Κατάλογος Προσωπικού

ΔΗΜΟΚΡΑΤΗΣ ΓΡΗΓΟΡΙΑΔΗΣ

GRIGORIADIS DIMOKRATIS
22894453
...
ΑΝΑΠΛΗΡΩΤΗΣ/ΡΙΑ ΚΑΘΗΓΗΤΗΣ/ΡΙΑ
Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής
Green Park, GP 109
Λεωφ. Αγλαντζιας 91
‘Ελαβε το πτυχίο του Μηχανολόγου Μηχανικού από το Πανεπιστήμιο UMIST (Manchester, Αγγλία) και τη μεταπτυχιακή του ειδίκευση στην περιβαλλοντική και εφαρμοσμένη Ρευστοδυναμική από το Ινστιτούτο Ρευστοδυναμικής Von Karman (Βρυξέλλες, Βέλγιο).   Isosurfaces of pressure fluctuations over an fixed bed 
Από το 1996, εργάστηκε ως ερευνητής στο ερευνητικό κέντρο «ΔΗΜΟΚΡΙΤΟΣ» αρχικά στον τομέα της περιβαλλοντικής ρευστοδυναμικής και αργότερα στον τομέα της υπολογιστικής και πειραματικής πυρηνικής θερμο-υδραυλικής στον πυρηνικό αντιδραστήρα GRR-1 του κέντρου Πυρηνικού Αντιδραστήρα του Ινστιτούτου Πυρηνικής Τεχνολογίας και Ακτινοπροστασίας. Το 2003, απέκτησε το Διδακτορικό του δίπλωμα από το τμήμα Μηχανολόγων Μηχανικών του Αριστοτέλειου Πανεπιστήμιου Θεσσαλονίκης. Aπό το 2006 είναι μέλος της ερευνητικής ομάδας Ucy-CompSci, στο Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής του Πανεπιστημίου Κύπρου.
  • Υποτροφίες για απόκτηση ΔΙδακτορικού διπλώματος στην περιοχή της θερμο-ρευστομηχανικής (οι ενδιαφερόμενοι/ες μπορούν να επικοινωνήσουν στο grigoria(at)ucy.ac.cy).
  • Πλήρες βιογραφικό σημείωμα
  • Ερευνητική ομάδα Ucy-CompSci
  • Νέα-ανακοινώσεις
  • Μεταφορά μάζας και Θερμότητας
  • Ανανεώσιμες πηγές ενέργειας
  • Υπολογιστική Ρευστοδυναμική (CFD)
  • Προσομοιώσεις τυρβωδών ροών (DNS/LES)
  • Υπολογισμοί υψηλής απόδοσης (HPC) & υπολογισμοί σε μονάδες επεξεργασίας γραφικών (GPU)
  • Αλγοριθμική επιτάχυνση επιστημονικών υπολογισμών
 
