

while smaller values (over smoothing) result in better power. In preliminary simulations

we have also considered additional possibilities for cn (i.e. q = {0.1, 0.2}), however we only
report results for bandwidth values that appear to yield superior size-power trade-o�.

We next specify the intercept and slope parameter functions µ(τ) and β(τ) utilised

for the predictability hypothesis. Under both the null and the alternative hypothesis the

intercept is given by

µ(τ) = 0.025 · sin(2πτ).

On the other hand the slope parameter is

β(τ) =


0, under H0

b · cos(2πτ), under H1

or

b · {1 + exp [−30 (τ − 0.5)]}−1 , under H1
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with b = {0.033, 0.066, 0.099}. It should be emphasised that contrary to the �xed parameter

case, the estimators under consideration are not numerically invariant to the value of the

intercept when the latter is time varying. Therefore, the shape of the intercept function

has an impact on the �nite sample performance of the tests. Intercept functions that ex-

hibit more abrupt variation are likely to result in more severe size distortions because of

larger nonlinearity induced asymptotic bias (see Remark 14). On the other hand smaller

variability in the intercept function is associated with smaller asymptotic bias (cf. condition

(e) of Theorems 7 and 8). We therefore employ a time varying intercept in order to assess

the performance of the proposed tests in situations when there is �nite sample bias due to

time variation in the intercept estimator. In particular, we choose a sinusoidal function that

has period one over (0, 1) i.e. domain of the TVPs. The maximal value of the intercept

function in the simulation experiment, for the non predictability hypothesis, is relevant to

the empirical application, where we consider TVP predictive regressions with the realised

variance as a predictor. We �nd that the maximal estimates for the intercept are approxi-

mately 0.01, 0.02 and 0.05 for monthly, quarterly and annual data respectively. Therefore,

0.025 is a mid-range value. The choice for the the slope parameter function is also relevant

to our empirical application. In our empirical application, the maximal estimates for the

slope parameter of realised variance are approximately, 1.25, 2 and 6 for monthly, quarterly

and annual data respectively. Therefore, the particular choice for β(τ) (and b) is likely to

give conservative asymptotic power results under the alternative hypothesis.

Figures 5 and 6 report the empirical size of LLev and LLin based tests for the non

predictability hypothesis for sample sizes n = 500 and n = 1000. We only consider δ = −0.95

i.e. strong endogeneity. Size (vertical axis) is plotted against various values of τ ∈ (0, 1)

(horizontal axis). It can be seen that size control is reasonably good with small oversizing

when d = 0.45 and moderate oversizing when d = 0.55. Additional simulations, not reported

here, show that when the intercept is �xed over time, size is slightly better than that in

Figures 5 and 6. Moreover, for smaller values of d and |δ| preliminary simulations show that

empirical size is closer to the nominal one.

The empirical power of both tests is reported in Figures 7 and 8, for d = 0.45. Under

the alternative, for β(τ) = b · cos(2πτ), power peaks at τ = 0, 0.5, 1, approximately. These

locations correspond to the extrema of the cosine slope parameter function. There are

small di�erences between the LLev and LLin tests, and the two bandwidth choices. For

β(τ) = b · {1 + exp [−30 (τ − 0.5)]}−1, it seems that the LLev performs better than the LLin

test, in particular at boundary points. Note that the LLin test exhibits some power drop

for τ close to one. In all cases power improves when sample increases, as expected.

Finally, we consider the �nite sample performance of the LLin test for the hypotheses

H0 : ∂µ(τ)/∂τ = 0 i.e. the regression intercept is invariant with respect to time. The test

statistic for in this case relies on the estimator for the derivative of µ(τ) which attains a
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slower convergence rate (i.e.
√
n/c3

n) than that of the regression parameters µ(τ) and β(τ).

Therefore, it is reasonable to expect that the power of the time invariance test is inferior to

that for the no predictability hypothesis considered earlier.

To assess the size of the test under the null hypothesis we generate data from (39)

with µ(τ) = 0.025 and β(τ) = 0.66 · cos(2πτ). Note that the slope parameter is chosen

to be time varying. Time variation in the slope parameter induces nonlinearity asymptotic

bias (see Remark 14) which is likely to result in some size distortions. Figure 9 reports the

empirical size of the test for various values of the memory parameter and di�erent sample

sizes. As before, the exponent of the bandwidth term is q = {0.3, 0.35}. Size is in general

close to the nominal one with somewhat more substantial over-sizing when the predictor is

nonstationary. It is worth noting that some variation in empirical size with respect to time

is evident that appears to resemble the time variation in the slope parameter. This is likely

to be due to nonlinearity induced asymptotic bias in slope parameter estimates.

We conclude with the empirical power of the test. Figure 10 reports the rejection fre-

quency of the test for the case where the regression parameters are µ(τ) = b · sin(2πτ)

with b = {0.01, 0.025, 0.05}, and β(τ) = 0.066 · cos(2πτ). The memory of the predictor is

d = 0.45 and as before we consider two sample sizes. The time invariance test appears to

be less powerful than the predictability test considered earlier. Notably, there is substantial

power drop at boundary points. Note that under H1 : ∂µ(τ)/∂τ = 2πb · cos(2πτ). There-

fore the derivative function assumes its maximum values at τ = {0, 0.5, 1}. Nevertheless

at the boundary points of its domain power is very poor. This likely due asymptotic bias

in derivative estimation at boundary points (cf. Figure 4). Hence, the test appears to be

quite conservative in terms of power, when there is substantial variation in the parame-

ter at boundary points, nevertheless it can be easily implemented in conjunction with the

predictability test. Possibly, better performance could be achieved with the utilisation of

higher order kernels (e.g. local quadratic estimation) that may result in further bias reduc-

tion. Tests for time variation in the parameters of predictive regressions is an important

topic on its own. We therefore leave further developments in this area for future work.
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Figure 5: Empirical Size of CTLS-TVP tests against τ : H0 : β(τ) = 0
(5% nominal size; n = 500; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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Figure 6: Empirical Size of CTLS-TVP tests: H0 : β(τ) = 0
(5% nominal size; n = 1000; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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Figure 7: Empirical Power of CTLS-TVP tests: H1 : β(τ) = b · cos(2πτ)
(5% nominal size; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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Figure 8: Empirical Power of CTLS-TVP tests: H1 : β(τ) = b · {1 + exp [−30 (τ − 0.5)]}−1

(5% nominal size; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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Figure 9: Empirical Size of CTLS-TVP tests: H0 : ∂µ(τ)/∂τ = 0
(5% nominal size; δ = −0.95; fractional regressor, GARCH(1,1) regression errors)
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Figure 10: Empirical Power of CTLS-TVP tests: H1 : ∂µ(τ)/∂τ = 2πb · cos(2πτ)
(5% nominal size; δ = −0.95; d = 0.45, GARCH(1,1) regression errors)

5 Application to the predictability of stock returns

A vast literature in empirical �nance and econometrics is devoted to the investigation of

the hypothesis that stock returns can be predicted with publicly available information.

There are two main approaches in this area. First, certain studies (e.g. Welch and Goyal,

2008; Bollerslev et al., 2013) investigate the in sample or out of sample predictive ability of

predictive regressions with the aid of some forecast adequacy test (e.g. McCraken, 2007) or

some goodness of �t statistic (e.g. R2). Typically predictive regressions take the form

rk = µ+ βxk−1 + ek, (43)

where rk are stock returns relating to some stock index, xk some predictive variable and

et a martingale di�erence regression error. Another approach is to test the predictability

hypothesis H0 : β = 0 using appropriate (in sample) inferential procedures (e.g. Valkanov,

2003; Lewellen, 2004; Campbell and Yogo, 2006; Hjalmarsson (2011), Kostakis et al., 2015).

Usually some �nancial variable (e.g. dividend yield, earnings to price ratio, book to market

ratio, realised variance) or some macroeconomic variable (e.g. in�ation) is considered as a

possible predictor for future returns. Many studies in this area investigate the predictabil-

ity hypothesis under the assumption that predictor is a stationary AR(1) processes driven

by i.i.d. innovations, and employ techniques that are in general valid only under station-
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arity.25 Nevertheless, there is strong evidence that in certain data sets various �nancial

and macroeconomic variables are persistent i.e. consistent with stationary long memory

processes (see e.g. Bollerslev et al., 2013) or nonstationary long memory processes (e.g.

see Kostakis et al., 2015; Table 4). Christensen and Nielsen (2007) (see also Chistensen

and Nielsen, 2006), Bollerslev et al. (2013), Bandi, Perron, Tamoni and Tebaldi (2019)

develop methods that allow for stationary long memory predictors. Campbell and Yogo

(2006), Hjalmarsson (2011) consider conservative testing procedures that allow for a NI

predictor. The latter two papers utilise Bonferroni bounds with con�dence intervals based

on the inversion of unit root tests (see also Cavanagh et al., 1995). Phillips (2014) shows

that testing procedures based on the inversion of unit roots provide good robusti�cation

for local deviations from unity, but do not perform that well under larger deviations (e.g.

Mildly Integrated or stationary data). The most recent work of Kostakis et al. (2015) inves-

tigates the predictability hypothesis utilising the IVX method of Magdalinos and Phillips

(2009). Magdalinos and Phillips (2009) provide conventional inference in regressions with

NI or MI covariates. Kostakis et al. (2015) demonstrate that the IVX method is also valid

under larger deviations from unity i.e. when the data are generated short memory linear

processes. Further, they provide a �nite sample correction for IVX based test statistics

that relates to intercept demeaning. The IVX method has been also utilised by a num-

ber of other studies in the context of predictive regressions. Gonzalo and Pitarakis (2012)

investigate regime speci�c predictability in the context of threshold regressions while Deme-

trescu et al. (2020) examine episodic predictability in TVP predictive regressions. Both of

the aforementioned papers develop predictability tests that utilise IVX instrumentation. A

comprehensive review of the econometric methodology utilised in this area can be found in

Phillips (2015).

In this section apply the methods of Section 3.1 and 3.2 to investigate the return pre-

dictability hypothesis. In particular, we consider the speci�cation of (15) with a general

predictor and (22) with a stationary predictor (e.g. fractional |d| < 1/2). Both models

allow for nonlinear regressions functions with the latter providing a more �exible functional

form due to TVPs. Therefore, the former speci�cation is more general with respect to

regression space while the latter is more general in terms of functional form.

