DEPARTMENT OF ECONOMICS
UNIVERSITY OF CYPRUS

A SIMPLE PROOF FOR THE INVERTIBILITY OF THE LAG POLYNOMIAL OPERATOR

Ioannis Kasparis

Discussion Paper 2008-06
A SIMPLE PROOF FOR THE INVERTIBILITY OF THE LAG POLYNOMIAL OPERATOR

Ioannis Kasparis

University of Cyprus

April 2008

We provide a proof for the invertibility of the finite lag polynomial operator in the context of stochastic difference equations, for the case where the polynomial roots lie inside/outside the complex unit circle. We establish invertibility and provide a characterisation for the inverse, using an elementary result from functional analysis.

1 Motivation and Results

Time series models like ARMA processes are widely used in econometrics and statistics. These type of models are defined through Finite Lag Polynomial (FLP) operators. For instance, an AR(p) process \(\{X_t\}_{t \in \mathbb{Z}} \) is:

\[
\phi(L) \{X_t\} = \{\epsilon_t\}, \quad \epsilon_t \sim \text{w.n.}(0, \sigma^2), \\
\phi(L) = I - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p,
\]

where w.n.\((0, \sigma^2)\) denotes white noise sequence with mean zero and variance \(\sigma^2\), while \(I\) and \(L\) are the identity and the lag operators respectively. The fact that the FLP operator \(\phi(L)\) is invertible, when the polynomial roots lie inside/outside the unit root circle, is often stated in time series courses and in time series textbooks. If the polynomial \(\phi(z)\) satisfies

\[
\phi(z) \neq 0, \quad |z| = 1,
\]

then

\[
\phi^{-1}(L) = \sum_{k=-\infty}^{\infty} \psi_k L^k, \quad \sum_{k=-\infty}^{\infty} |\psi_k| < \infty,
\]

and

\[
X_t = \sum_{k=-\infty}^{\infty} \psi_k \epsilon_{t-k}.
\]

This is an important result for two reasons. First it provides a sufficient condition for stationarity, as it implies that the AR(p) process, \(X_t\), is a linear process and therefore covariance stationary\(^1\). Secondly, it establishes that \(X_t\) is amenable to the well developed asymptotic theory for linear processes e.g. Phillips and Solo (1992), Peligrad and Utev (1997).

\(^1\)I would like to thank Sergey Utev, for stimulating discussions. Previous version May 2006.
Our motivation is a pedagogical one. Although some version of the aforementioned result is stated in almost any econometric textbook, a rigorous proof is rarely provided. Deistler (1975) provides a proof by establishing an isomorphism between rings. The key idea in Deistler (1975) is to transform an operator problem into an equivalent algebraic problem. Although the Deistler’s approach is straightforward, rings are not used often in econometrics. We avoid the use of rings and prove the result directly using operator theory. Operator theory has been employed in several recent econometric papers see for example Darolles, Florens, and Renault (2002), Linton and Mammen (2005), Carrasco, Florens, and Renault (2006) and Vanhems (2006) inter alia.

In his recent book, Bosq (2000, Theorems 3.1 and 5.1) provides a proof, for the case where the polynomial roots lie outside the unit circle. Bosq relies on operator theory as well. In particular, he is utilising results for the spectral radius. Our approach is based on more elementary concepts, that can be found in any introductory functional analysis book e.g. Rynne and Youngson (2000). The technical level of our proof is about the same as that of the classical work of Brockwell and Davis (1991). Therefore, our results should be accessible to the reader of the aforementioned book.

