Algorithmic Bounded Rationality, Optimality And Noise

Christos A. Ioannou *†
Ioannis Nompelis ‡

University of Minnesota

April 28, 2009

Abstract

A model of learning, adaptation and innovation is used to simulate the evolution of Moore machines (executing strategies), in the repeated Prisoner’s Dilemma stage-game. In contrast to previous simulations that assumed perfect informational and implementation accuracy, the agents’ machines are prone to two types of errors: (a) action-implementation errors, and (b) perception errors. The impact of bounded rationality on the agents’ machines is examined under different error-levels. The computations indicate that the incorporation of bounded rationality is sufficient to alter the evolutionary structure of the agents’ machines. In particular, the evolution of cooperative machines becomes less likely as the likelihood of errors increases.

JEL Classification: C72, C80, C90

Keywords: Automata, Repeated Games, Prisoner’s Dilemma, Bounded Rationality, Algorithms

*We are indebted to Aldo Rustichini and Ket Richter for their continuous support and invaluable discussions. We are grateful to John H. Miller for his comments. We would also like to thank David Rahman, Itai Sher, Snigdhasu Chatterjee and Scott Page for their suggestions. Finally, we would like to thank the seminar participants at the University of Minnesota, Washington University and the Santa Fe Institute. Research funds were provided by the Department of Economics of the University of Minnesota. Errors are our own.

†Mailing Address: Department of Economics, University of Minnesota, 4–101 Hanson Hall, 1925 South 4th Street, Minneapolis, MN 55455. Email: ioannou@umn.edu

‡Mailing Address: Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Ackerman Hall, 110 Union Southeast Street, Minneapolis, MN 55455. Email: nompelis@aem.umn.edu
1 Introduction

The infinitely-repeated Prisoner’s Dilemma stage-game has become the theoretical gold standard to investigate social interactions; its importance stemming from defying commonsense reasoning and highlighting the omnipresent conflict of interests amongst unrelated agents. Yet, Robert Axelrod (1980) and in collaboration with Hamilton (1981), argued that reciprocal cooperation is likely to evolve when individuals interact repeatedly. In 1979, Axelrod invited professionals from various fields to submit computer programs for a Prisoner’s Dilemma simulation. The computer programs (14 entries) were used in lieu of agents’ strategies, specifying the actions contingent upon the opponent’s reported actions. The programs were matched against each other in a round-robin structure and against their twin.\(^1\) The simulation was repeated in 1983 (63 entries). The results of both tournaments were a clear victory of Tit-For-Tat; a strategy that starts off by cooperating and then imitates the most recent action of the opponent. In order to determine whether Tit-For-Tat survives over time, Axelrod ran ecological simulations.\(^2\) Axelrod concluded that Tit-For-Tat indeed survives, confirming its omnipotence in this environment. In fact, Axelrod indicated that in the last generation, the average payoffs were very close to the expected cooperative outcome of 3.00 utils (see Table 1).

In real life, the emergence of cooperation is not inevitable, even in the presence of frequent encounters. In many instances, the evolving outcome is a non-cooperative one. Consider for example, the Grand Banks that have historically been one of the world’s richest fishing grounds. By 1990, overfishing led to a depletion in the fish stocks. The recovery of almost all of these stocks has been non-existent.\(^3\) Furthermore, in many sports such as wrestling or weight-lifting, the prevalent practice is for participants to intentionally lose unnaturally large amounts of weight so as to compete against lighter opponents.\(^4\) In doing so, the participants are clearly not at their top level of physical and athletic fitness and yet often end up competing against the same opponents who have also followed this practice.

\(^1\)The encounters had a continuation probability of \(\delta = 0.995\).

\(^2\)The ecological process differs from the evolutionary one, in that it does not allow any new strategies to be introduced in subsequent generations through mutation.

\(^3\)Overfishing is often cited as an example of the Tragedy of the Commons (Fisheries).

\(^4\)In weight-lifting, if two athletes lift the same amount of weight, the higher ranking goes to the athlete that weighs less.
Table 1: Prisoner’s Dilemma Matrix

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.3</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>5.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The emergence of cooperative strategies in the works of Axelrod can be attributed to implausible agents whose probability of cooperating is either 0 or 1. On the other hand, in this formulation, agents are not perfect. Thus, bounded rationality is introduced in the form of random noise (errors). Our intention in this paper is therefore, to simulate an evolving error-prone population that plays the infinitely-repeated Prisoner’s Dilemma paradigm. In this context, the agents’ strategies are implemented by Moore machines (Moore 1956).\(^5\) To investigate the structure of the machines, several computational experiments (incorporating different error-levels) are conducted. The computations aim to shed light to the underlying operating mechanisms of the machines and the generation-to-generation transitions.

The evolution of the machines is carried out via a genetic algorithm. Genetic algorithms are evolutionary search algorithms that manipulate important schemata based on the mechanics of natural selection and natural genetics. Thus, genetic algorithms have the capacity to model strategic choices using notions of adaptation, learning and innovation explicitly. According to the thought experiment, each adaptive agent within the population is to submit a machine that specifies the actions contingent upon the opponent’s reported actions. The agents play the Prisoner’s Dilemma stage-game against each other and against their twin in a round-robin structure. The period-to-period encounters occur with a continuation probability of \(\delta = 0.995\). Bounded rationality is introduced in this context, as random noise. This random noise takes the form of action-implementation errors and perception errors. Implementation errors are errors in the implementation of actions along the lines of Selten’s trembling hand. Perception errors are errors in the transmission of information; an opponent’s action is reported to be the opposite of what the opponent actually chose. With the completion of all round-matches, the actual scores and machines of every agent become common knowledge. Based on this information, agents update their machines for the next generation.

\(^5\)The machines reduce the strategy space to a manageable one; otherwise, had the game-theoretic formulation of a strategy been used, the strategy space would be huge.
Miller (1996) used computational modeling to study the evolution of strategic choice in games across different information conditions. One of the conditions dealt with imperfect transmission of information. Even though, he concluded that information conditions lead to significant differences in the evolving machines, the evolution of cooperation was not hindered drastically.