Functional form is an aspect of modelling that can potentially address misbalancing in

predictive regressions for returns. A well known stylistic fact about short term returns is

that they exhibit very weak persistence with paths closely resembling those of martingale

di�erences (i.e. I(d), with d = 0). On the other hand most commonly used predictors are

very persistent exhibiting either stationary or non stationary long memory. Misbalancing is

an important issue that has received relative little attention in the predictability literature.

25For instance Stambaugh (1999), Amihud and Hurvich (2004), Chen and Deo (2009), assume that the
predictor is a stationary AR(1) process driven by i.i.d. or Gaussian i.i.d. errors.
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As emphasised by Phillips (2015) -see also Kasparis (2011)-, misbalancing may result to

asymptotically vanishing estimators. For instance if rk ∼ I(d) with d < 1/2 (stationary

long memory) and xk ∼ I(d) with d > 1/2, then then OLS estimator for β in (43) is

β̃ →P 0.

A departure from the usual linear in levels speci�cation can potentially address mis-

balancing issues. For instance Christensen and Nielsen (2007) and Bollerslev et al. (2013)

consider predictive models for returns where the systematic part of the model is of the form

µ + g(xk−1) with g being the fractional di�erence operator (I − L)d and d the memory

parameter of volatility (xk). Note that in this case g(xk−1) is I(0). A similar but more

general approach is considered by Andersen and Varneskov (2020) who assume predictive

relationships between the short memory components for fractional series of the form

(1− L)dyyt = µ+ B′(1− L)dxxt−1 + ηt,

where yt ∼ I(dy) and xt ∼ I(dx) are scalar and vector processes respectively, possibly

nonstationary. The regression parameters are estimated by a narrow band type of method,

that also trims frequencies around zero in �nite samples. The resultant estimator attains

semi-pametric rates. In particular, it is sub-
√
n consistent when the regression error is ηt

is I(0) but can be faster when ηt is of negative memory. Similarly to other spectral LS

methods -e.g. Robinson and Hualde and Christensen and Nielsen (2006)- this approach

requires plug-in estimates for the memory parameters. Marmer (2007), Kasparis (2010),

Kasparis, Andreou and Phillips (2015) and Phillips (2015) suggest that nonlinear regression

functions can potentially addresses misbalancing issues. It is well known (e.g. Park and

Phillips, 1999; 2001) that nonlinear transformations can signi�cantly attenuate the signal

of persistent processes. In fact, a transformed nonstationary process may exhibit a weaker

signal than that of a stationary one. For example, for some measurable function g and xk

stationary we have
∑n

k=1 g (xk) = OP (n), in general. On the other hand for xk ∼ I(1) the

following orders apply (e.g. see Park and Phillips, 2001; Berenguer-Rico and Gonzalo, 2014)

n∑
k=1

g (xk) =


OP (n1+p), for g polynomial of order p > −1

OP (n ln(n)), for g logarithmic

OP (n), for g bounded

OP (
√
n), for g integrable

It can be readily seen from the orders shown above that certain nonlinear transformation

of I(1) processes, may exhibit a very weak signal that can be equal (bounded functions) or

smaller (integrable and reciprocal functions) than that of a stationary process. These orders

can be smaller when xt ∼ I(d) with 1/2 < d < 1. Figure 11 provides a graphical illustration

of the e�ects of certain nonlinear transformations on the paths of an I(1), process relatively
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to those of stationary GARCH(1,1) (i.e. a martingale di�erence process). It can be seen

that the aggregated paths of a GARCH with those of a transformed nonstationary processes,

may resemble those of martingale di�erence processes.

TVP and threshold regression models (Gonzalo and Pitarakis, 2012; Demetrescu et al.

2020) entail an alternative form of nonlinearity that can also address misbalancing. In

particular, these type of models allow for episodic predictability events when some time or

state variable is in some regime. For instance, Gonzalo and Pitarakis (2012) �nd evidence

that stock returns can be predicted by �nancial ratios when there �bad news� i.e. in�ation

exceeds certain level. Transformations relating to threshold models and TVP speci�cations

can also attenuate the signal of a persistent predictor, and produce sample paths similar to

those shown in Figure 11.

In this Section we will investigate predictability of stock returns using the Welch and

Goyal, 2018 data set. The returns variable (rk) is constructed by taking log di�erences of the

SP500 index. Further, we consider 4 alternative predictors: Dividend Yield (DY), Earrings-

to-Price ration (EP), Book-to-Market (BM), and a realised variance (SVAR) variable (the

sum of squared daily returns on the SP500). Moreover, we consider three di�erent sampling

frequencies of the aforementioned variables i.e. monthly, quarterly and annual. To get some

idea about the persistent properties of the data we report memory estimates based on the

local Whittle (LW; e.g. Robinson, 1995) and the exact local Whittle (ELW; cf. Shimotsu

and Phillips, 2005) estimators. It can be seen from Table 5 that SP500 returns closely

resemble an I(0) process in all frequencies, while the predictive variables are persistent,

exhibiting either stationary long memory (SVAR in lower frequencies), or nonstationary

long memory - particularly DY, EP and BM.

We investigate return predictability by utilising the inferential techniques of Section 3.1

and 3.2 for FP and TVP models respectively. The CTLS techniques for FP models allow for

a very general regressor space, capable of handling all predictors under consideration. On the

other hand CTLS techniques for TVP models allow only for stationary or close to stationary

long memory. Therefore for will only consider the SVAR predictor for TVP models that

appears to have memory characteristic closer to the permissible regression space. Note that

for monthly data memory estimates are slightly above the nonstationarity threshold (i.e.

d = 1/2), nevertheless the simulations show that for these values tests exhibit reasonably

good size even in situations of very strong endogeneity.

FP regressions. First, we consider FP regressions with DY, EP, BM and SVAR as a

possible predictor, and �ve alternative regression functions (cf. eq. (15)):

f(x) =
{
x, ln(x), x0.25, x0.5, x0.75

}
.

In particular, we consider the linear speci�cation that is widely used in practice and four
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Figure 11: Paths of GARCH(1,1) Vs Transformations of I(1)

P1: 0.5xk; P2: 0.5 |xk|0.25; P3: 0.5 ln(|xk|); xk − xk−1 ∼ i.d.N(0, 1); GARCH(1,1) with param.

0.01, 0.45, 0.45.

additional regression functions that exhibit reduced growth rates relative the linear one.

Nonlinear transformations of various predictors such as logarithmic and square roots have

been employed by a number of studies (see e.g. Lewellen, 2004; Bollerslev et al., 2013;

Anderson and Varneskov, 2020). Speci�cations of reduced growth could alleviate issues of

misbalancing. Misbalancing is more likely to be committed in situations where the predictor

exhibits extreme persistence as in the case of DY that appears to be far more persistent

than a unit root process, particularly in higher sampling frequencies.26

Table 6 reports the values of T̂ for the hypothesis H0 : β = 0. The alternative hypothesis

can be either one-sided or two-sided. We utilise the CTLS test statistic of (20) that is

26The EWL estimates suggest that DY has memory parameters signi�cantly above unity for all sampling
frequencies. Further, EP annual observations appear to be more persistent than a unit root. Note that the
LW estimates are slightly below unity, nevertheless it is well known that the LW estimator converges to
unity for d > 1 i.e. it is inconsistent (cf. Phillips and Shimotsu, 2004).
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Table 5: Memory Estimates (bandwidth n0.65)

Monthly Quarterly Annual
LW ELW LW ELW LW ELW

Returns 0.07 0.069 0.14 0.15 -0.12 -0.08
DY 0.96 1.76 0.91 1.55 0.83 1.31
EP 0.92 1.22 0.79 0.85 0.72 0.81
BM 0.99 1.02 0.74 0.77 0.63 0.65
SVAR 0.53 0.53 0.46 0.47 0.33 0.35

capable of accommodating GARCH e�ects in the regression error. It can be seen that for

monthly data, there is some evidence of predictability for EP (10% level for one-sided test)

and BM (5% level for one sided) test. Interestingly, for the BM predictor T̂ attains its

maximal value for the reduced growth rate regression function x0.25. The CTLS procedure

suggests no predictability for quarterly data. Finally, for annual observations there is limited

predictability evidence for EP (10% level for one-sided) and some robust �ndings for DY (5%

level for one sided test). For the latter predictor, the maximal value of T̂ is attained under

the logarithmic speci�cation. Overall, the strongest predictability evidence (signi�cant at

5% level - one sided tests) are associated with the regression functions f(x) = x0.25, x0.5 for

the BM variable and f(x) = ln(x) for DY.
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Table 6: Values of T̂ for the hypothesis H0 : β = 0

f(x) x ln(x) x0.25 x0.5 x0.75

Monthly
DY (n = 1775) 1.135 0.639 0.85 1.08 1.16
EP (n = 1775) 1.637C 1.024 1.099 1.464C 1.615
BM (n = 1173) 1.482C -0.887 1.843c,B 1.705c,B 1.581C

SVAR (n = 1606) -0.47 N/A 0.037 -0.157 -0.338
Quarterly
DY (n = 591) -0.859 -0.613 -1.127 -1.006 -0.914
EP (n = 591) -0.077 -0.279 -0.864 -0.555 -0.306
BM (n = 391) 0.535 0.829 0.044 0.228 0.393
SVAR (n = 535) 0.198 -0.322 0.189 0.154 0.164
Annual
DY (n = 147) 1.58C 1.885c,B 0.613 1.384C 1.618C

EP (n = 147) 1.177 1.333C 0.462 1.094 1.266
BM (n = 97) -0.307 1.036 -0.625 -0.517 -0.41
SVAR (n = 133) -0.426 -0.153 -0.068 -0.22 -0.351

a, b, c: sign�cant at 1%, 5% and 10% level respectively for two-sided test

A, B, C: sign�cant at 1%, 5% and 10% level respectively for one-sided test

N/A: statistic cannot be computed due to near singularity of some matrix

TVP regressions. We next consider TVP models with SVAR as a predictor as per

(22). The memory estimates for the SVAR variable are between 0.35 and 0.53. Recall that

our theoretical results demonstrate that CTLS1 inferential methods for TVP models are

valid for predictors that exhibit stationary long memory. As remarked before (e.g. Remark

13), we expect that Theorems 9 and 10 are also hold for fractional d = 1/2 and MI processes.

Further, the simulation experiment suggests the that proposed tests perform reasonably well

for memory parameters slightly above d = 1/2.