To prove the invertibility of the FLP operator, we employ a well known theorem in operator theory. The theorem states that if an operator is sufficiently close to the identity operator, with respect the operator norm, then is invertible. The operator norm, provides a notion of distance between two operators. The norm of a linear operator \(T \), on some normed space, \(V \) say, is defined as \(\|T\| = \sup_{\|x\| \leq 1} \|Tx\| \), with \(x \) in \(V \). Moreover the operator is bounded, if \(\|T\| < \infty \). A formal statement of the aforementioned theorem is given below:

Theorem 1. Let \(B \) be a Banach space. If \(T : B \to B \) is a bounded linear operator and \(\|I - T\| < 1 \), then \(T \) is invertible with inverse:

\[
T^{-1} = \sum_{k=0}^{\infty} (I - T)^k.
\]

Note that Theorem 1 does not only provide a sufficient condition for the invertibility of the operator, but also provides a characterisation for the inverse, when the condition is satisfied. In particular Theorem 1 postulates that the inverse can be approximated by Neumann series. Theorem 1 has a wide applicability. For instance, unique solution for the integral equation in Linton and Mammen (2005, p. 777) can be established by Theorem 1.

In order to exploit Theorem 1, we need to define our time series process on some appropriate Banach space. We will consider the space \(X \), of sequences \(X = \{X_t\}_{t \in \mathbb{Z}} \) on some probability space \((\Omega, \mathcal{F}, P) \), that satisfy \(\sup_t \mathbb{E}|X_t| < \infty \). Hence \(X \) is a normed space, equipped with the norm \(\|X\|_{\infty} = \sup_t \mathbb{E}|X_t| \). Any covariance stationary sequence belongs to the space \(X \). The following lemma ensures, that the particular space is a Banach space.
Lemma 1. The normed space X is complete and therefore is a Banach space.

Next, we shall determine the lag operator norm. In view of the fact that $\sup_t E |X_t| = \sup_t E |X_{t-1}|$ we have

$$
\|L\| = \sup_{\|X\| \leq 1} \| LX \| = \sup_{\{X_t \in X : \sup_t E |X_t| \leq 1\}} \left(\sup_t E |X_{t-1}| \right) = 1
$$

Using the same arguments as above it can be easily seen that $\|L^{-1}\| = 1$ as well, where L^{-1} is the inverse of L. Now it is straight forward to apply Theorem 1 to first order lag polynomials. Consider $\phi(L) = I - \phi_1 L$ with $|\phi_1| \neq 1$. For $|\phi_1| < 1$ we have

$$
\|I - \phi(L)\| = \|\phi_1 L\| = |\phi_1| \|L\| = |\phi_1| < 1
$$

Therefore, by virtue of Theorem 1

$$
\phi(L)^{-1} = \sum_{k=0}^{\infty} \phi_1^k L^k. \quad (3)
$$

For $|\phi_1| > 1$ notice that

$$
\phi(L) = -\phi_1 L (I - \frac{1}{\phi_1} L^{-1}) := -\phi_1 L \phi^+(L).
$$

In addition,

$$
\|I - \phi^+(L)\| = \left| \frac{1}{\phi_1} \right| \|L^{-1}\| = \left| \frac{1}{\phi_1} \right| < 1.
$$

Hence, by Theorem 1

$$
\phi(L)^{-1} = -\frac{1}{\phi_1} L^{-1} \sum_{k=0}^{\infty} \phi_1^{-k} L^{-k} = -\sum_{k=1}^{\infty} \phi_1^{-k} L^{-k} \quad (4)
$$

Next, consider the higher order lag polynomial $\phi(L) = I - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p$. Write

$$
\phi(L) = \left(I - \frac{1}{\rho_1} L \right) \left(I - \frac{1}{\rho_2} L \right) \ldots \left(I - \frac{1}{\rho_p} L \right),
$$

where $\{\rho_i, i = 1, \ldots, p\}$ are the roots of the polynomial $\phi(z)$, $z \in \mathbb{C}$. The following result enables us to apply the partial results of (3) and (4) to higher order lag polynomials.

Lemma 2. Let V be a normed space and suppose that the operators $T_i : V \to V$, with $i = \{1, 2, \ldots, p\}$, commute. Define T as $T = T_1 T_2 \ldots T_p$. Then T is invertible, if and only if each T_i is invertible.
It is obvious from Lemma 2 that $\phi(L)^{-1}$ is determined by a product of terms.