On the other hand, under the proposed framework, the incorporation of action-implementation errors and perception errors is sufficient to alter the evolutionary structure of the machines. In particular, the evolution of cooperative machines becomes less likely as the likelihood of errors becomes more likely. In addition, the prevailing (surviving) machines tend to be less complex as the likelihood of errors increases, where complexity is measured by the average number of accessible states. Furthermore, the computational experiments indicate that machines in the noisy environments tend to converge faster to a prevailing structure than in the error-free environment. Nevertheless, the prevailing structures in all conditions tend to exhibit low cooperation-reciprocify and low tolerance to defections. In addition, the prevailing structures contain more defecting than cooperating states, with the understanding that the cooperating states are meant to establish some consistent mutual cooperation, whereas the defecting states are meant as punishment-counters in case of non-conformity to the cooperative outcome by the opponent. Finally, in the presence of (as low as) 4% likelihood of errors, open-loop machines (independent of the history of play) emerge endogenously. The latter, cooperate for one period and defect for the next four periods without paying any consideration to the game-plan of the opponent.

This study aims to elicit a comprehensive understanding of the underlying patterns of reasoning of agent-based behaviors that emerge in complex adaptive social systems. Understanding the behavior of interacting, thoughtful (but perhaps not brilliant) agents, is one of the great challenges of science. Much of neoclassical economics rests on the foundations of optimization theory. In optimization, the agents are assumed to behave rationally with full ability to select the most-preferred behavior. Yet, the latter is rarely justified as an empirically realistic assumption. Rather, it is usually defended on methodological grounds as the appropriate theoretical framework to analyze behavior. Over the years, this critique has taken many forms which include information processing limitations in computing the optima from known preference or utility information, unreliable probability information about complex environmental
contingencies, and the absence of a well-defined set of alternatives or consequences, especially in an evolving world that may produce situations that never before existed. On the contrary, we believe that the incorporation of bounded rationality in the proposed context is a viable alternative; one that broadens our horizon to encompass a much wider range of phenomena in economic and social systems.

In Section 2, the concept of a Moore machine as the carrier of an adaptive agent’s strategy is presented. In Section 3, a treatment based on Markov chains is analyzed. In Section 4, our choice of the genetic algorithm as the appropriate way to model the strategic choices of agents is justified. In Section 5, we provide the methodology and in Section 6, we focus on the results of the process while elaborating on the structure of the evolutionary machines. In Section 7, the structures that prevail in the various fictional environments are sketched. Finally, in the Conclusion we offer direction for future research.

2 Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The system can be in any one of a finite number of internal configurations or “states”. The state of the system summarizes the information concerning past inputs that is needed to determine the behavior of the system on subsequent inputs. The specific type of finite automaton used here is a Moore machine (Moore 1956). Moore machines are considered a reasonable tool to formalize an agent’s behavior in a supergame (Rubenstein 1986). A Moore machine for an adaptive agent $i$ in an infinitely-repeated game of $G = (I, \{A^i\}_{i \in I}, \{g^i\}_{i \in I})$,\footnote{$I$ is the set of players, $A^i$ is the set of $i$’s actions, and $g^i : A \rightarrow \mathbb{R}$ is the real-valued utility function of $i$.} is a four-tuple $(Q^i, q^i_0, f^i, \tau^i)$ where $Q^i$ is a finite set of internal states, of which $q^i_0$ is specified to be the initial state, $f^i : Q^i \rightarrow A^i$ is an output function that assigns an action to every state, and $\tau^i : Q^i \times A^{-i} \rightarrow Q^i$ is the transition function that assigns a state to every two-tuple of state and other agent’s action.\footnote{For an introduction on Moore machines, refer to the Appendix.}

Alternatively, a researcher could use the game-theoretic formulation of a strategy. A quick calculation however, of all possible strategies indicates that such a task is very complex and cumbersome. The set of possible game-theoretic strategies increases in size exponentially with
the number of periods in the repeated game \(2^{T-1}\) where \(T \geq 1\) is the number of periods in the supergame).\(^8\)

Bounded rationality is introduced in this context, in the form of random errors. Thus, the strategies executed by Moore machines are not error-free. We consider errors in the implementation of actions and errors in the perception of actions. That is, an error level of \(\alpha\)% indicates that \(\alpha\)% of the time, the course of action dictated by that particular state of the machine will be altered. A cooperation dictated by the current state, \(\alpha\)% of the time will be implemented erroneously as a defection and vice versa. On the other hand, an error level of \(\beta\)% indicates that \(\beta\)% of the time an opponent’s action is reported to be the opposite of what the opponent actually chose, while the remainder of the time the action is perfectly transmitted.

Implementation and perception errors when considered in isolation lead to quite different results. For instance, the strategy Contrite-Tit-For-Tat is proof against errors in implementation but not against errors in perception. This strategy acts in principle as Tit-For-Tat, but enters a “contrite” state if erroneously implements a defection rather than a cooperation. Consequently, the machine accepts the opponent’s retaliation and cooperates for the next two periods but leaves the contrite state soon after. On the other hand, if the strategy Contrite-Tit-For-Tat mistakenly perceives that the opponent defected, will respond with a defection without switching to the contrite state, and will not meekly accept any subsequent retaliation.

The implementation and perception errors are examined under different computational experiments. In the first set of experiments, the noise level (the probability of occurrence of implementation and perception errors) is kept constant throughout the duration of the evolution at 4%, 2%, 1% and 0.5%, respectively. In the second set of experiments, the errors are affected by an on-off switch. When the switch is on, then the machines are subjected to a constant error-level of 4% whereas when the switch is off, the machines have perfect informational accuracy. In the last set of experiments, the case where the machines are error-free is contrasted to the case where the error-level is assumed to decay exponentially over time.

In order to keep pace with the notion of bounded rationality, the machines will hold a maximum of eight states. The choice of eight internal states, is an arbitrary though a considered decision. The machines will thus contain enough potential states so that a large variety

\(^8\)The game-theoretic strategy set is an exponential chaos of alternatives, which in the best of situations in the future, could potentially be reduced to a very hard search problem, if at all.
of machines can emerge while at the same time, keeping the upper bound reasonable given complexity considerations. As Rubinstein indicates, agents seek to device behavioral patterns which do not need to be constantly reassessed, and which economize on the number of states needed to operate effectively in a given strategic environment. A more complex plan of action is more likely to break down, is more difficult to learn, and may require more time to be executed (1986).