We �rst provide estimates for µ(τ) and β(τ), τ ∈ (0, 1] based on the LLev and the

LLin CTLS1 estimators (see Figure 12). For the former we choose bandwidth cn = nq,

with q = 0.4 and for the latter q = 0.35, which is slightly slower. These choices are close

the maximal over-smoothing allowed, given the theoretical constrains27, and provide good

performance both in terms of size and power according to the simulation study. It can be

seen from Figure 12 that there is some time variation in both parameters for all sampling

frequencies. First, the intercept parameter appears to be eventually increasing. Its maximal

value for monthly returns is about 1% and for quarterly around 2%. The maximal value

of the intercept for annual returns is higher, as expected due to compounding, and equal

5% approximately. The value of the slope parameter for monthly returns appears to be

overall negative while for medium and long run returns (i.e. quarterly and annual) the slope

27i.e. condition (e) in Theorem 7 and 8.
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parameter varies around zero with some positive episodic events.

For a more rigorous investigation of episodic e�ects we utilise the LLev and LLin tests

for the hypothesis H0 : β(τ) = 0. Rolling t-statistics are shown in Figure 13. We emphasise

that these tests are pointwise for each τ ∈ (0, 1]. For monthly returns, both test statistics

indicate signi�cant predictability for τ > 0.7. In particular, for certain sub periods there is

very strong evidence for negative predictability. In some cases the null hypothesis is rejected

at 1% signi�cance level even for two sided tests. For quarterly and annual returns there is

some evidence of positive episodic predictability but is not as strong as those for monthly

returns. In particular, for quarterly returns both tests reject the null at 5% signi�cance

(one sided tests) when τ is between 0.6 and 0.8 (approximately). For monthly returns the

null is rejected at 5% signi�cance (one sided tests) only by the LLin test for τ < 0.15 and

τ > 0.9. It should be noted however that the tests for quarterly and annual data are not

that powerful due to sample size restrictions. Recall that the sample size for monthly data

is n = 1606 while for quarterly and annual is n = 535 and n = 133 respectively.

It is worth comparing the �ndings for the SVAR predictor in the context of FP models to

those for TVP models. All the FP-CTLS tests retain the null hypothesis for non predictabil-

ity when SVAR is utitilised as a predictor. In fact, the values of
∣∣∣T̂ ∣∣∣ are very small in this

case. The maximal value of
∣∣∣T̂ ∣∣∣ corresponds to a p-value equal 0.66, which is substantial.

On the other hand all the CTLS1 tests for TVP models suggest that there is evidence for

predictability with respect to SVAR. This is discrepancy between FP and TVP models is

expected in situations where time variation in regression parameters is neglected. As men-

tioned before (i.e. Section 3.3), parametric (e.g. OLS) and semi-parametric estimators (e.g.

CTLS, IVX), under certain regularity conditions, converge to pseudo-true values of the form∫ 1

0
β(τ)dτ when there is time variation in the slope parameters. This integral functional is

a chronological average of the TVP parameters. As a consequence, predictability episodes

tend to be averaged out when FP empirical speci�cations are utilised. As a consequence,

inferential procedures based on FP estimators exhibit poor power performance in situations

of neglected time variations in the parameters.

Finally, we utilise the LLin t-test for the hypothesis H0 : ∂µ(τ)/∂τ = 0 i.e. no time

variation in the intercept of (22). As explained in Section 3.3, neglecting time variation in

the parameter of interest (i.e. β here) results in poor power. On the other hand neglecting

time variation in a �nuisance parameter� e.g. the intercept or the slope parameter of some

other covariate is likely to result in inferior size control due to incorrect centering. Therefore,

in practical work it is useful to know if there is time variation in the intercept. Figure 14

reports values for rolling t-statistics for the latter hypothesis. The tests show evidence

for some episodic variation in the intercept for monthly and annual returns (signi�cant at

5% level for one-sided tests). In practice, it could be the case that time variation in the

intercept is more substantial than what these test suggest. First, note that inference based
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on derivative estimators yields less powerful tests because derivative estimators attain slower

convergence rates than those attained by ordinary estimators. In particular, the divergence

rate of the derivative based LLin test statistic is Op

(√
n/c3

n

)
while its non derivative

counterpart attains divergence rate of order Op

(√
n/cn

)
. Therefore, our �ndings on the

time variation of the regression intercept are likely to be conservative.
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Figure 12: Local Level/Linear TVP Estimates
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Figure 13: Local Level/Linear t-statistics for H0 : β(τ) = 0
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Figure 14: Local Linear t-statistics for H0 : ∂µ(τ)/∂τ = 0

APPENDIX

Throughout the remaining paper, we assume that C,C0, C1, C2, ... are positive constants

that may take a di�erent value in each appearance and let Kkn :=
∑ln

j=1K [cn(k/n− τj)] as
in (16).
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6 Proofs for Section 2

6.1 Preliminaries

We start with two preliminary lemmas, which provide signi�cant extension to Lemma 4.1 of

Hu, Phillips and Wang (2021) and include (8) and (10) as a corollary. The proofs of these

two lemmas will be given in Sections 6.6 and 6.7, respectively.

Let {Xn,k}k≥1,n≥1, where Xn,k, be a vector random array. When there is no confusion,

we also use the notation Xnk = Xn,k. Let {vk}k≥1 be a sequence of random variables, and

G(q)) and K(x) be Borel functions on R. For 0 < τ1 < τ2 < ... < τl < 1, set

Sn,l =
cn
n

n∑
k=1

G(Xnk)vk
1

l

l∑
j=1

K
[
cn(k/n− τj)

]
,

where {cn}n≥1 is a sequence of positive constants. Our �rst result investigates the asymp-

totics of Sn,l.

Lemma 1. Suppose that

(a) there is a continuous limiting process Xt such that Xn,[nt] ⇒ Xt on DR[0, 1];

(b) supk≥1E|vk| <∞ and there exist A0 ∈ R and 0 < m := mn →∞ satisfying n/m→∞
so that maxm≤j≤n−mE

∣∣ 1
m

∑j+m
k=j+1 vk − A0

∣∣ = o(1);

(c) G(q) is continuous;

(d) K(x) has a compact support or K(x) is eventually monotonic so that
∫
|K| <∞.

Then, for any �xed l ≥ 1, cn →∞ and cn/n→ 0, we have

Sn,l =
1

l

l∑
j=1

G(Xn,[nτj ])A0

∫
K + oP (1)

→d
1

l

l∑
j=1

G(Xτj)A0

∫
K. (44)

If in addition τj = j/(ln + 1), j = 1, 2, ..., ln, where l
−1
n + ln/cn → 0, then

Sn,ln =

∫ 1

0

G(Xn,[nt])dtA0

∫
K + oP (1)→d

∫ 1

0

G(Xt)dtA0

∫
K. (45)

Remark 20. Weak convergence in (a) and continuity of G(q) are essentially necessary for this

kind of result. The result can be extended to the case thatG(q) is locally Lebesgue integrable

if we impose additional smoothness conditions on Xnk, but it involves more complicated
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calculations. We do not pursue the extension to keep this paper under reasonable length. It

is worth to mention that no relationship is imposed between vk and Xnk and condition (b)

is satis�ed with A0 = Ev1 whenever vt is ergodic (strictly) stationary satisfying E|v1| <∞
and 1

n

∑n
k=1 vk →L1 Ev1. This fact will be used in subsequent sections without further

explanation.

If we are only interested in the boundedness of Sn,l, condition (b) can be reduced as seen

in the following result.

Lemma 2. Suppose that conditions (a), (c) and (d) of Lemma 1 hold and {vk}k≥1 is an

arbitrary random sequence satisfying supk≥1E|vk| < ∞. Then, for any l ≥ 1 (allowing for

l = ln →∞), cn →∞ and cn/n→ 0, we have

cn
n

n∑
k=1

|G(Xnk)| |vk|
1

l

l∑
j=1

K
[
cn(k/n− τj)

]
= OP (1). (46)

If in addition τj = j/(ln + 1), j = 1, 2, ..., ln, where ln log ln/cn + l−1
n → 0, then

cn
n

n∑
k=1

|G(Xnk)| |vk|
1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

]
= oP (1), (47)

cn
n

n∑
k=1

|G(Xnk)| |vk|
( 1√

ln

ln∑
j=1

K
[
cn(k/n− τj)

])2

= OP (1), (48)

(cn
n

)2
n∑
k=1

|G(Xnk)| |vk|
( 1√

ln

ln∑
j=1

K
[
cn(k/n− τj)

])4

= oP (1). (49)

Remark 21. The results in Lemmas 1 and 2 still hold in case that K(x) is replaced by

xjK l(x) for any j ≥ 0 and any l ≥ 1 under additional condition
∫
|xjK l| <∞. This claim

is obvious from the proof of lemmas with minor modi�cations and will be used in the proofs

of main results without further explanation. Furthermore, by letting K∗(x) be an another

positive function satisfying the same condition as that of K(x), the same argument as in

the proof of (47) yields

cn
n

n∑
k=1

|G(Xnk)| |vk|
1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K∗
[
cn(k/n− τj)

]
= oP (1). (50)

This, together with Lemma 1, implies that

cn
n

n∑
k=1

G(Xnk) vk
1

ln

ln∑
j=1

K [cn(k/n− τj)]
ln∑
j=1

K∗ [cn(k/n− τj)]

=

∫ 1

0

G(Xn,[nt])dtA0

∫
KK∗ + oP (1)→d

∫ 1

0

G(Xt)dtA0

∫
KK∗. (51)
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Equation (51) shows the e�ect of employing �double trimming� i.e. sample functionals

that involve two kernel functions, which will be used in the proofs of Theorems 4 and 5,

and (14).

6.2 Proof of Theorem 1

We only consider M1n,ln , i.e., (9), since the limit result for S
(m)
1n,ln

given in (8) follows easily

from Lemma 1 with G(x) ≡ 1 and vk = α′g(xk−1)σmk for any α ∈ Rp.

Set Qk,n :=
√

cn
n
α′g(xk−1)σk

1√
ln

∑ln
j=1 K [cn(k/n− τj)] where α ∈ Rp. Using (47) in

Lemma 2 with G(x) ≡ 1 and vk = [α′g(xk−1)σk]
2, we have

n∑
k=1

Q2
k,n =

cn
n

n∑
k=1

[α′g(xk−1)σk]
2 1

ln

ln∑
j=1

K2 [cn(k/n− τj)] + oP (1)

= E [α′g(x1)σ2]
2

∫
K2 + oP (1) (52)

where the second equation follows from Lemma 1 [K(x) is replaced byK2(x)] with additional

A0 = E [α′g(xk−1)σk]
2. In terms of (52), it follows from the classical martingale limit

theorem (c.g., Hall and Heyde,1980, Theorem 3.2 or Wang, 2014, Theorem 2.1) that, to

prove (9), it su�ces to show

max
1≤k≤n

|Qk,n| = oP (1). (53)

Note that for any A > 0,

max
1≤k≤n

|Qk,n| ≤

{
n∑
k=1

Q2
k,nI {‖g(xk−1)σk‖ > A}

}1/2

+

{
n∑
k=1

Q4
k,nI {‖g(xk−1)σk‖ ≤ A}

}1/4

=: II1n(A)1/2 + II2n(A)1/4.