Theorem 2. Consider the lag operator $\phi(L) = I - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p$ on X_r. Suppose that the roots, $\{\rho_i, i = 1, \ldots, r, \ldots, p\}$, of the polynomial $\phi(z) = 1 - \phi_1 z - \ldots - \phi_p z^p$, $z \in \mathbb{C}$ satisfy $|\rho_i| < 1$ for $i \leq r$ and $|\rho_i| > 1$ for $i > r$. Then the inverse of $\phi(L)$ exists and is of the form:

$$\psi(L) = \sum_{k=-\infty}^{\infty} \psi_k L^k,$$

with

$$\psi_k = (-1)^r \sum_{l=\max(r-k)}^{\infty} \sum_{k_{r+1}=0}^{k+l} \ldots \sum_{k_{r-1}=0}^{k_{r+1}=r-1} \sum_{k_{1}=1}^{l-1} \sum_{k_{1}=1}^{k_{2}-1} \left(\frac{1}{\rho_1}\right)^{-k_1} \ldots \left(\frac{1}{\rho_r}\right)^{-l-k_{r-1}} \ldots \left(\frac{1}{\rho_{r+1}}\right)^{k_{r+1}} \ldots \left(\frac{1}{\rho_p}\right)^{k+1-k_{p-1}}$$

and $\sum_{k=-\infty}^{\infty} |\psi_k| < \infty$.

Remark: Suppose that the processes X_t and Y_t satisfy the difference equation:

$$\phi(L)X_t = Y_t,$$

with Y_t in X.

(a) If $\sup_t \mathbb{E}|Y_t| < \infty$ and $\sum_{k=-\infty}^{\infty} |\psi_k| < \infty$ then, $\sum_{k=-\infty}^{\infty} \psi_k Y_{t-k}$ is well defined a.s. (see for example Brockwell and Davis (1991)). If $\sup_t \mathbb{E}|Y_t| < \infty$ and Y_t satisfies the difference equation shown above, then $\sum_{k=-\infty}^{\infty} \psi_k Y_{t-k}$ is well defined in L_1 sense by virtue of Theorem 2, as $\sum_{k=-\infty}^{\infty} \psi_k Y_{t-k}$ belongs to X.

(b) Under the stronger requirement $\sup_t \mathbb{E}|Y_t|^2 < \infty$, $\sum_{k=-\infty}^{\infty} \psi_k Y_{t-k}$ is well defined in L_2 sense (cf. Fuller (1976), Brockwell and Davis (1991)). If $\sup_t \mathbb{E}|Y_t|^2 < \infty$ and Y_t satisfies the difference equation shown above, then $\sum_{k=-\infty}^{\infty} \psi_k Y_{t-k}$ is well defined in L_2 sense by virtue of Theorem 2.

(c) If the polynomial roots lie outside the unit circle, then Y_t is causal for X_t i.e.

$$X_t = \sum_{k=0}^{\infty} \psi_k Y_{t-k}.$$

2 Proofs

Proof of Theorem 1. Theorem 4.40 in Rynne and Youngson (2000).

Proof of Lemma 1. Denote by $\| \cdot \|_{L_1}$ the L_1-norm and consider a Cauchy sequence $\{X^n\}_{n \in \mathbb{N}}$ in X. By the definition of X, X^n is a double indexed sequence,
i.e. for each n, $X^n = \{X^n_t\}_{t \in \mathbb{Z}}$. By the completeness of L_1 measurable spaces (e.g. Brockwell and Davis, 1991), $\|X^n_t - X_t\|_{L_1} \xrightarrow{n \to \infty} 0$, for some X_t in $L_1(\Omega, \mathcal{F}, P)$. Also note that due to the Cauchy property, for any $\epsilon > 0$ and some $N_\epsilon \in \mathbb{N}$, we have $\|X^n - X^m\|_\infty \leq \epsilon$, for all $n, m \geq N_\epsilon$. Define $X = \{X_t\}_{t \in \mathbb{Z}}$. Thus, for $n \geq N_\epsilon$ we have,