3 Initial Results

To facilitate a better understanding of the impact of bounded rationality, the outcome of a finite but infinitely-evolving population, inhabited by a single type of a stochastic machine is analytically tracked. The analysis is restricted to two cases. In the first case, the population is composed of Tit-For-Tat machines, and in the second case the population is composed of Always-Defect machines.

The Prisoner’s Dilemma payoff-matrix used, is provided in Table 1. At the end of each period, one of four outcomes is realized. The transition rules can be labeled by quadruples \((s_1, s_2, s_3, s_4)\) of zeros and ones. The first position denotes cooperation from both players, the second and third positions denote unilateral cooperation by the first and second player respectively, and finally the last position denotes defection from both players. In this context, \(s_i\) is 1 if the machine plays \(C\) and 0 if the machine plays \(D\) after outcome \(i\) \((i = 1, 2, 3, 4)\). For instance, \((1, 0, 1, 0)\) is the transition rule of Tit-For-Tat, and \((0, 0, 0, 0)\) is the transition rule of Always-Defect. For convenience, these rules are labeled as \(S_{TFT}\) and \(S_{ALLD}\) respectively. Now suppose that the machines are subjected to implementation and perception errors. In this case, with probability \(\epsilon\) an action will be altered in the case of implementation errors, and with probability \(\delta\), player \(i\) will misperceive player \(-i\)’s action, in the case of perception errors.

More generally, let a stochastic machine have transition rules \(p = (p_1, p_2, p_3, p_4)\) where \(p_i\) is any number between 0 and 1 denoting the probability of cooperating after the corresponding outcome of the previous period. The space of all such rules is the four-dimensional unit cube; the corners are just the transition rules \(S_i\). A rule \(p = (p_1, p_2, p_3, p_4)\) that is matched against a rule \(q = (q_1, q_2, q_3, q_4)\) yields a Markov process where the transitions between the four possible
states\(^9\) are given by the matrix

\[
\begin{pmatrix}
p_1 q_1 & p_1 (1 - q_1) & (1 - p_1) q_1 & (1 - p_1) (1 - q_1) \\
p_2 q_3 & p_2 (1 - q_3) & (1 - p_2) q_3 & (1 - p_2) (1 - q_3) \\
p_3 q_2 & p_3 (1 - q_2) & (1 - p_3) q_2 & (1 - p_3) (1 - q_2) \\
p_4 q_4 & p_4 (1 - q_4) & (1 - p_4) q_4 & (1 - p_4) (1 - q_4)
\end{pmatrix}.
\]

If \(p\) and \(q\) are in the interior of the strategy cube, then all entries of this stochastic matrix are strictly positive; hence there exists a unique stationary distribution \(\pi = (\pi_1, \pi_2, \pi_3, \pi_4)\) such that \(p_i^{(n)}\), the probability to be in state \(i\) in the \(n\)'th period, converges to \(\pi_i\) for \(n \to \infty\) \((i = 1, 2, 3, 4)\). It follows that the payoff for a player \(i\) using \(p\) against a player \(-i\) using \(q\) is given by

\[
A(p, q) = 3\pi_1 + 5\pi_3 + \pi_4.
\] \(\text{(1)}\)

Notice that the \(\pi_i\) and also the payoff are independent of the initial condition, i.e. of the actions of the players in the first period. For any error level \(\epsilon, \delta > 0\), the payoff obtained by a machine using a transition rule \(S^i\) against a machine with transition rule \(S^{-i}\) can be computed via (1).\(^{10}\) The transition rules of Tit-For-Tat and Always-Defect in the presence of errors are shown in Table 2. Assuming that implementation errors and perception errors are each kept constant at 4\%, the invariant distributions of Tit-For-Tat and Always-Defect yield 2.25 and 1.12 utils respectively.

\(^9\)To keep pace with the conventional notation in Markov chains, the word “outcome” is replaced with the word “state”.

\(^{10}\)The limit value of the payoff for \(\epsilon \to 0\) and \(\delta \to 0\) can not be computed, as the transition matrix is no longer irreducible. Therefore the stationary distribution \(\pi\) is no longer uniquely defined.
1. Tit-For-Tat \((S^{TFT}): \left(1 - \delta - \epsilon(1 - 2\delta), \delta + \epsilon(1 - 2\delta), 1 - \delta - \epsilon(1 - 2\delta), \delta + \epsilon(1 - 2\delta) \right)\)

   The first entry corresponds to the probability of cooperating after a period where both agents cooperated. Agent \(i\) will cooperate if he neither commits an implementation error (which occurs with probability \(1 - \epsilon\)) nor a perception error (which occurs with probability \(1 - \delta\)), or if he commits both a perception error and an implementation error. Therefore, the probability of cooperating after a period where both agents cooperated is \(1 - \delta - \epsilon(1 - 2\delta)\). Analogous arguments hold for the other entries.

2. Always-Defect \((S^{ALLD}): (\epsilon, \epsilon, \epsilon, \epsilon)\)

   The fourth entry corresponds to the probability of cooperating after a period where both agents defected. Agent \(i\) will defect unless he commits an implementation error (which occurs with probability \(\epsilon\)). Notice that errors in perception have no effect here, as the strategy Always-Defect does not depend on agent \(-i\)'s actions. Therefore, the probability of cooperating after a period where both agents defected is \(\epsilon\). Analogous arguments hold for the other entries.

Table 2: Transition Rules With Errors
4 The Genetic Algorithm

The search for an appropriate way to model strategic choices of agents has been a central topic in the study of game theory. While a variety of approaches have been used, few of them have explicitly used notions of bounded rationality, adaptation, innovation and learning. Genetic algorithms are evolutionary search algorithms based on the mechanics of natural selection and natural genetics. These algorithms were developed by Holland (1975) for optimization problems in difficult domains. Difficult domains are those with both enormous search spaces and objective functions with many local optima, discontinuities, noise and high dimensionality. The algorithms combine survival of the fittest with a structured yet randomized information exchange that emulates some of the innovative flair of human search.