 
  1. I. Chalmoukis, A.D. Dimas, D.G.E. Grigoriadis, (2022), “Hydrodynamic performance of a perched beach layout on a steep coastal bed. Coastal Engineering, Coastal Engineering, accepted for publication.
  2. S. Fonias, D.G.E. Grigoriadis (2022). “Large Eddy Simulation of particle-laden Flow over Dunes“, European Journal of Mechanics / B Fluids, 91(), 38-51, doi:10.1016/j.euromechflu.2021.09.007.
  3. I. Chalmoukis, A.D. Dimas, D.G.E. Grigoriadis, (2020), Large-eddy simulation of turbulent oscillatory flow over three-dimensional transient vortex ripple formations in quasi-equilibrium, Journal of Geophysical Research, Earth Surface, 125(8), doi: 10.1029/2019JF005451.
  4. C. Frantzis, D.G.E. Grigoriadis, A. Dimas (2020), Numerical study on the ow induced by the interaction of solitary waves with single row pile breakwaters, Ocean Engineering, 211, 107667, doi: 10.1016/j.oceaneng.2020.107667.
  5. C. Frantzis, D.G.E. Grigoriadis, A. Dimas (2020), An efficient Navier-Stokes based numerical wave tank using fast Poisson solvers and the immersed boundary method, Ocean Engineering, 196, 106832, 10.1016/j.oceaneng.2019.106832.
  6. D.Demou, D.G.E. Grigoriadis, (2020), Variable property DNS of differentially heated cavities filled with air, Journal of Heat and Mass Transfer, doi: 10.1016/j.ijheatmasstransfer.2019.119259.
  7. D. Demou, D.G.E. Grigoriadis, (2019), Direct numerical simulations of Rayleigh–Bénard convection in water with non-Oberbeck–Boussinesq effects, Journal of Fluid Mechanics, 881, 1073 – 1096, doi : 10.1017/jfm.2019.787.
  8. S. Fonias S., D.G.E. Grigoriadis, (2019), Effect of hydrodynamic forces on sandy sediments in oscillatory boundary layer flow, Applied Ocean Research, 92, 101915, doi: 10.1016/j.apor.2019.101915.
  9. Frantzis, D.G.E. Grigoriadis, (2019), An efficient method for two-fluid incompressible flows appropriate for the immersed boundary method, Journal of Computational Physics, 376, 28-53, doi: 10.1016/j.jcp.2018.09.035.
  10. D. Demou, D.G.E. Grigoriadis, (2018), “A low-Mach methodology for efficient direct numerical simulations of variable property thermally driven flows, International Journal of Heat and Mass Transfer 132, 539-549, doi: 10.1016/j.ijheatmasstransfer.2018.04.135.
  11. D. Demou, C. Frantzis, D.G.E. Grigoriadis, (2018), A numerical methodology for efficient simulations of non-Oberbeck-Boussinesq flows, International Journal of Heat and Mass Transfer 125, 1156-1168, doi: 10.1016/j.ijheatmasstransfer.2018.04.135.
  12. M. Ricardo, D.G.E. Grigoriadis, R.M.L. Ferreira, (2018), Numerical simulations of turbulent flows within an infinite array of randomly placed cylinders”, Journal of Fluids and Structures, vol. 80, pp 245–261, doi: 10.1016/j.jfluidstructs.2018.04.004.
  13. D. Demou, D.G.E. Grigoriadis, (2018), 1D model for the energy yield calculation of natural convection solar air collectors”, Renewable Energy, vol. 119, pp 649–661, doi: 10.1016/j.renene.2017.12.030.
  14. Fonias, D.G.E. Grigoriadis, (2018), Large Eddy Simulation of near-bed pipelines in oscillatory flow”, Coastal Engineering, vol. 133, pp 76–91, doi: 10.1016/j.coastaleng.2017.12.005.
  15. Kolokythas, D.G.E. Grigoriadis, A. Dimas (2018), Dynamic Friction Angle/Coefficient in Formulas of Bed Load Transport Induced by Waves over Ripples”, Journal of Coastal Research, vol. 34(4), pp. 996-1009, doi: 10.2112/JCOASTRES-D-17-00038.1.
  16. G. Mylonakis, M. Varvayanni, D.G.E. Grigoriadis and N. Catsaros, (2017), Developing and investigating a pure Monte-Carlo module for transient neutron transport analysis”, Annals of Nuclear Energy, vol. 104, pp 103–112, doi: 10.1016/j.anucene.2016.12.039.
  17. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaou and T. Panidis (2016), “Numerical simulations of constant-influx gravity currents in confined spaces: Application to thermal storage tanks”, International Journal of Thermal Sciences, vol. 108, pp. 1-14, doi:10.1016/j.ijthermalsci.2016.04.018.
  18. G. Mylonakis, M. Varvayanni, N. Catsaros, P. Savva, D.G.E. Grigoriadis (2014), Multi-physics and multi-scale methods used in nuclear reactor analysis, Annals of Nuclear Energy, vol. 72, pp 104–119, doi: 10.1016/j.anucene.2014.05.002.
  19. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaou and T. Panidis (2014), “Large eddy simulation of thermocline flow phenomena and mixing during discharging of an initially homogeneous or stratified storage tank”, European Journal of Mechanics-B/Fluids, vol. 48, pp. 94-114, doi: 10.1016/j.euromechflu.2014.04.012.
  20. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaou and T. Panidis (2014). “Numerical simulations of turbulent mixed convection in the charging of a rectangular thermal storage tank”, International Journal of Heat and Fluid Flow, doi: 10.1016/j.ijheatfluidflow.2013.10.007.
  21. Albets-Chico, D.G.E. Grigoriadis, E.V. Votyakov, S. Kassinos (2013). "Direct numerical simulation of turbulent liquid metal flow entering a magnetic field", Fusion Engineering and Design, doi: 10.1016/j.fusengdes.2013.09.002.
  22. D.G.E. Grigoriadis, A. Dimas, E. Balaras (2013). Coherent structures in oscillating turbulent boundary layers over a fixed rippled bed”, Flow, Turbulence and Combustion, doi: 10.1007/s10494-013-9489-1.
  23. Kanaris, X. Albets, D.G.E. Grigoriadis, S.C. Kassinos (2013). “3D numerical simulations of MHD flow around a confined circular cylinder under low, moderate and strong magnetic fields, Physics of Fluids 23, Vol.25, Issue 7, 074102, doi: 10.1063/1.4811398.
  24. D.G.E. Grigoriadis, A. Dimas, E. Balaras (2012). Large-eddy simulation of wave turbulent boundary layer over rippled bed”, Journal of Coastal Engineering 60, pp. 174-189, doi: 10.1016/j.coastaleng.2011.10.003.
  25. Kanaris, D.G.E. Grigoriadis, S. C. Kassinos (2011). Three dimensional flow around a circular cylinder confined in a plane channelPhysics of Fluids 23, 064106, doi: 10.1063/1.3599703.
  26. E. Sarris, D.G.E. Grigoriadis, N.S. Vlachos (2010). Laminar Free Convection in a Square Enclosure Driven By the Lorentz Force, International Journal of Numerical Heat Transfer, Part A: Applications, vol. 58: 12, pp. 923–942, doi: 10.1080/10407782.2010.529034.
  27. D.G.E. Grigoriadis, I. Sarris, S. Kassinos (2010). MHD flow past a circular cylinder using the immersed boundary method, Computers & Fluids, vol. 39, pp. 345–358, doi: 10.1016/j.compfluid.2009.09.012.
  28. D.G.E. Grigoriadis, S.C. Kassinos, E. Votyakov (2009), Immersed boundary method for the MHD flows of liquid metals, Journal of Computational physics, vol. 228, Issue 3, Feb. 2009, pp. 903-920, doi: 10.1016/j.jcp.2008.10.017.