$$\|X^n_t - X_t\|_{L_1} = \lim_{m \to \infty} \|X^n_t - X^m_t\|_{L_1} \leq \limsup_{m \to \infty} \|X^n - X^m\|_\infty \leq \epsilon,$$

which implies $\|X^n - X\|_\infty \xrightarrow{n \to \infty} 0$. Moreover X is in X because, $\|X\|_\infty \leq \|X^n - X\|_\infty + \|X^n\|_\infty < \infty$ and the result follows. ■

Proof of Lemma 2. The proof is trivial and therefore omitted. ■

Proof of Theorem 2. Consider the operator $\phi_i(L) = I - \frac{1}{\rho_i}L$ on X. By Theorem 1, (3) and (4) the inverse of $\phi_i(L)$ exists and is given by

$$\phi_i(L)^{-1} = \begin{cases} - \sum_{k=1}^{\infty} \left(\frac{1}{\rho_i} \right)^{-k} L^{-k} & \text{for } 1 \leq i \leq r, \\ \sum_{k=0}^{\infty} \left(\frac{1}{\rho_i} \right)^k L^k & \text{for } r < i \leq p. \end{cases}$$

Now, because $\phi_i(L)$'s commute, Lemma 2 implies that $\phi(L)$ is invertible with inverse $\phi(L)^{-1} = \phi_1(L)^{-1}...\phi_p(L)^{-1}$.

Next, we obtain an expression for the inverse in terms of the polynomial roots. Consider

$$\hat{\phi}(L)^{-1} = \hat{\phi}_1(L)^{-1}...\hat{\phi}_r(L)^{-1} \quad \text{and} \quad \bar{\phi}(L)^{-1} = \bar{\phi}_{r+1}(L)^{-1}...\bar{\phi}_p(L)^{-1}$$

It can be easily checked that

$$\hat{\phi}(L)^{-1} = (-1)^r \sum_{k=r}^{\infty} \hat{\psi}_k L^{-k}$$

with

$$\hat{\psi}_k = \sum_{k_{r-1} = r-1}^{k-1} \sum_{k_{r-2} = r-2}^{k_{r-1} - 1} \sum_{k_1=1}^{k_2-1} \left(\frac{1}{\rho_1} \right)^{-k_1} \left(\frac{1}{\rho_2} \right)^{-k_2} \left(\frac{1}{\rho_{r-1}} \right)^{-k_{r-2}} \left(\frac{1}{\rho_{r}} \right)^{-k_{r-1}}$$

and

$$\sum_{k=r}^{\infty} \left| \hat{\psi}_k \right| = \sum_{k=r}^{\infty} \left| \sum_{k_{r-1} = r-1}^{k-1} \sum_{k_{r-2} = r-2}^{k_{r-1} - 1} \sum_{k_1=1}^{k_2-1} \left(\frac{1}{\rho_1} \right)^{-k_1} \left(\frac{1}{\rho_2} \right)^{-k_2} \left(\frac{1}{\rho_{r-1}} \right)^{-k_{r-2}} \left(\frac{1}{\rho_{r}} \right)^{-k_{r-1}} \right|$$

$$\leq \sum_{k=1}^{\infty} \left| \frac{1}{\rho_1} \right|^{-k} \sum_{k=1}^{\infty} \left| \frac{1}{\rho_2} \right|^{-k} \sum_{k=1}^{\infty} \left| \frac{1}{\rho_{r-1}} \right|^{-k} \sum_{k=1}^{\infty} \left| \frac{1}{\rho_{r}} \right|^{-k} < \infty.$$
Moreover,
\[\tilde{\phi}(L)^{-1} = \sum_{k=0}^{\infty} \tilde{\psi}_k L^k, \]