Genetic algorithms require the natural parameter set of the optimization problem to be coded as a finite-length string over some finite alphabet. As a result the algorithms are largely unconstrained by the limitations of other optimization methods that require continuity, the existence of derivatives and uni-modality. More specifically, in order to perform an effective search for better structures, genetic algorithms require payoff values associated with the individual strings in contrast to calculus-based methods that require derivatives (calculated analytically or numerically). This characteristic makes the genetic algorithms a more canonical method than many other search schemes. Furthermore, genetic algorithms search from a rich database of points simultaneously thus avoiding to a large extend, false peaks in multi-modal search spaces. Finally, genetic algorithms use stochastic transition rules to guide the search. While randomized, the algorithms are no simple random walk. Genetic algorithms use random choice as a tool to guide a search toward regions of the search space with expected improved performance.

The mechanics of genetic algorithms involve copying strings and altering states through the operators of selection and mutation. Initially, reproduction is a process where successful strings proliferate while unsuccessful strings die off. Copying strings according to their payoff or fitness values is an artificial version of Darwinian selection of the fittest among string structures. After reproduction, selection results to higher proportions of similar successful strings. The mechanics of reproduction and selection are surprisingly simple, involving random number generation, string copies and some string-selection. Nonetheless, the combined emphasis of
reproduction and the structured, though randomized, selection give genetic algorithms much of their power. On the other hand, mutation is an insurance policy against premature loss of important notions. Even though reproduction and selection effectively search and recombine extant notions, occasionally they may become overzealous and lose some potentially useful material. In artificial systems, mutation protects against such an irrecoverable loss. Consequently, these operators bias the system towards certain building blocks that are consistently associated with above-average performance.

Darwinian mechanics are a continuation of the approach that agents are neither fully rational nor knowledgeable enough to correctly anticipate the other agents’ strategies. In particular, the process describes how agents adjust their plans of action over time as they learn from experience about the other agents’ strategies. Yet, the dynamics also reflect the limited ability of the agents to receive, decode and act upon the information they get in the course of the evolution. With the completion of all round-matches, not all agents need to react instantaneously to the environment. The idea is that, the observations of the agents are imperfect since their knowledge on how payoffs depend on strategy-choices is tenuous. Thus, changing one’s strategy can potentially be costly. In addition, agents are part of a system. Agents learn what constitutes a good strategy by observing what has worked well for other people. Hence, agents tend to emulate or imitate others’ strategies that proved successful. In turn, to the extend that there is substantial inertia present, only a small fraction of agents are changing their strategies simultaneously. In this case, those who do change their strategies are justified in making moderate changes: after all, they know that only a small segment of the population changes its behavior at any given point in time and hence, strategies that remain effective today are likely to remain effective for some time in the future. It is for these reasons, that the use of a genetic algorithm is an appropriate model of adaptive learning behavior and innovation.
5 Methodology

Genetic algorithms require the natural parameter set of the optimization problem to be coded as a finite-length string over some finite alphabet. In this case, the choice for an alphabet is a combination of the decimal system and the binary system. Thus, each Moore machine is represented by a string of 25 elements. The first element provides the starting state of the machine. Eight three-element packets are then arrayed on the string. Each packet represents an internal state of the machine. In natural terminology, the strings represent chromosomes, whereas the internal states represent genes which may take on some number of values called alleles. The first bit within an internal state describes the action whenever the machine is in that state (1 := cooperate, 0 := defect), the next element gives the transition state if the opponent is observed to cooperate, and the final element gives the transition state if a defection is observed. Given that each string can utilize up to eight states, the scheme allows the definition of any Moore machine of eight states or less.

For example, take the machine that implements Tit-For-Tat in Figure 1. The machine only needs to remember the opponent’s last action hence requires a memory of only two states; the last six states are redundant as illustrated in the coding.\footnote{Given this layout, there are $2^{59}$ possible structures. Yet, the total number of unique strategies is much less since some of the machines are isomorphic. For example every two-state machine such as Tit-For-Tat, can be renamed in any of $(P_2^8)(2^{42})$ ways.}

![Figure 1: Tit-For-Tat machine](image.png)

<table>
<thead>
<tr>
<th>initial state</th>
<th>state 0</th>
<th>state 1</th>
<th>state 2</th>
<th>state 3</th>
<th>state 4</th>
<th>state 5</th>
<th>state 6</th>
<th>state 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The genetic algorithm thus operates with a population of machines. Each machine represents an agent’s strategy. Initially a population of thirty machines is chosen at random.\textsuperscript{12} Then, each machine is tested against the environment (which is composed of the other machines and its twin). The encounters occur with a continuation probability of $\delta = 0.995$ for an expected 200 periods per match. Each machine, thus aggregates a raw score based on the payoffs illustrated in Table 1. These scores are normalized according to the function,

$$\hat{x}^i = \frac{(x^i - \bar{x})}{s} + \alpha$$ \hspace{1cm} (2)

where $x^i$ is the machine’s raw score, $\bar{x}$ is the sample mean, $s$ is the sample standard deviation and the parameter $\alpha$ is chosen to be 2. Any normalized score that is negative is truncated to zero. The choice of $\alpha$ implies that the machines which do worse than two standard deviations from the mean are not allowed to be selected in the next generation. The adjusted normalized scores are thus re-normalized to determine the probabilities of selection. Given the re-normalized scores, a new generation of machines is chosen by allowing the top twenty performers to go directly into the next generation.

Ten new structures are then created via a process of selection and mutation. The process requires the draw of ten pairs of machines from the old population (with the probabilities biased by their re-normalized scores) and the selection of the better performer from each pair. On the other hand, mutation occurs when an element at a random location on the selected string changes values. Each element on the string is subjected to a 4% independent chance of mutation which implies an expectation of 1 element-mutation per string.\textsuperscript{13} The population is iterated for 500 generations.\textsuperscript{14}

\textsuperscript{12}The site random.org was used to generate the random numbers used in the process.
\textsuperscript{13}The effect of mutation obviously depends on the exact location on the string. The impact of mutation ranges from a simple change in the starting state (even this could have a large impact, if previously inaccessible states become active) to a more radical recombination of states.
\textsuperscript{14}The code was ran in Fortran.
6 Results

In order to investigate the impact of errors on the agents’ machines, several computational experiments are conducted. In the first set of computational experiments, the machines are subjected to a constant independent chance of implementation and perception errors of 4% (4%N), 2% (2%N), 1% (1%N) and 0.5% (0.5%N), respectively. In the second set, the errors are affected by an on-off switch. When the switch is on, the machines are subjected to a 4% independent chance of implementation and perception errors, whereas when the switch is off the machines have perfect informational accuracy. More specifically, in the NFN computational condition, the agents’ machines are subjected to a 4% independent chance of implementation and perception errors for the first 250 generations but are perfectly transmitted and implemented for the last 250 generations. On the other hand in the FNN condition, the machines are subjected to the 4% independent chance of implementation and perception errors for the last 250 generations, whereas in the first 250 generations the machines are error-free. Finally in the last set of computational experiments, the machines are subjected to a $\phi e^{-\psi g}$ exponential decay (DN) in both types of errors where $\phi$, $\psi$ are parameters, and $g$ is the generation number. The idea is that as agents become more adaptive to the environment, so does their expertise on playing the game. The DN case is contrasted to the case where the machines are error-free (0%N) for the entire evolution.