Similar arguments used in (52) show that the �rst term

II1n(A) ≤ ‖α‖2 cn
n

n∑
k=1

‖g(xk−1)σk‖2 I {‖g(xk−1)σk‖ > A} 1

ln

ln∑
j=1

K2 [cn(k/n− τj)] + oP (1)

= ‖α‖2E ‖g(x1)σ2‖2 I {‖g(x1)σ2‖ > A}
∫
K2 + oP (1) = oP (1),

where we take n→∞ �rst and then A→∞. On the other hand, by using (49) in Lemma

2 with G(x) ≡ 1 and vk = 1, the second term

II2n(A) ≤ ‖α‖4A4
(cn
n

)2
n∑
k=1

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])4

= oP (1)
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for each A ≥ 1, as n→∞. Combining these facts together, we establish (53). The proof of

Theorem 1 is now complete. �

6.3 Proof of Theorem 2

As in the proof of Theorem 1, we only consider M2n,ln , i.e., (11), since the result for S
(m)
2n,ln

given in (10) follows from Lemma 1 with vk ≡ σmk , m = 0, 1 or 2, respectively.

Set Qk,n :=
√

cn
n
α′g(Xn,k−1)σk

1√
ln

∑ln
j=1K [cn(k/n− τj)] where α ∈ Rp. Noting that∫ 1

0
g(Xn,[nt])dt is a continuous functional of Xn,[nt], the limit result of (11), jointly with (10),

will follow if we prove that, for any α ∈ Rp.

{
Xn,[nt],

n∑
k=1

Qk,nuk

}
⇒
{
Xt, MN

(
0, Eσ2

1

∫ 1

0

[ α′g(Xt)]
2
dt

∫
K2

)}
(54)

on DR2 [0, 1]. First note that, by using (47) with vk ≡ σ2
k and G(.) = α′g(.) �rst and then

(45),

n∑
k=1

Q2
k,n =

cn
n

n∑
k=1

[α′g(Xn,k−1)]
2
σ2
k

1

ln

ln∑
j=1

K2 [cn(k/n− τj)] + oP (1)

= Eσ2
1

∫ 1

0

[
α′g(Xn,[nt])

]2
dt

∫
K2 + oP (1). (55)

It follows from A3(a) and the continuous mapping theorem that

{ 1√
n

[nt]∑
k=1

ξk,
1√
n

[nt]∑
k=1

ξ−k, Xn,[nt],
n∑
k=1

Q2
k,n

}
⇒

{
B1t, B2t, Xt, σ

2
1

∫ 1

0

[α′g(Xt)]
2
dt

∫
K2

}
,

on DR4 [0, 1]. Recall that A1 and Qk,n is a functional of ξk, ξk−1, .... By using Theorem 2.1

of Wang (2014) or Theorem 3.14 of Wang (2015), the limit result of (54) will follow, if we

prove

max
1≤k≤n

|Qk,n| = oP (1), (56)

and
1√
n

n∑
k=1

|Qk,n| = oP (1). (57)

In fact, by recalling the fact that ||g||4 is still continuous, it follows from (49) with
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|vk| = σ4
k in Lemma 2 that

[
max

1≤k≤n
|Qk,n|

]4

≤
n∑
k=1

Q4
k,n

≤ ‖α‖4
( cn
nln

)2
n∑
k=1

‖g(Xn,k−1)‖4 σ4
k

( 1√
ln

ln∑
j=1

K [cn(k/n− τj)]
)4

= oP (1),

yielding (56). Similarly, by recalling ln/cn → 0 and using (46) in Lemma 2, we have

1√
n

n∑
k=1

|Qk,n| ≤ ‖α‖ 1√
n

√
cn
nln

n∑
k=1

‖g(Xn,k−1)‖ |σk|
1√
ln

ln∑
j=1

K [cn(k/n− τj)]

= ‖α‖
√
ln
cn

cn
n

n∑
k=1

‖|σk|g(Xn,k−1)‖ 1

ln

ln∑
j=1

K [cn(k/n− τj)]

= OP

(√ ln
cn

)
= oP (1) ,

which shows (57). The proof of Theorem 2 is complete. �

6.4 Proof of Theorem 3

To show Theorem 3, we only prove (12) since (13) is a direct consequence of (12) and

Theorem 2.

Recall Kkn =
∑ln

j=1K [cn(k/n− τj)] . Notice that, by the condition (b), we may write

cn
n

n∑
k=1

π (dn)−1 g(xk−1)σmk

{ 1

ln

ln∑
j=1

K [cn(k/n− τj)]
}

=
cn
nln

n∑
k=1

H(Xn,k−1)σmk Kkn + ∆1n,√
cn
n

n∑
k=1

π (dn)−1 g(xk−1)σk

{ 1√
ln

ln∑
j=1

K [cn(k/n− τj)]
}
uk

]
=

√
cn
nln

n∑
k=1

H(Xn,k−1)σkKknuk + ∆2n,

where R(λ, x) = [R1(λ, x), ..., Rp(λ, x)]′ and

∆1n =
cn
nln

n∑
k=1

π (dn)−1R(dn, Xn,k−1)σkKkn,

∆2n =

√
cn
nln

n∑
k=1

π (dn)−1R(dn, Xn,k−1)σkKkn uk.
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Result (12) follows from Theorem 2 with g(x) = H(x) if we prove

|α′∆in| = oP (1), i = 1, 2, (58)

for any α = (α1, ..., αp)
′ ∈ Rp.

We only prove (58) with i = 2 since the proof of |α′∆1n| = oP (1) is similar except

simpler. Set, for A > 0,

R̃n,ln(A) =

√
cn
nln

n∑
k=1

α′π (dn)−1R(dn, Xn,k−1)I {|Xn,k−1| ≤ A}σkKknuk.

Note that as n→∞ �rst and then A→∞

P
(
α′∆2n 6= R̃n,ln(A)

)
≤ P

(
max

1≤k≤n
|Xn,k−1| ≥ A

)
→ 0. (59)

For any ε > 0 and A > 0, we have

P (|α′∆2n| ≥ ε) ≤ P
(
α′∆n 6= R̃n,ln(A)

)
+ ε−2E

[
R̃n,ln(A)

]2

.

Now |α′∆2n| = oP (1) follows from (59) and the fact that as n→∞ for any A > 0

E
[
R̃n,ln(A)

]2

≤ cn
nln

C
n∑
k=1

E
∣∣α′π (dn)−1R(dn, Xn,k−1)

∣∣2 I {|Xn,k−1| ≤ A}σ2
kK

2
kn

≤ cn
n
C‖α‖2

(
1 + Aδ

)2
ε2n

1

ln

n∑
k=1

σ2
kK

2
kn → 0,

where εn = max1≤i≤p |[πi(dn)]−1ai(dn)| → 0 and we have used (48) of Lemma 2 (with

G(x) ≡ 1 and vk ≡ σ2
k ). The proof of Theorem 3 is now complete. �

6.5 Proof of (14)

Proof of (14) is essentially the same as that of (12). We only provide a outline. For any

α, β ∈ R, let

Q̃k,n =

√
cn
nln

(
αH2(Xn,k−1)Kkn + β K∗kn

)
σk ,

where K∗kn :=
∑ln

j=1K
∗ [cn (k/n− τj)]. As in the proof of (12), we have

αU1n + β U2n =
n∑
k=1

Q̃k,n uk + oP (1).

69



Note that, by using (51) and Lemmas 1 and 2,

1

Eσ2
1

n∑
k=1

Q̃2
k,n = α2

∫ 1

0

H2
2 (Xn,[nt])dt

∫
K2 + 2αβ

∫ 1

0

H2(Xn,[nt])dt

∫
KK∗

+β2

∫
(K∗)2 + oP (1),

as in the proof of (55). It follows from A3(a) and the continuous mapping theorem that,

for any α and β ∈ R,

{ 1√
n

[nt]∑
k=1

ξk,
1√
n

[nt]∑
k=1

ξ−k, Xn,[nt],
n∑
k=1

Q̃2
k,n

}
⇒

{
B1t, B2t, Xt, Eσ

2
1 [α, β]V [α, β]′

}
,

on DR4 [0, 1]. Similarly, we may prove that (56) and (57) hold with Qkn being replaced by

Q̃k,n. As a consequence, (14) follows from Wang (2014) as in the proof of Theorem 2. �

6.6 Proof of Lemma 1

We only prove (45), as the proof of (44) is similar except more simpler. We start with the

proof of (45) by assuming that there exists an A > 0 such that K(x) = 0 if |x| ≥ A and

K(x) is Lipschitz continuous on R. This restriction will be removed later.

Without loss of generality, suppose A = 1. Set δ1n,j = [n(τj − 1/cn)] ∨ 1, δ2n,j =

[n(τj + 1/cn)] ∨ 1 and δn,j = [nτj]. Recall τj = j/(ln + 1). Since

|cn(k/n− τj)| < 1 only if δ1n,j ≤ k ≤ δ2n,j, j = 1, ..., ln, (60)

by letting R1n,j = cn
n

∑δ2n,j
k=δ1n,j

vk K
[
cn(k/n− τj)

]
and

R2n,j =
cn
n

δ2n,j∑
k=δ1n,j

[
G
(
Xnk

)
−G

(
Xn,δn,j

)]
vk K

[
cn(k/n− τj)

]
,

we have

Sn,ln =
1

ln

ln∑
j=1

cn
n

n∑
k=1

G(Xnk) vkK
[
cn(k/n− τj)

]
=

1

ln

ln∑
j=1

G
(
Xn,δn,j

)cn
n

δ2n,j∑
k=δ1n,j

vk K
[
cn(k/n− τj)

]
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+
1

ln

ln∑
j=1

cn
n

δ2n,j∑
k=δ1n,j

[
G
(
Xnk

)
−G

(
Xn,δn,j

)]
vk K

[
cn(k/n− τj)

]
=

1

ln

ln∑
j=1

G
(
Xn,δn,j

)
R1n,j +

1

ln

ln∑
j=1

R2n,j

=
1

ln

ln∑
j=1

G
(
Xn,δn,j

)
A0

∫
K +

1

ln

ln∑
j=1

G
(
Xn,δn,j

) [
R1n,j − A0

∫
K
]

+
1

ln

ln∑
j=1

R2n,j

:=
1

ln

ln∑
j=1

G
(
Xn,δn,j

)
A0

∫
K +R1n +R2n.