with
\[\tilde{\psi}_k = \sum_{k_{p-1}=0}^{k} \sum_{k_{p-2}=0}^{k_{p-1}} \cdots \sum_{k_{r+1}=0}^{k_{r+2}} \left(\frac{1}{\rho_{r+1}} \right)^{k_{r+1}} \left(\frac{1}{\rho_{p-1}} \right)^{k_{p-1}-k_{p-2}} \left(\frac{1}{\rho_p} \right)^{k_{p-1}-k_{p-1}} \] (7)

and
\[\sum_{k=0}^{\infty} \left| \tilde{\psi}_k \right| = \sum_{k=0}^{\infty} \left| \sum_{k_{p-1}=0}^{k} \sum_{k_{p-2}=0}^{k_{p-1}} \cdots \sum_{k_{r+1}=0}^{k_{r+2}} \left(\frac{1}{\rho_{r+1}} \right)^{k_{r+1}} \left(\frac{1}{\rho_{p-1}} \right)^{k_{p-1}-k_{p-2}} \left(\frac{1}{\rho_p} \right)^{k_{p-1}-k_{p-1}} \right| \]
\[\leq \sum_{k=0}^{\infty} \left| \frac{1}{\rho_{r+1}} \right| \sum_{k=0}^{\infty} \left| \frac{1}{\rho_{p}} \right|^k < \infty. \] (8)

Therefore,
\[\phi(L)^{-1} = \tilde{\phi}(L)^{-1} \tilde{\phi}(L)^{-1} = \sum_{k=-\infty}^{\infty} \sum_{l=\max(r-k)}^{\infty} \tilde{\psi}_k \tilde{\psi}_l L^k. \]

In view of (5) and (7) we have,
\[\phi(L)^{-1} = \sum_{k=-\infty}^{\infty} \psi_k L^k, \] with
\[\psi_k = \sum_{l=\max(r-k)}^{\infty} \tilde{\psi}_k \tilde{\psi}_l \]
\[= \sum_{l=\max(r-k)}^{\infty} \sum_{k_{p-1}=0}^{k_{p-1}} \cdots \sum_{k_{r+1}=0}^{k_{r+2}} \left(\frac{1}{\rho_{r+1}} \right)^{k_{r+1}} \left(\frac{1}{\rho_{p-1}} \right)^{k_{p-1}-k_{p-2}} \left(\frac{1}{\rho_p} \right)^{k_{p-1}-k_{p-1}} \]
\[\cdots \left(\frac{1}{\rho_{r}} \right)^{-(l-k_{r-1})} \left(\frac{1}{\rho_{r+1}} \right)^{k_{r+1}} \left(\frac{1}{\rho_{p}} \right)^{k_{p-1}-k_{p-1}} \]

Finally, we show that the sequence \(\psi_k \) is summable. Notice that
\[\sum_{k=-\infty}^{\infty} \sum_{l=\max(r-k)}^{\infty} \left| \tilde{\psi}_k \tilde{\psi}_l \right| = \sum_{k=-\infty}^{\infty} \sum_{l=-r}^{\infty} \left| \tilde{\psi}_k \tilde{\psi}_l \right| + \sum_{k=-\infty}^{\infty} \sum_{l=\max l}^{\infty} \left| \tilde{\psi}_k \tilde{\psi}_l \right| \]
\[= \sum_{k=0}^{\infty} \sum_{l=r}^{\infty} \left| \tilde{\psi}_k \tilde{\psi}_l \right| + \sum_{k=0}^{\infty} \sum_{l=k+r+1}^{\infty} \left| \tilde{\psi}_k \tilde{\psi}_l \right| \]
\[\leq 2 \sum_{k=0}^{\infty} \left| \tilde{\psi}_k \right| \sum_{l=r}^{\infty} \left| \tilde{\psi}_l \right| < \infty, \]
by (6) and (8).

NOTES

2. Actually the results we provide hold, when \(X \) is equipped with the norm \(\|X\|_\infty = (\sup_t E|X_t|^{\nu})^{1/\nu}, \nu \geq 1 \).

REFERENCES