To assess the results of the computational experiments, it is necessary to use some summary measures of machine behavior. The first summary measure is the size of the machine, which is given by its number of accessible states. A state is accessible if, given the machine’s starting state, there is some possible combination of the opponent’s possible actions that will result in a transition in that state. Therefore, even though all machines are defined on eight states, some of these states can never be reached. Furthermore, to facilitate a better understanding of the underlying operating mechanisms of the machines and the generation-to-generation transitions, the Hamming distance is calculated. Formally, the Hamming distance is defined as the number of positions between two strings of length $n$, for which the corresponding elements are different. This metric will identify how heterogeneous the population of machines is under each computational condition, and how fast the evolved population of machines converges to some common structure.
Another summary measure that sheds more light to the machine-composition, is the cooperation-reciprocity and the defection-reciprocity. The cooperation-reciprocity is the proportion of accessible states that respond to an observed cooperation by the opponent with a cooperation. On the other hand, the defection-reciprocity is the proportion of accessible states that respond to an observed defection by the opponent with a defection. The results that follow present the averages over all thirty members of each generation and forty simulations\textsuperscript{15} conducted for each experiment.\textsuperscript{16} Unless otherwise noted, to establish statistical significance the paired-differences test was used at a 95\% level of significance.

6.1 Evolution Of Payoffs & Automaton Characteristics

![Average Payoff under 4%N, 2%N, 1%N & 0.5%N](image)

Figure 2: Average Payoff under 4%N, 2%N, 1%N & 0.5%N

\textsuperscript{15}The sample sizes are large enough for an application of the Central Limit Theorem.

\textsuperscript{16}A variety of sensitivity analyses have been performed and they confirm that the results reported here are robust to reasonable changes in these choices.
Figure 2 shows the average payoff per game-generation over all thirty members under the 4\%N, 2\%N, 1\%N and 0.5\%N conditions. In the early generations, the agents tend to use machines that defect continuously. This is due to the random generation of the machines at the start of the evolution. In such an environment, the best strategy is to always defect. With the lapse of a few generations though, some machines may achieve consistent cooperation, which allows the payoffs to move higher. In the 4\%N condition, the average payoff in the last generation is 1.44 utils whereas in the 2\%N condition, the average payoff in the last generation is 1.95 utils. The average payoff in the 1\% and 0.5\% conditions in the last generation is 2.54 and 2.65 utils, respectively. The one-tailed-paired-differences test establishes that the means of the conditions are statistically different. The results indicate that the incorporation of errors may alter the evolution of cooperative machines and result in non-cooperative ones instead.

Figure 3: Accessible States & Hamming Distance under 4\%N, 2\%N, 1\%N & 0.5\%N

The average number of accessible states per game-generation is shown on the left-hand side of Figure 3. In the first generation, the number of accessible states of the (randomly-chosen) machines in all four conditions, is around 6.20 out of a possible 8 states. On the other hand, in the last generation the average number of accessible states is 4.92, 5.36, 5.72 and 5.95 in the 4\%N, 2\%N, 1\%N and 0.5\%N conditions, respectively. The average number of accessible states is almost consistently less in the noisier environments. The one-tailed-paired-differences test performed on the number of accessible states, establishes that the means of the conditions are statistically different. This suggests that under more noisy conditions, the average number
of accessible states drops.

A possible conclusion is that strategic simplification is advantageous in the presence of errors (if the number of accessible states is assumed to be a good measure of complexity). In the presence of errors, behavior is governed by mechanisms that restrict the flexibility to choose potential actions, or that produce a selective alertness to information that might prompt particular actions to be chosen. These mechanisms simplify behavior to less complex patterns, which are easier for an observer to recognize and predict. In the absence of errors, the behavior of perfectly informed agents responding with flexibility to every perturbation in their environment would not produce easily recognizable patterns, but rather would be extremely difficult to predict.\textsuperscript{17}

Furthermore, on the right-hand side of Figure 3, the Hamming distance of the 4\(\%\)\(N\), 2\(\%\)\(N\), 1\(\%\)\(N\) and 0.5\(\%\)\(N\) conditions is presented. The Hamming distance of the 4\(\%\)\(N\) and 2\(\%\)\(N\) conditions, settles around 0.50 positions and 1.80 positions respectively, quite early. In the last generation, the Hamming distance is 0.54 positions for the 4\(\%\)\(N\) condition and 1.40 positions for the 2\(\%\)\(N\) condition. On the other hand, the 1\(\%\)\(N\) and 0.5\(\%\)\(N\) conditions take more time to settle at a value. By the end of the evolution, the 1\(\%\)\(N\) and 0.5\(\%\)\(N\) conditions seem to settle around 2.90 and 3.60 positions, respectively. In the last generation, the Hamming distance is 2.80 positions for the 1\(\%\)\(N\) condition and 3.30 positions for the 0.5\(\%\)\(N\) condition. The results suggest that in noisier environments, the evolutionary process will single out the structure that performs well quite early, and the generations that come after, will be composed of variants (or even clones, if mutation turns out to be innocuous) of that particular structure. On the other hand, in the low noise-level conditions, the population of machines is more heterogeneous and takes quite a bit of time to settle to a particular structure.