Since 1
ln

∑ln
j=1 G

(
Xn,δn,j

)
=
∫ 1

0
G(Xn,[nt])dt+ oP (1)→d

∫ 1

0
G(Xt)dt, it su�ces to show that

Rjn = oP (1), j = 1, 2. (61)

To prove (61), we start with some preliminaries. Recalling Xn,[nt] ⇒ Xt on DR[0, 1] and

the limit process X(t) is path continuous, we have Xn,[nt] ⇒ Xt on DR[0, 1] in the sense of

uniform topology. See, for instance, Section 18 of Billingsley (1968). This fact implies that

lim sup
N→∞

lim sup
n→∞

P
(

max
1≤k≤n

|Xnk| ≥ N
)

= 0, (62)

and by the tightness of {Xn,[nt]}0≤t≤1, for any ε > 0 and δ > 0, there is some δ̃ = δ̃(ε, δ) > 0

such that

P ( sup
|s−t|≤δ̃

|Xn,[nt] −Xn,[ns]| ≥ δ) ≤ ε (63)

holds for all su�ciently large n. In terms of (63), for any δ > 0, we have

lim
n→∞

P ( max
1≤j≤ln

max
δ1n,j≤l≤k≤δ2n,j

|Xnk −Xnl| ≥ δ) = 0. (64)

We are now ready to prove (61), starting with j = 1.

For any N > 0, we let GN(x) = G(x)ξN(x) with

ξN(x) =


1, |x| ≤ N,

2− |x|/N, N < |x| < 2N,

0, |x| ≥ 2N,

and

R̃1n =
1

ln

ln∑
j=1

GN

(
Xn,δn,j

) [
R1n,j − A0

∫
K
]
.
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Note that, as n→∞ �rst and then N →∞,

P (R1n 6= R̃1n) ≤ P
(

max
1≤k≤n

|Xnk| ≥ N
)
→ 0, (65)

and

|R̃1n| ≤
CN
ln

ln∑
j=1

∣∣R1n,j − A0

∫
K
∣∣, (66)

where CN := supx |GN(x)| < ∞ is a constant depending only on N , due to the continuity

of G(x). Result (61) with j = 1 will follow if we prove

max
1≤j≤ln

E
∣∣R1n,j − A0

∫
K
∣∣ → 0, (67)

as n → ∞. Indeed, by virtue of (66) and (67), we have E|R̃1n| → 0 and then R̃1n = oP (1)

for each N ≥ 1. This, together with (65), yields R1n = oP (1).

Since, as n→∞,

max
1≤j≤ln

∣∣∣cn
n

δ2n,j∑
k=δ1n,j

K
[
cn(k/n− τj)

]
−
∫
K
∣∣∣→ 0, (68)

to prove (67), it su�ces to show that max1≤j≤ln E|An(τj)| → 0, where

An(τj) =
cn
n

δ2n,j∑
k=δ1n,j

(vk − A0) K
[
cn(k/n− τj)

]
.

Let γ = γn be integers such that γ → ∞ and γ cn/n → 0, T1n,j = [δ1n,j/γ] and T2n,j =

[δ2n,j/γ]. Noting (60), we may write

An(τj) =
cn
n

δ2n,j∑
k=δ1n,j

(vk − A0)K
[
cn(k/n− τj)

]
=

cn
n

T2n,j∑
s=T1n,j

(s+1)γ∑
k=sγ

(vk − A0)K
[
cn(k/n− τj)

]
≤ γcn

n

T2n,j∑
s=T1n,j

K
[
cn(sγ/n− τj)

]1

γ

∣∣∣ (s+1)γ∑
k=sγ

(vk − A0)
∣∣∣

+
cn
n

T2n,j∑
s=T1n,j

(s+1)γ∑
k=sγ

|vk − A0|
∣∣∣K[cn(k/n− τj)

]
−K

[
cn(sγ/n− τj)

]∣∣∣
:= A1n(τj) + A2n(τj).
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Recall supk≥1E|vk| <∞ by condition (b), it is readily from the Lipschitz condition on K(x)

that

EA2n(τj) ≤ C
γcn
n

cn
n

δ2n,j∑
k=δ1n,j

E|vk − A0| ≤ C
γcn
n
→ 0,

uniformly in 1 ≤ j ≤ ln. Similarly, by using condition (b), we have

max
1≤j≤ln

EA1n(τj) ≤ max
γ≤s≤n−γ

E
∣∣1
γ

s+γ∑
k=s

vk − A0

∣∣ max
1≤j≤ln

A4n(τj)→ 0,

where

A4n(τj) =
γcn
n

T2n,j∑
s=T1n,j

K
[
cn(sγ/n− τj)

]
,

and we have used the fact that max1≤j≤ln

∣∣∣A4n(τj) −
∫
K
∣∣∣ → 0. Combining all these facts,

we prove (67), and complete the proof of R1n = oP (1).

We next show R2n = oP (1). Let R̃2n = 1
ln

∑ln
j=1 R̃2n,j, where

R̃2n,j =
cn
n

δ2n,j∑
k=δ1n,j

[
GN

(
Xnk

)
−GN

(
Xn,δn,j

)]
vk K

[
cn(k/n− τj)

]
.

In terms of (62), we have

P (R2n 6= R̃2n) ≤ P
(

max
1≤k≤n

|Xnk| ≥ N
)
→ 0,

as n→∞ �rst and then N →∞. Result R2n = oP (1) will follow if we prove R̃2n = oP (1),

for each �xed N ≥ 1.

Recall that GN(x) is continuous with compact support. For any ε > 0, there exists a

δε > 0 so that |GN(x)−GN(y)| ≤ ε whenever |x− y| ≤ δε. Write

Ωδε = {ω : max
1≤j≤ln

max
δ1n,j≤l≤k≤δ2n,j

|Xnk −Xnl| ≤ δε}.

By virtue of the facts above and (68), it is readily seen that

max
1≤j≤ln

E
[
|R̃2n,j|I(Ωδε)

]
≤ E

{
max

1≤j≤ln
max

δ1n,j≤l≤k≤δ2n,j
|GN(Xnk)−GN(Xnl)|

cn
n

δ2n,j∑
k=δ1n,j+1

|vk|K
[
cn(k/n− τj)

]}

≤ ε sup
k≥1

E|vk|
cn
n

δ2n,j∑
k=δ1n,j+1

K
[
cn(k/n− τj)

]
≤ CNε,
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where CN is a constant depending only on N . Now, for any η1 > 0 and η2 > 0, let ε = η1η2

and n0 be large enough so that, for all n ≥ n0 [recall (64)],

P
(

max
1≤j≤ln

max
δ1n,j≤l≤k≤δ2n,j

|Xnk −Xnl| ≥ δε
)
≤ η2.

It is readily seen that, for all n ≥ n0,

P (|R̃2n| ≥ η1) ≤ P
(
Ω̄δε

)
+ η−1

1

1

ln

ln∑
j=1

E
[
|R̃2n,j|I(Ωδε)

]
≤ CN η2

where Ω̄δε denotes the complementary set of Ωδε and CN is a constant depending only on

N . This yields R̃2n = oP (1), for each �xed N ≥ 1, and completes the proof of R2n = oP (1) .

We �nally remove the restriction on K and then conclude the proof of Lemma 1.

IfK has a compact support, there existsA1 > 0 such thatK(x) = 0 holds for all |x| ≥ A1.

If K is eventually monotonic (without loss of generality, we assume K ≥ 0), for any ε > 0,

we can also choose a constant A1ε > 0 such that K(x) is monotonic on (−∞,−A1ε) and

(A1ε,∞) and
∫
|x|>A1ε

K(x)dx < ε. As a consequence, it follows from
∫
K <∞ that, for any

ε > 0 and A ≥ max{A1, A1ε}+ 1, there exists an Kε,A(x) such that∫
|K −Kε,A| ≤ 2ε, (69)

where Kε,A(x) = 0 if |x| ≥ A and Kε,A(x) is Lipschitz continuous on R. It has been shown

in the �rst part that, for any ε > 0 and A ≥ max{A1, A1ε}+ 1,

1

ln

ln∑
j=1

cn
n

n∑
k=1

G(Xnk) vkKε,A

[
cn(k/n− τj)

]
=

∫ 1

0

G(Xn,[nt])dtA0

∫
Kε,A + oP (1)→d

∫ 1

0

G(Xt)dtA0

∫
Kε,A.

To show (45), it su�ces to show that, as n→∞ �rst and then ε→ 0 (implying A→∞),

Sn,ε :=
1

ln

ln∑
j=1

cn
n

n∑
k=1

G(Xnk) vk K̃
[
cn(k/n− τj)

]
= oP (1), (70)

where K̃(x) = K(x)−Kε,A(x).

The proof of (70) is similar to that of (61). For any ε > 0, take A be given as in (69).

First note that, as in (68),

sup
1≤j≤ln

∣∣∣cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣I(cn|k/n− τj| ≤ A)−

∫ A

−A
|K̃(x)|dx

∣∣∣→ 0,
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when n→∞, i.e., whenever n is su�ciently large,

A1j :=
cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣I(cn|k/n− τj| ≤ A) ≤

∫
|K̃(x)|dx+ ε ≤ 3ε,

uniformly for 1 ≤ j ≤ ln. On the other hand, it follows from the monotonicity of K(x) on

(−∞,−A) and (A,∞) that, whenever n is su�ciently large,

A2j :=
cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣I(cn|k/n− τj| > A)

=
cn
n

n∑
k=1

K
[
cn(k/n− τj)

]
I(cn|k/n− τj| > A)

≤
∫
|x|>A−cn/n

K(x)dx ≤
∫
|x|>max{A1,A1ε}

K(x)dx < ε,

uniformly for 1 ≤ j ≤ ln. By using these facts, when n is su�ciently large, we have

1

ln

ln∑
j=1

cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣ ≤ 1

ln

ln∑
j=1

(
A1j + A2j

)
≤ 4ε.