On the left-hand side of Figure 4, the average cooperation-reciprocity per generation is shown. As errors increase, the machines tend to reduce their cooperation-reciprocity. This

\textsuperscript{17}Consider Rubic’s Cube. There are over 43 trillion possible initial positions from which to unscramble the cube. Minimizing the number of moves to solve the cube would require an extremely complex pattern of adjustment from one particular scrambled position to another. Yet, if mistakes are made in trying to select a shortcut, the cube may remain unscrambled indefinitely. Consequently, cube experts have developed rigidly-structured-solving procedures that employ a small repertoire of solving patterns to unscramble the cube. These procedures follow a predetermined hierarchical sequence that is largely independent of the initial scrambled position.
observation also accounts for the low payoffs of Figure 2. In the last generation, the proportion of states returning cooperation with an opponent’s cooperation is 0.16, 0.27, 0.31 and 0.29 for the 4%N, 2%N, 1%N and 0.5%N conditions, respectively. The one-tailed-paired-differences test performed, establishes that the means of the conditions are statistically different. On the right-hand side, the defection-reciprocity for the four conditions is shown. Machines in general, are more likely to reciprocate a defection by the opponent with a defection, than to cooperate after the opponent cooperates. The general pattern deduced, is that defection is not tolerated in noisier environments. In the last generation, the proportion of states returning defection with an opponent’s defection is 0.91, 0.83, 0.76 and 0.77 for the 4%N, 2%N, 1%N and 0.5%N conditions, respectively. The one-tailed-paired-differences test establishes that the means of the conditions are statistically different.

Figure 5 shows the average payoff per game-generation over all thirty members under the $NFN$ and $FNN$ conditions. In the latter condition, the agents’ machines are very cooperative in the beginning, maintaining a payoff mostly above 2.70 utils until the switch occurs. In the last generation prior to the switch, the average payoff is 2.77 utils, while in the very next generation the payoff plummets to 1.85 utils and then gradually moves down to 1.51 utils in the last generation. The drop of almost 1 util at the switch, is not surprising; the machines evolved in the first 250 generations are naturally, not very adaptive to the new environment established after the switch; thus perform poorly. On the other hand, under the $NFN$ condition, the
change in the payoffs at the switch is more gradual. In the last generation before the switch, the average payoff is 1.34 utils while in the very next generation the average payoff is 1.37 utils. Once noise ceases, the machines are able to build some cooperation that gradually proliferates in the following generations, resulting to an average payoff of 2.72 utils in the last generation.\textsuperscript{18}

The average number of accessible states per generation is shown on the left-hand side of Figure 6. The two conditions exhibit different paths in the sense that the average number of accessible states per generation is lower in the \textit{NFN} condition compared to the \textit{FNN} condition. In the beginning of the \textit{FNN} condition, the proportion of accessible states that respond to an observed cooperation with defection is 0.7. On the other hand, in the \textit{NFN} condition after the lapse of 250 generations, the proportion of states that respond to an observed cooperation with defection is 0.84 (1 − 0.16). Therefore, it will take more time to evolve cooperative machines in the latter condition which ultimately explains the difference in the slopes of the two conditions.

\textsuperscript{18}A fundamental deviation between the two conditions, is the difference in the slopes as indicated in the Figure. The slope of the \textit{FNN} condition in the beginning, is very steep (the regression coefficient indicates that the payoff rises by approximately 0.57 utils every 10 generations). On the other hand, the slope of the \textit{NFN} condition is less steep (in this case, the regression coefficient indicates that the payoff rises by approximately 0.13 utils every 10 generations). The proportion of accessible states that respond to an observed cooperation by the opponent with defection, is 1 − cooperation-reciprocity. In the beginning of the \textit{FNN} condition, the proportion of accessible states that respond to an observed cooperation with defection is 0.7. On the other hand, in the \textit{NFN} condition after the lapse of 250 generations, the proportion of states that respond to an observed cooperation with defection is 0.84 (1 − 0.16). Therefore, it will take more time to evolve cooperative machines in the latter condition which ultimately explains the difference in the slopes of the two conditions.
accessible states in the NFN condition is low in the beginning and then once the switch takes place increases, whereas in the FNN condition, the average number of accessible states starts high and then after the switch, declines. The final value in the NFN condition is 5.92 accessible states whereas the final value in the FNN condition is 4.89 accessible states. Furthermore, the Hamming distance is presented on the right-hand side. In the NFN condition, the population just before the switch averages 0.63 positions which steadily goes up to 5.05 positions, before settling at 4.15 positions in the last generation. On the other hand, the Hamming distance in the FNN condition is 7.18 positions just before the switch and goes down to 0.53 positions in the last generation.

Figure 7 (left-hand side) shows the average cooperation-reciprocity in the NFN and FNN conditions. In the latter condition, the cooperation-reciprocity peaks around the 60th generation at 0.54 but then gradually declines reaching a low of 0.22 in the last generation. On the other hand, the cooperation-reciprocity in the NFN condition is over 0.15 but less than 0.2 for the first 250 generations. After the switch, the cooperation-reciprocity steadily increases reaching 0.52 in the last generation. The paired-differences in the means are statistically significant. On the right-hand side, the average defection-reciprocity per game-generation is shown. The NFN operates at essentially two levels; the one level is around 0.90 and lasts for the generations prior to the switch and the second level is around 0.78 and lasts for the final 150 generations. On the
other hand, in the $FNN$ condition, the increase in the defection-reciprocity is gradual with the exception of a short transitioning period after the switch takes place. In the last generation, the defection-reciprocity of the $NFN$ condition is 0.77 whereas the defection-reciprocity of the $FNN$ condition is 0.89. The paired-differences in the means are statistically significant.

Figure 7: Cooperation-Reciprocity & Defection-Reciprocity under $NFN$ & $FNN$

Figure 8 shows the average payoff per game-generation over all thirty members in the $DN$ and $0\%N$ conditions. The exponential-decay-over-time is calculated by the formula $\phi e^{-\psi g}$ where $\phi$, $\psi$ are parameters, and $g$ is the generation number.\footnote{In the computations, $\phi = 0.04$ and $\psi = 0.01$. The choice of parameters reflect an initial 4% probability of implementation and perception errors that exponentially decays reaching some $\epsilon \%$ probability by the end of the evolution for $\epsilon > 0.$} The secondary axis, indicates the probability of implementation and perception errors as a percentage evolved over time. In the $DN$ condition, the average payoff increases steadily (up to an upper bound) given the set parameters of the exponential decay function. The dotted line indicates that the rise (from the $75^{th}$ upto the $350^{th}$ generation) is almost-linear. The regression coefficient calculated for the dotted line increases by approximately 0.14 utils every 10 generations. The average payoff is 2.24 utils after 250 generations and 2.77 utils in the last generation. On the other hand, after the initial decline in the first six generations, the $0\%N$ condition seems to settle around 2.8 utils. In the last generation, the average payoff of the $0\%N$ condition is 2.85 utils.
Figure 8: Average Payoff under $O\%N$ & $DN$

Figure 9 (left-hand side) shows the average number of accessible states. The exponential decay condition exhibits an increase in the average number of accessible states as the noise level decays. Furthermore, in the last generation the average number of accessible states is 5.98. On the other hand, in the $0\%N$ condition the average number of accessible states seems to settle quite fast at around 6.15 accessible states. The one-tailed-paired-differences test establishes that the means of the conditions are statistically different. On the right-hand side of Figure 9, the Hamming distance of the two conditions is presented. The Hamming distance in the $0\%N$ condition fluctuates quite a bit, reaching 4.24 positions in the last generation. This is indicative of the presence of heterogeneous machines within the population for a substantial amount of time. On the other hand, the population in the $DN$ condition, is less heterogeneous stabilizing around 3.65 positions by the end of the evolution. In the last generation, the Hamming distance in the $DN$ condition is 3.52 positions.

Figure 10 (left-hand side) shows the average cooperation-reciprocity per generation over all thirty machines. The average cooperation-reciprocity in the $0\%N$ condition, fluctuates around
0.50 after the initial 35 generations. In the last generation, the cooperation-reciprocity in the error-free condition is 0.47. On the other hand, as noise decays, the DN condition exhibits an increase in the cooperation-reciprocity that can account for the increase in the average payoff as indicated in Figure 8. The DN condition exhibits the lowest cooperation-reciprocity of 0.19 in the beginning, then gradually increases to reach its peak of 0.37 in the 360th generation before settling at 0.33. The evolved machines in the DN condition seem to be more sneaky, in the sense that they are more likely to respond to a cooperation with defection, than the machines in the 0%N condition. The one-tailed-paired-differences test establishes that the means of the conditions are statistically different. On the right-hand side, the defection-reciprocity in the 0%N condition exhibits an upward trend reaching its peak of 0.86 in the 449th generation before settling at 0.83 in the last generation. The defection-reciprocity in the DN condition, peaks in the 18th generation at 0.88 but gradually decreases to reach a low of 0.72 towards the end before settling to 0.75. Thus as noise exponentially decays, the machines become more tolerant of defections. With the lapse of 190 generations, the DN condition becomes more tolerant (forgiving) of defections than the 0%N condition.
Figure 10: Cooperation-Reciprocity & Defection-Reciprocity under $O\%N$ & $DN$

7 Prevailing Structures

The results of the previous section are indicative of the mechanics of the evolving machines. Yet, it is imperative to also examine the prevailing structures in all fictitious environments. This way, a lot can be said about the type of machines that survive or even the type of machines that do not survive in these environments. Therefore, in what follows, the prevailing structure of each computational condition is discerned by deriving the distribution of prevailing machines over the forty simulations. To that end, Figure 11 shows the frequency distribution of each condition. Given the convergence of the population of machines by the last generation, it is unnecessary to incorporate the entire last-generation population into the distribution. Instead, the best performer from each simulation is picked, for a total frequency of forty machines for each condition. The horizontal axis of the frequency distributions in Figure 11, provides the names of the structures which correspond to the Moore machines in Figure 12.
Figure 11: Frequency Distributions
The prevailing Moore machine of each condition, is presented below. Since some conditions share identical prevailing structures, it is only appropriate to group these conditions together. For example, the 4\%N condition and the FNN condition share the same prevailing structure. On the other hand, the 2\%N condition has a prevailing structure that is different from all other conditions. The 1\%N, 0.5\%N and the DN conditions share the same prevailing structure, and so do the 0\%N and the NFN conditions.
The prevailing structure of the 4%N condition and the FNN condition is composed of five accessible states as shown in Figure 13. The machine is open-loop. In other words, the actions taken at any time-period only depend on that time-period and not, on the actions of the opponent (this is a history-independent machine). In the first period, the machine cooperates but then counts four defections before cooperating again. The expected payoff per period of such a machine in a population composed of clones (without errors) is 1.40 utils. The cooperation-reciprocity is 0.20 while the defection-reciprocity is 0.80.

The prevailing structure of the 2%N condition is also composed of five accessible states. Contrary to the previous structure, this one is a closed-loop machine where the actions in any time-period depend on the history of play. The machine is similar to the one in Figure 13 with some notable transition-differences. The cooperating state has a loop on itself in case the opponent is observed to cooperate; an indication of appreciation of cooperative play. Yet, if the opponent chooses to defect, the machine will punish the opponent with at least four defections before returning to the cooperating state again. In addition, the machine incorporates a sneaky state which tries to exploit machines that enter cooperative modes earlier.
On the other hand, the prevailing structure of the 1%N condition, 0.5%N condition and DN condition is composed of six accessible states as shown in Figure 15. This machine is again a closed-loop machine where the actions are contingent on the history of play. Furthermore, the machine is quite rich in the sense that it incorporates a lot of notions. It consists of a combination of Two-Tits-For-Tat, mingled with at least four periods of punishment in case of non-conformity to the cooperative outcome. In addition, just like the previous structure, it contains a sneaky state that tries to exploit machines that enter a cooperative mode earlier. The cooperation-reciprocity of this structure is 0.33 while the defection-reciprocity is 0.67.

The prevailing structure of the 0%N condition and NFN condition is composed of six accessible states as shown in Figure 16. This closed-loop machine is again a combination of Two-Tits-For-Tat with at least four periods of punishment in case of non- to the cooperative outcome. The sneaky state is replaced with a non-tolerant one, mandating that the opponent cooperates before going back to the cooperating states. The cooperation-reciprocity in this structure is 0.50 and the defection-reciprocity is 0.83.
A common trait in these prevailing structures, is that they contain more defecting states than cooperating states; yet, in the last three structures there exists an inherent pursue towards establishing some consistent cooperation. In a different case, the machines will react by punishing the opponent for at least four periods before making an effort to revisit the cooperating state(s). Furthermore, the prevailing structures do not contain any terminal states. A terminal state is one that has transitions only to itself; that is, once a terminal state is reached, the machine remains in the state for the remainder of the game. Thus, machines executing strategies such as Grim-Trigger do not survive in such an evolving environment for the conditions investigated.