Now, for any δ > 0, by letting

Sn,ε,N =
1

ln

ln∑
j=1

cn
n

n∑
k=1

GN(Xnk) vk K̃
[
cn(k/n− τj)

]
and noting the uniformed boundedness of GN(x), we have

P
(
|Sn,ε| ≥ δ

)
≤ P

(
Sn,ε 6= Sn,ε,N

)
+ P

(
|Sn,ε,N | ≥ δ

)
≤ P

(
max

1≤k≤n
|Xnk| ≥ N

)
+ δ−1E|Sn,ε,N |

≤ P
(

max
1≤k≤n

|Xnk| ≥ N
)

+ δ−1CN sup
k
E|vk|

1

ln

ln∑
j=1

cn
n

n∑
k=1

∣∣K̃[cn(k/n− τj)
]∣∣

≤ P
(

max
1≤k≤n

|Xnk| ≥ N
)

+ C1N εδ
−1 → 0

as n→∞ �rst, N →∞ second and then ε→ 0. This proves (70) and hence completes the

proof of Lemma 1. �
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6.7 Proof of Lemma 2

We �rst prove (47) and, without loss of generality, assume K ≥ 0. Using similar arguments

as in the proof of (61) or (70), it su�ces to show that, as n→∞,

In :=
cn
n

n∑
k=1

1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

]
→ 0.

Take ηn,i,j = 1
2
n(τi + τj). Note that cn(k/n − τi) ≥ cn(j − i)/(2(ln + 1)) if k ≥ ηn,i,j and

|cn(k/n − τj)| ≥ cn(j − i)/(2(ln + 1)) if k ≤ ηn,i,j. It follows from K(x) ≤ 1/|x| as x is

su�ciently large 28 that

In =
1

ln

∑
1≤i<j≤ln

cn
n

n∑
k=1

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

]
≤ C

ln

∑
1≤i<j≤ln

ln + 1

cn(j − i)
cn
n

n∑
k=1

(
K
[
cn(k/n− τi)

]
+K

[
cn(k/n− τj)

])
≤ C

cn

∑
1≤i<j≤ln

1

j − i
≤ C ln log ln/cn → 0,

as required.

The proof of (46) is similar to that of (47) and hence the details are omitted. Result

(48) follows easily from (46) and (47). As for (49), it follows from the similar arguments as

in the proof of (61) and the fact: as n→∞,

(cn
n

)2
n∑
k=1

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])4

≤ 2
(cn
n

)2
n∑
k=1

( 1√
ln

ln∑
j=1

K2
[
cn(k/n− τj)

])2

+8
(cn
n

)2
n∑
k=1

( 1

ln

∑
1≤i<j≤ln

K
[
cn(k/n− τi)

]
K
[
cn(k/n− τj)

])2

≤ 2C2
(cn
n

)2
n∑
k=1

( 1√
ln

ln∑
j=1

K
[
cn(k/n− τj)

])2

+ 8I2
n → 0,

due to (47) and (48). �

28Since
∫
K <∞ and K ≥ 0 is eventually monotonic, we have that K is decreasing on (A1,∞) for some

A1 > 0, and

xK(x)/2 ≤
∫ x

x/2

K(t)dt→ 0, x→ +∞,

Similarly lim
x→−∞

xK(x) = 0. Hence K(x) ≤ 1/|x| as x is su�ciently large.
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7 Proofs for Section 3

We next provide proofs for the results of Section 3.

7.1 Proofs of Theorems 4 and 5

We only prove Theorem 5 since the proof of Theorem 4 is similar except simpler. Let

A1n =
cn
nln

n∑
k=1

π(dn)−2f 2(xk−1)Kkn, A2n =
cn
nln

n∑
k=1

π(dn)−1f(xk−1)Kkn,

A3n =
cn
nln

n∑
k=1

π(dn)−1f(xk−1)K∗kn,

B1n =

√
cn
nln

n∑
k=1

π(dn)−1f(xk−1)Kkn σk uk, B2n =

√
cn
nln

n∑
k=1

K∗kn σk uk.

Recall (18),Kkn =
∑ln

j=1K [cn(k/n− τj)],K∗kn =
∑ln

j=1K
∗ [cn(k/n− τj)] and Zkn = f(xk−1)Kkn.

We have cn
nln

∑n
k=1 K

∗
kn =

∫
K∗ + o(1) (c.g, Lemma 1) and it follows from (12) of Theorem

3 29 and (10) of Theorem 2 that

cn
nln

1

π2(dn)

n∑
k=1

Zknfk

=
cn
nln

n∑
k=1

π(dn)−1f(xk−1)Kkn

[
π(dn)−1f(xk−1)−

∑n
k=1 π(dn)−1f(xk−1)K∗kn∑n

k=1K
∗
kn

]
= A1n − A2nA3n

/∫
K∗ + oP (1)

= Ĉn

∫
K + oP (1), (71)

where Ĉn =
∫ 1

0
H2(Xn,[nt])dt−

[∫ 1

0
H(Xn,[nt])dt

]2

. Similarly, by using Theorems 2 and 3, we

have √
cn
nln

1

π(dn)

n∑
k=1

Zknek

29We mention that fm(x),m = 2, 3, ... still are asymptotic homogeneous, i.e., fm(x) for each m = 2, 3, ...
still satis�es the condition (b) of Theorem 5. Indeed, by the de�nition of f(x), we have

f2(λx) = π2(λ)H2(x) +R1(λ, x),

where

|R1(λ, x)| ≤ 2π(λ) |H(x)| |R(λ, x)|+R2(λ, x) ≤ a1(λ)(1 + |x|α+2λ)

with α1(λ) = 2π(λ)a(λ) + a2(λ) satisfying a1(λ)/π2(λ)→ 0 as λ→∞. The proof for m ≥ 3 is similar, we
omit the details.
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=

√
cn
nln

{
n∑
k=1

π(dn)−1f(xk−1)Kkn σk uk −
[
∑n

k=1 π(dn)−1f(xk−1)Kkn] [
∑n

k=1K
∗
kn σk uk]∑n

k=1K
∗
kn

}

= B1n − A2nB2n

/∫
K∗ + oP (1)

= ÂnBn + oP (1), (72)

where Ân =
[
1, −

∫ 1
0 H(Xn,[nt])dt

∫
K∫

K∗

]
and Bn =

(
B1n, B2n

)′
. Since both Ĉn and Ân are

continuous functionals of Xn,[nt], a simple application of (14) yields that√
nln
cn
π(dn)

(
β̂ − β

)
=

√
cn
nln

1
π(dn)

∑n
k=1 Zknek

cn
nln

1
π(dn)2

∑n
k=1 Zknfk

=
(
Ĉn

∫
K
)−1

ÂnBn + oP (1)

→d

√
Eσ2

1 MN
(
0, C−2

2 A2V2A
′
2

)
, (73)

as required. The proof of Theorem 5 is complete. �

7.2 Proof of Theorem 6

We only prove Theorem 6 under the conditions of Theorem 5. The other is similar. De�ne

Vn =

[ ∫ 1

0
H2
(
Xn,[nt]

)
dt
∫
K2

∫ 1

0
H
(
Xn,[nt]

)
dt
∫
KK∗∫ 1

0
H
(
Xn,[nt]

)
dt
∫
KK∗

∫
(K∗)2

]
=:

[
Vn,11 Vn,12

Vn,21 Vn,22

]
.

Letting Dn =diag
{
π(dn)

√
nln
cn
,
√

nln
cn

}
, we �rst claim that

D−1
n VnD−1

n =

[
cn
nln

π(dn)−2
∑n

k=1 ě
2
kK

2
knf

2
k

cn
nln

π(dn)−1
∑n

k=1 ě
2
kK
∗
knKknfk

cn
nln

π(dn)−1
∑n

k=1 ě
2
kK
∗
knKknfk

cn
nln

∑n
k=1 ě

2
k (K∗kn)2

]

:=

[
Vn,11 Vn,12

Vn,21 Vn,22

]
= Eσ2

1 Vn + oP (1). (74)

To prove (74), it su�ces to show that, for i, j = 1 and 2,

Vn,ij = Eσ2
1 Vn,ij + oP (1). (75)

We only prove (75) for i = j = 1. Others are similar and hence the details are omitted.

Recall that ěk = yk − θ̃′fk = ek + (θ − θ̃)′fk, where θ = (µ, β)′ and f ′k = [1, f(xk−1)]. Since,

by Remark 7, ||(θ − θ̂)′fk|| ≤ |ũ − u| + |β̃ − β| |fk| = oP (1)
[
1 + π(dn)−1fk

]
, it follows that,
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uniformly for k = 1, 2, ..., n,

ě2
k = σ2

ku
2
k + oP (1)

[
1 + σ2

ku
2
k + π(dn)−2f 2

k

]
.

As a consequence, we have

Vn,11 =
nln
cn

π(dn)−2

n∑
k=1

ě2
kK

2
knf

2
k

=
[
1 + oP (1)

] nln
cn

π(dn)−2

n∑
k=1

σ2
ku

2
kK

2
knf

2
k

+oP (1)
nln
cn

π(dn)−2

n∑
k=1

[
1 + π(dn)−2f 2

k

]
K2
knf

2
k

=:
[
1 + oP (1)

]
R1n + oP (1)R2n. (76)

Let vk = σ2
ku

2
k. By recalling that E

(
u2
k|Fk−1

)
= 1 and σk are Fk−1 measurable, it is readily

seen from A3(b) and supk≥1Eu
4
k <∞ that A0 := Eσ2

1 = Evk for each k ≥ 1 and

max
m≤j≤n−m

E
∣∣ 1

m

j+m∑
k=j+1

vk − A0

∣∣ ≤ max
m≤j≤n−m

E
∣∣ 1

m

j+m∑
k=j+1

σ2
k(u

2
k − E

(
u2
k|Fk−1

)∣∣
+ max

m≤j≤n−m
E
∣∣ 1

m

j+m∑
k=j+1

(σ2
k − Eσ2

k)
∣∣→ 0,

for any 0 < m = mn → ∞ satisfying n/m → ∞. Due to this fact, it follows from Lemmas

1 and 2 that (taking the same argument as in the proof of (55))

R1n = Eσ2
1

∫ 1

0

H2(Xn,[nt])dt

∫
K2 + oP (1).

Similarly, R2n =
∫ 1

0

[
1 +H2(Xn,[nt])

]
H2(Xn,[nt])dt

∫
K2 + oP (1). Taking these estimates into

(76), we have

Vn,11 = Eσ2
1

∫ 1

0

H2(Xn,[nt])dt

∫
K2 + oP (1) = Eσ2

1 Vn,11 + oP (1),

i.e., (75) for i = j = 1 is proved.

We now turn back to the proof of Theorem 6, making use of the same notation in the

proof of Theorem 5. First note that, by using similar arguments as above,

√
cn
nln

π(dn)−1AnDn =

[
1, −

cn
nln

∑n
k=1 π(dn)−1 fkKkn

cn
nln

∑n
k=1K

∗
kn

]

79



=
[
1, −

∫ 1

0
H
(
Xn,[nt]

)
dt
∫
K∫

K∗

]
+ oP (1) =: Ân + oP (1),

This, together with (74), yields that

cn
nln

π(dn)−2AnVnA′n =

√
cn
nln

π(dn)−1AnDn

(
D−1
n VnD−1

n

)√ cn
nln

π(dn)−1DnA′n

= Eσ2
1 Ân Vn Â

′
n + oP (1). (77)

Now, by using the same arguments as in the proofs of (72) and (73), it follows from (77)

that

T̂ =

√
cn
nln
π(dn)−1

∑n
k=1 Zknek√

cn
nln
π(dn)−2AnVnA′n

=
(
Eσ2

1 Ân Vn Â
′
n

)−1/2
ÂnBn + oP (1)→d N(0, 1),

as required. �

7.3 Proofs of Theorems 7 and 8

We only prove Theorem 8. The proof of Theorem 7 is similar and therefore omitted.

Recall f̃k =
(
f ′k, f

′
1k

)′
, where f1k = (k/n − τ) fk, and note that

[
θ̃(τ)

θ̃(1)(τ)

]
=

∑n
k=1 yk f̃kKkn∑n
k=1 f̃k f̃k

′
Kkn

.

We may write

Dn

([
θ̃(τ)

θ̃(1)(τ)

]
−

[
θ(τ)

θ(1)(τ)

])
= Q−1

n

(
Mn +Rn

)
, (78)

where Qn = D−1
n

∑n
k=1 f̃k f̃k

′
KknD

−1
n ,Mn = D−1

n

∑n
k=1 ek f̃kKkn and

Rn = D−1
n

n∑
k=1

[
fk

f1k

]
Kkn θ(k/n)′ fk −QnDn

[
θ(τ)

θ(1)(τ)

]
.

Let Kj(x) = xjK(x) and Kj,kn = Kj

[
cn(k/n − τ)

]
. As in the proof of Theorem 1, it

follows from Lemma 1 that

Qn =

[
cn
n

∑n
k=1 fkf

′
kKkn

cn
n

∑n
k=1 fkf

′

kK1,kn

cn
n

∑n
k=1 fkf

′

kK1,kn
cn
n

∑n
k=1 fkf

′

kK2,kn

]
→P Q2. (79)

Similarly, the conditional matrix [Mn,Mn] of the martingaleMn has the property:

[Mn,Mn] = D−1
n

n∑
k=1

σ2
k f̃k f̃k

′
K2
knD

−1
n
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=

[
cn
n

∑n
k=1 σ

2
kfkf

′
kK

2
kn

cn
n

∑n
k=1 σ

2
kfkf

′

k (1)K
2
kn

cn
n

∑n
k=1 σ

2
kfkf

′

k (1)K
2
kn

cn
n

∑n
k=1 σ

2
kfkf

′

k (2)K
2
kn

]
→P Ω2,

where (`)K
2 = x`K2(x) and (`)K

2
kn =(`) K

2
[
cn(k/n− τ)

]
, indicating thatMn →d N(0,Ω2)

due to the (9) in Theorem 1 . Combining these facts and (78), Theorem 8 will follow if we

prove

Rn = oP (1) . (80)

In fact, by noting

f ′kθ(k/n)− f ′kθ(τ)− f ′1kθ
(1)(τ) = (1/2)f ′kθ

(2)(τ) (k/n− τ)2 ,

where τ is a mean value between k/n and τ (i.e., 0 < τ ≤ 1), it is readily seen that

Rn = D−1
n

n∑
k=1

Kkn

[
fk

f1k

]{
f ′kθ(k/n)−

[
fk

f1k

]′ [
θ(τ)

θ(1)(τ)

]}

= D−1
n

n∑
k=1

Kkn

[
fk

f1k

]{
f ′kθ(k/n)− f ′kθ(τ)− f ′1kθ

(1)(τ)
}

= (1/2)D−1
n

n∑
k=1

(k/n− τ)2Kkn

[
fk

f1k

]
f ′kθ

(2)(τ),

indicating that

||Rn|| ≤ C

√
n

c5
n

cn
n

n∑
k=1

||fk f ′k||K2,kn = OP

(√
n/c5

n

)
= oP (1)

due to n/c5
n → 0, where we have used (79) and the fact that θ(2)(.) is uniformly bounded

on (0, 1]. This proves (80) and also completes the proof of Theorem 8. �

7.4 Proofs of Theorems 9 and 10

We only prove Theorem 10, The proof of Theorem 9 is similar and therefore omitted.

By recalling (79) and using Theorem 8, it su�ces to show that

D−1
n Ω̃nD

−1
n = Ω2 + oP (1). (81)

Indeed, since Qn = D−1
n Q̃nD−1

n , it follows from (79) and (81) that

An :=
(
D−1
n Q̃nD−1

n

)−1

D−1
n Ω̃nD

−1
n

(
D−1
n Q̃nD−1

n

)−1

= Q−1
2 Ω2Q

−1
2 + oP (1).
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As a consequence, for i = 1, 2 and j = i+ 2, we have

n

cn

[
Q̃−1
n Ω̃nQ̃−1

n

]
ii

= (An)ii →p

[
Q−1

2 Ω2Q
−1
2

]
ii
, (82)

n

c3
n

[
Q̃−1
n Ω̃nQ̃−1

n

]
jj

= (An)jj →p

[
Q−1

2 Ω2Q
−1
2

]
jj
. (83)

It follows from (27) and (82) that, under H0 : θi(τ) = η(τ),

t̃i(τ) =

√
n
cn

(
θ̃i(τ)− θi(τ)

)
√

n
cn

[
Q̃−1
n Ω̃nQ̃−1

n

]
ii

→d N (0, 1) ,

yielding (31). Similarly, it follows from (27) and (83) that, under H0 : θ
(1)
i (τ) = η(τ)

t̃
(1)
i (τ) =

√
n
c3n

(
θ̃

(1)
i (τ)− θ(1)

i (τ)
)

√
n
c3n

[
Q̃−1
n Ω̃nQ̃−1

n

]
jj

→d N (0, 1) ,

which gives (32) i.e. the second limit result of Theorem 10.

We next prove (81). It is readily seen that

D−1
n Ω̃nD

−1
n =

[
cn
n

∑n
k=1 ẽ

2
kfkf

′
k (0)K

2
kn

cn
n

∑n
k=1 ẽ

2
kfkf

′

k (1)K
2
kn

cn
n

∑n
k=1 ẽ

2
kfkf

′
k (1)K

2
kn

cn
n

∑n
k=1 ẽ

2
kfkf

′

k (2)K
2
kn

]
, (84)

where (`)K
2(x) = x`K2(x) and (`)K

2
kn = (`)K

2
[
cn(k/n− τ)

]
, ` = 0, 1, 2, ..., as de�ned in the

proof of Theorem 8. Recalling ẽk = yk − θ̃(τ)′fk and noting

|
[
θ̃(τ)− θ(k/n)

]′
fk| ≤

[
|τ − k/n|+ oP (1)

]
||fk||,

due to Theorem 8 and the smoothing condition on θ(τ), we have

ẽ2
k =

{
σkuk −

[
θ̃(τ)− θ(k/n)

]′
fk
}2

= σ2
ku

2
k + ∆nk, (85)

where, uniformly for k = 1, 2, ..., n, and 0 ≤ τ ≤ 1

|∆nk| ≤ 2|σkuk|
[
|τ − k/n|+ oP (1)

]
||fk||+

[
|τ − k/n|+ oP (1)

]2 ||fk||2
≤

[
|τ − k/n|+ oP (1)

]
σ2
ku

2
k + 3

[
|τ − k/n|+ oP (1)

]
||fk||2

:= ∆1,nk σ
2
ku

2
k + ∆2,nk.

It follows from (46) with G(.) = 1, vk = ||fk||4 and Remark 21 (recalling
∫
|x|3K2 <∞ and
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E||fk||4 <∞)that, for ` = 0, 1, 2,

cn
n

n∑
k=1

|∆2,nk| ||fkf ′k || (`)K
2
kn

≤ C cn
n

n∑
k=1

||fk||4 ||
[
oP (1) (`)K

2
kn + c−1

n (`+1)K
2
kn

]
= oP (1), (86)

due to cn →∞. Now (81) will follow if we prove, for ` ≤ 3 and any α ∈ R2,

cn
n

n∑
k=1

σ2
ku

2
k

(
α′fk

)2
(`)K

2
kn = E

[
σ2

1 (α′f1)2
] ∫

x`K2 + oP (1). (87)

Indeed, by (87), we have

cn
n

n∑
k=1

σ2
ku

2
k |∆1,nk| ||fkf ′k|| (`)K

2
kn

≤ C
cn
n

n∑
k=1

σ2
ku

2
k ||fk||2

(
oP (1) (`)K

2
kn + c−2

n (`+1)K
2
kn

)
= oP (1),

for ` = 0, 1, 2. This, together with (86), yields that, for ` = 0, 1, 2,

cn
n

n∑
k=1

|∆nk| ||fkf ′k || (`)K
2
kn

≤ cn
n

n∑
k=1

σ2
ku

2
k |∆1,nk| ||fkf ′k|| (`)K

2
kn +

cn
n

n∑
k=1

|∆2,nk| ||fkf ′k || (`)K
2
kn

= oP (1).

Now, by (85) and (87), we have

cn
n

n∑
k=1

ẽ2
kfkf

′
k (`)K

2
kn

=
cn
n

n∑
k=1

σ2
ku

2
kfkf

′
k (`)K

2
kn +

cn
n

n∑
k=1

∆nk fkf
′
k (`)K

2
kn

= Ω

∫
x`K2 + oP (1),

for ` = 0, 1, 2. Taking this result into (84), we obtain (81).