8 Conclusion

Via an explicit evolutionary process simulated by a genetic algorithm, we indicate that the incorporation of bounded rationality in the form of action-implementation and perception errors in the agents’ machines, is sufficient to alter the evolution of cooperative machines and result in non-cooperative ones instead. Under the first set of computational experiments, the evolved machines are highly non-cooperative when the error-levels are high, but cooperative when the error-levels are low. On the other hand, in the second and third sets of computational experiments, the machines are non-cooperative (with the exception of the 0%N) as long as the errors persist, but once the errors decrease or cease, the machines become more cooperative.

Furthermore, the machines exhibit some interesting characteristics in the presence of errors which lead to the conclusion that the structure as well as the magnitude of the error-level in this environment, is quite important. If the number of accessible states is a good measure of complexity, then a possible conclusion from the computations, is that strategic simplification is advantageous in the presence of errors. Also, as errors persist, machines become less prone to return cooperation to an observed cooperation. On the other hand, the defection-reciprocity indicates that machines in noisy environments have low tolerance to defections. The latter observations are reflected in the low payoffs of the machines in the presence of errors. In addition, the Hamming distance indicates that the agents’ machines converge faster to some prevailing structure as the likelihood of errors increases.
The prevailing structures of the computational conditions sketched in the previous section, highlight the presence of more defecting than cooperating states, with the understanding that the cooperating states are meant to establish some consistent mutual cooperation, whereas the defecting states are meant as punishment-counters imposing at least four-period defections, in case of non-conformity to the cooperative outcome by the opponent. Finally, in the presence of (as low as) 4% likelihood of errors, open-loop machines (independent of the history of play) emerge endogenously. The latter, cooperate for one period and defect for the next four periods without paying any consideration to the game-plan of the opponent.

A wide variety of potential extensions exist. In this study, it was assumed that all machines were subjected to the same level of noise, generation by generation. Instead, the level of noise could be contingent upon the number of states accessed by the particular machine. The rationale is that a machine that contains only one state (say, Always Cooperate), is less likely to commit errors than one, that is far more complex. Furthermore, it would be interesting to examine whether the results are robust to the symmetry of the payoffs. One of the basic features of the conventional Prisoner’s Dilemma stage-game is the requirement that the values assigned to the game are the same for both agents. Not uncommon however, are social transactions where not only is each agent’s outcome dependent upon the choices of the other, but also where the resources and therefore possible rewards, of one agent exceed those of the other. A social interaction characterized by a disparity in resources and potentially larger rewards for one of the two participants would in all likelihood call into play questions of inequality. Thus, one could run two co-evolving populations with asymmetric payoffs, to see how inequality comes into play and in particular, how the asymmetry in payoffs affects cooperation under the examined error-level structures.
Appendix: Finite Automata

A finite automaton is a mathematical model of a system with discrete inputs and outputs. The system can be in any one of a finite number of internal configurations or “states”. The specific type of finite automaton used here is a Moore machine. A Moore machine\textsuperscript{20} for an adaptive agent $i$ in an infinitely-repeated game of $G = (I,\{A^i\}_{i \in I},\{g^i\}_{i \in I})$,\textsuperscript{21} is a four-tuple $(Q^i, q^i_0, f^i, \tau^i)$ where $Q^i$ is a finite set of internal states, of which $q^i_0$ is specified to be the initial state, $f^i : Q^i \to A^i$ is an output function that assigns an action to every state, and $\tau^i : Q^i \times A^{-i} \to Q^i$ is the transition function that assigns a state to every two-tuple of state and other agent’s action.\textsuperscript{22}

In the first period, the state is $q^i_0$ and the machine chooses the action $f^i(q^i_0)$. If $a^{-i}$ is the action chosen by the other agent in the first period, then the state of agent $i$’s machine changes to $\tau^i(q^i_0, a^{-i})$ and in the second period agent $i$ chooses the action dictated by $f^i$ in that state. Then, the state changes again according to the transition function, given the other agent’s action. Thus, whenever the machine is in some state $q$, it chooses the action $f^i(q)$ while the transition function $\tau^i$, specifies the machine’s transition from $q$ (to a state) in response to the action taken by the other agent.

For example, the machine $(Q^i, q^i_0, f^i, \tau^i)$ in Figure 17, carries out the Grim-Trigger strategy that chooses C so long as both agents have chosen C in every period in the past, and chooses D otherwise. In the transition diagram, the vertices denote the internal states of the machine and the arcs labeled with the action of the other agent, indicate the transition to the states.

\textsuperscript{20}A Mealy machine is another type of finite automaton. Mealy machines share the same characteristics with Moore machines with the exception of the output function that maps both the state and the input to an action. However, it can be shown that the two types are equivalent hence the analysis does not preclude Mealy machines.

\textsuperscript{21}$I$ is the set of players, $A^i$ is the set of $i$’s actions, and $g^i : A \to \mathbb{R}$ is the real-valued utility function of $i$.

\textsuperscript{22}Note that the transition function depends only on the present state and the other agent’s action. This formalization fits the natural description of a strategy as agent $i$’s plan of action in all possible circumstances that are consistent with agent $i$’s plans. In contrast, the notion of a game theoretic strategy for agent $i$ requires the specification of an action for every possible history, including those that are inconsistent with agent $i$’s plan of action. To formulate the game theoretic strategy, the only change required would be to construct the transition function such that $\tau^i : Q^i \times A \to Q^i$ instead of $\tau^i : Q^i \times A^{-i} \to Q^i$. 
Figure 17: Grim-Trigger machine

\[ Q^i = \{q_C, q_D\} \]

\[ q_0^i = q_C \]

\[ f^i(q_C) = C \text{ and } f^i(q_D) = D \]

\[ \tau^i(q, a^{-i}) = \begin{cases} q_C & (q, a^{-i}) = (q_C, C) \\ q_D & \text{otherwise} \end{cases} \]
References