We �nally prove (87). In fact, by letting vk = σ2
ku

2
k[α
′fk]

2, where α ∈ R2 and re-

calling that E
(
u2
k|Fk−1

)
= 1 and σk are Fk−1 measurable, it is readily seen that A0 :=
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E
(
σ2

1[α′f1]2
)

= Evk for each k ≥ 1 and (recalling supk≥1Eu
4
k <∞ and A2 with g = f)

max
m≤j≤n−m

E
∣∣ 1

m

j+m∑
k=j+1

vk − A0

∣∣ ≤ max
m≤j≤n−m

E
∣∣ 1

m

j+m∑
k=j+1

σ2
k[α
′fk]

2(u2
k − E

[
u2
k|Fk−1

)]∣∣
+ max

m≤j≤n−m
E
∣∣ 1

m

j+m∑
k=j+1

{
σ2
k[α
′fk]

2 − E(σ2
k[α
′fk]

2)
}∣∣→ 0,

for any 0 < m = mn → ∞ satisfying n/m → ∞. Due to this fact, result (87) follows from

Lemmas 1 with G(.) ≡ 1. The proof of Theorem 10 is now complete. �

8 Additional workings for Section 3.2

We next provide some additional discussion of how the methods of Section 3.2 for TVP

models generalise to multi-covariate regressions of the form

yk = µ(k/n) +

p−1∑
j=1

βj (k/n) · fj(xk−1,j) + ek, k = 1, ..., n,

p ≥ 2. Set θ(τ)′ := [µ(τ), β1(τ), ..., βp−1(τ)]. From technical point of view this kind of

generalisation is straightforward and can be established along the lines of existing proofs

and the fact that Theorem 1 applies to multivariate stationary processes (see else Remark

1). In the multivariate case, the LLev estimator θ(τ) is de�ned as

θ̂(τ):= arg min
a∈Rp

n∑
k=1

(yk − a′fk)
2
K [cn (k/n− τ)] ,

where τ ∈ (0, 1] and f ′k := [1, f1(xk−1,1), ..., fp−1(xk−1,p−1)]. Further, the LLin estimator is

given by [
θ̃(τ)

θ̃(1)(τ)

]
:= arg min

(a×b)∈Rp×Rp

n∑
k=1

(
yk − a′fk − b′f1k

)2
K [cn (k/n− τ)] ,

where as before θ(1)(τ) := ∂θ(τ)/∂τ and f1k := (k/n− τ) fk. Set Fk := [f1(xk,1), ..., fp−1(xk,p−1)]′

and rede�ne Q and Ω as

Q =

[
1 EF′1

EF1 EF1F
′
1

]
and Ω =

[
Eσ2

2 E
{
σ2

2F
′
1

}
E
{
σ2

2F1

}
E
{
σ2

2F1F
′
1

} ] .
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Then we have the following generalisation of Theorem 7√
n

cn

(
θ̂(τ)− θ(τ)

)
→d N

(
0, Q−1

1 Ω1Q
−1
1

)
,

with Q1 = Q
∫
K and Ω1 = Ω

∫
K2. Moreover let ⊗ be the Kronecker product and rede�ne

Dn = diag

{√
n
cn
,
√

n
c3n

}
⊗ Ip where Ip is a p-dimensional identity matrix. Then Theorem 8

generalises to

Dn

([
θ̃(τ)

θ̃(1)(τ)

]
−

[
θ(τ)

θ(1)(τ)

])
→d N

(
0, Q−1

2 Ω2Q
−1
2

)
,

with,

Q2 =

[
Q
∫
K Q

∫
xK

Q
∫
xK Q

∫
x2K

]
and Ω2=

[
Ω
∫
K2 Ω

∫
xK2

Ω
∫
xK2 Ω

∫
x2K2

]
.

9 Additional workings for Section 3.3

Consider [
µ̃OLS

β̃OLS

]
−

[
n−1

∑n
k=1 µ(k/n)

β

]
=

{
n∑
k=1

[
1 xk−1

xk−1 x2
k−1

]}−1

·
n∑
k=1

[
1

xk−1

]{
(µ(k/n) + βxk−1 + ek)−

[
1 xk−1

] [ n−1
∑n

j=1 µ(j/n)

β

]}

=

{
n∑
k=1

[
1 xk−1

xk−1 x2
k−1

]}−1

·
n∑
k=1

[
1

xk−1

]{
µ(k/n) + βxk−1 + ek − n−1

n∑
j=1

µ(j/n) + βxk−1

}

=

{
n∑
k=1

[
1 xk−1

xk−1 x2
k−1

]}−1

·
n∑
k=1

[
1

xk−1

]{
µ(k/n) + ek − n−1

n∑
j=1

µ(j/n)

}

=

{
n∑
k=1

[
1 xk−1

xk−1 x2
k−1

]}−1

·
n∑
k=1

[
ek

xk−1

{
ek − µ(k/n) + n−1

∑n
j=1 µ(j/n)

} ] .
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Set ∆n := n−1
∑n

k=1

[
xk−1 −

(
n−1

∑n
j=1 xj−1

)]2

, and note that by Theorem 1, ∆n →P

Ex2
k−1, and{

1

n

n∑
k=1

[
1 xk−1

xk−1 x2
k−1

]}−1

= ∆−1
n

[
n−1

∑n
k=1 x

2
k−1 −n−1

∑n
k=1 xk−1

−n−1
∑n

k=1 xk−1 1

]

→P

[
1 0

0 1/Ex2
1

]
.

In view of the above, standard arguments show that the intercept estimator is

√
n

(
µ̃OLS −

∫ 1

0

µ(τ)dτ

)
= [1 + oP (1)]n−1/2

n∑
k=1

ek →d N(0, Ee2
1),

where we have used the fact that the Euler sum n−1
∑n

k=1 µ(k/n) −
∫ 1

0
µ(τ)dτ = O(n−1).

Next, we consider the OLS estimator for the case 0 < d < 1/2. The derivations for the

short memory case are similar and will be omitted. In view of the above

n

δn

(
β̃ − β

)
= [1 + oP (1)]

[
Ex2

k−1

]−1

{
δ−1
n

n∑
k=1

xk−1ek + δ−1
n

n∑
k=1

xk−1µ(k/n)

−

(
n−1

n∑
j=1

µ(j/n)

)(
δ−1
n

n∑
k=1

xk−1

)}

=
[
Ex2

k−1

]−1

{
δ−1
n

n∑
k=1

xk−1µ(k/n)−

(
n−1

n∑
j=1

µ(j/n)

)(
δ−1
n

n∑
k=1

xk−1

)}
+OP

(√
n

δn

)

→d

(
Ex2

1

)−1
[
1,−

∫ 1

0

µ(τ)dτ

]
·N
(
0, E

(
ξ2

1

)
Ψ
)
,

with Ψ being a variance matrix such that

δ−1
n

[
n∑
k=1

xk−1µ(k/n),
n∑
k=1

xk−1

]
→d N

(
0, E

(
ξ2

1

)
Ψ
)
. (88)

The latter limit distribution result follows from standard argument e.g. Lindeberg-Feller

CLT. We provide some key derivations that yield the form of Ψ. Without loss of generality

set E (ξ2
1) = 1. Recall that under our assumptions xk =

∑k−1
j=0 φkξk−j, with φj ∼ cons.j−ν ,

ν = 1− d and 0 < d < 1/2. Set

S ′n =
n∑
k=1

µ (k/n)xk−1 =
n∑
k=1

n∑
s=k

µ (1− s/n)φs−kξk
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and

S ′′n :=
n∑
k=1

xk−1 =
n∑
k=1

n∑
s=k

φs−kξk

For λ1, λ2 ∈ R, we shall show that the martingale array

[
λ1δ

−1
n S ′n + λ2δ

−1
n S ′′n

]
converges to a normal that has asymptotic variance determined by the limit of (e.g. Hall

and Heyde, 1980; Corollary 3.1)

n∑
k=1

EFk−1

[
λ1δ

−1
n

n∑
s=k

µ (1− j/n)φj−kξk + λ2δ
−1
n

n∑
s=k

φj−kξk

]2

=
n∑
k=1

[
λ1δ

−1
n

n∑
s=k

µ (1− j/n)φj−k + λ2δ
−1
n

n∑
s=k

φj−k

]2

=
1

n

n∑
k=1

[
λ1

n

n∑
j=k

µ (1− j/n)

(
j − k
n

)−ν
+
λ2

n

n∑
j=k

(
j − k
n

)−ν]2

+ o(1)

=

∫ 1

0

[
λ1

∫ 1

r

µ (1− s) (s− r)−ν ds+ λ2

∫ 1

r

(s− r)−ν ds+
]2

dr + o(1).

Indeed in view of the above together with a Lindeberg condition we get (88).

Next we consider the limit behaviour of the estimator for Ee2
1. Let ẽk be the OLS

residuals. Then

1

n

n∑
k=1

ẽ2
k =

1

n

n∑
k=1

[
µ(k/n)− µ̃+

(
β − β̃

)
xk−1 + ek

]2

=
1

n

n∑
k=1

[
µ(k/n)− µ̃+

(
β − β̃

)
xk−1

]2

+
1

n

n∑
k=1

e2
k

+
2

n

n∑
k=1

[
µ(k/n)− µ̃+

(
β − β̃

)
xk−1

]
ek

→P

∫ 1

0

µ(τ)2dτ −
(∫ 1

0

µ(τ)dτ

)2

+ Ee2
1,

where we have used the fact that

1

n

n∑
k=1

[µ(k/n)− µ̃]2 =
1

n

n∑
k=1

µ(k/n)2 − 2µ̃

n

n∑
k=1

µ(k/n) + µ̃2
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→P

∫ 1

0

µ(τ)2dτ −
(∫ 1

0

µ(τ)dτ

)2

.

Finally, consider the OLS based statistic for the null hypothesis H0 : β = β0, β0 ∈ R.
Using (34) and (36) we get

∣∣t̃OLS∣∣ =

∣∣∣∣∣∣∣∣
β̃ − β√(

1
n

∑n
k=1 ẽ

2
k

) [∑n
k=1 x

2
k − n−1 (

∑n
k=1 xk)

2
]−1

∣∣∣∣∣∣∣∣+ oP (1)

=

∣∣∣∣∣∣∣∣
√
n
(
β̃ − β

)
√(

1
n

∑n
k=1 ẽ

2
k

) [
n−1

∑n
k=1 x

2
k − (n−1

∑n
k=1 xk)

2
]−1

∣∣∣∣∣∣∣∣
= [1 + oP (1)]

δn√
n

∣∣∣∣∣∣
n
δn

(
β̃ − β

)
√(

1
n

∑n
k=1 ẽ

2
k

)
[n−1

∑n
k=1 x

2
k]
−1

∣∣∣∣∣∣→P ∞.
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