Self-fulfilling Beliefs and Bounded Bubbles in the U.S. Housing Market*

Masanori Kashiwagi†

Job Market Paper

Abstract

This paper provides an equilibrium framework to organize the following empirical observations in the U.S. housing market from 1975 to 2007: (i) housing tenure and vacancies were approximately constant, (ii) rents were approximately constant, and (iii) in the late 1990s there was a large house price appreciation. Borrowing ideas from search and matching theory, and closing the model with self-fulfilling beliefs about the housing market, the model generates a house price bubble as a consequence of multiple underlying steady state equilibria. To select an equilibrium, household confidence is assumed to take one of two sunspot-driven values: normal or exuberant. When confidence is normal, both rents and house prices are low. When confidence is exuberant, both rents and house prices are high. Randomization over these two equilibria implies a substantial increase in house prices as the probability of the exuberant state increases. The model can explain a house price bubble as a rational expectations equilibrium driven by self-fulfilling beliefs.

*This version: October 26, 2010. I am truly indebted to Roger Farmer for his supervision and encouragement. I am also grateful to Lee Ohanian and Pierre-Olivier Weill for fruitful discussions. For helpful comments, I wish to thank Andy Atkeson, Paco Buera, Ariel Burstein, Larry Christiano, Russell Cooper, Matthias Doepke, Christian Hellwig, Thomas Hintermaier, Venk Venkateswaran, Daniel Waggoner, Mark Wright, Tao Zha and seminar participants at UCLA, the Development Bank of Japan, the Federal Reserve Bank of Atlanta, the Search Theory Workshop, the Midwest Macro Meetings, and the Econometric Society World Congress. I gratefully acknowledge financial support from the UCLA Ziman Center for Real Estate.

†European University Institute; e-mail: masanori.kashiwagi@eui.eu
1 Introduction

This paper explains the recent boom in U.S. house prices as a sunspot phenomenon in a rational expectations equilibrium framework. Empirical data from 1975 to 2007 suggest that the U.S. housing market was stationary in terms of demographics and quantities. Among the total housing units, the shares of rented, owned and vacant units were stable over time. By contrast, house prices grew rapidly from the late 1990s until 2006, while rents were stable. Applying ideas developed in search and matching theory, this paper presents a simple model that accounts for these facts.

In the search and matching model, the meeting of traders creates a surplus which must be divided between them. As Howitt and McAfee (1987) point out, this leads to a situation with fewer equations than unknowns. Consequently, the model displays a steady state indeterminacy. Most literature resolves this indeterminacy by assuming Nash bargaining with a fixed bargaining weight. This paper, however, takes a different route. As suggested by Farmer (2009), I close the model by treating confidence as a fundamental. To select an equilibrium, I assume that household confidence may take one of two values: normal or exuberant. When confidence is normal, both rents and house prices are low. When confidence is exuberant, both rents and house prices are high. I assume that confidence is driven by a sunspot as in Cass and Shell (1983). Randomization over these two equilibria implies a substantial increase in house prices as the probability of the exuberant state increases. The model can explain a house price bubble as a rational expectations equilibrium driven by self-fulfilling beliefs.

Sunspots work as a signal that coordinates actions and moves the economy from one equilibrium to another. While the economy is likely to be in a normal state most of the time, the random arrival of news may signal the possibility that an exuberant state is likely to occur. After receiving such news, people get incremental evidence about the likelihood that it is true. As news arrives randomly, it progressively drives the economy towards the exuberant state. Alternatively, households may receive a signal that the news was incorrect, which triggers a collapse back to the normal state.

House prices increase as the economy moves closer to the exuberant economy, while rents are stable along the path. In this framework, news drives prices. This paper approaches the U.S. experience of housing market bubbles within this conceptual framework. Unlike the standard rational bubbles argument, variations in house prices are bounded as traders appropriate positive surplus. Accordingly, I call the phenomena “bounded bubbles.” A prominent feature of this paper is that it provides an equilib-
rium framework to support a nonfundamental account of the recent housing boom and
collapse.

It might be argued, as an alternative explanation, that the large appreciation of
house prices was due to an increase in real income associated with economic growth. An
increase in household income leads to more spending on housing services. To control
for this explanation, I deflate nominal prices by nominal income. The proposed house
price series still exhibits the surge from the late 1990s, and the rent series deflated in
this way, is still stable.

Section 2 of this paper provides a literature review. Section 3 documents three
observations regarding the U.S. housing market from 1975 to 2007: (i) housing tenure
and vacancies were approximately constant, (ii) rents were approximately constant,
and (iii) during the late 1990s, there was a large appreciation of house prices. Section
4 presents a theoretical model. Section 5 discusses quantitative results and shows that
recent housing bubbles can be characterized as a rational expectations equilibrium.
Section 6 concludes.

2 Related Literature

The model in this paper applies ideas developed in the labor search literature (for
example, see Mortensen and Pissarides (1994)) to the housing market. The pioneering
work by Wheaton (1990) studies the homeownership market and presents comparative
statics. Subsequent work taking this approach includes Williams (1995) and Krainer

Among recent literature that studies the empirical implications of search models
of the housing market, this paper’s focus is related to Piazzesi and Schneider (2009),
who use a search model to examine the influence of a small number of optimistic
traders on house prices. They model the surge in house prices as a one-time shock to
beliefs of a small fraction of households and present the transition of prices back to the
original steady state. Among other recent studies, Ngai and Tenreyro (2009) account
for seasonal fluctuations in the housing market through a stochastic job matching model
due to Jovanovic (1979).

My approach to the housing bubble aligns with Shiller (2007), who argues that
it does not appear possible to account for the recent house price boom in terms of
fundamentals such as rents and construction costs; instead, the boom operates as a
speculative bubble driven largely by extravagant expectations for future price appreciations. Unlike Shiller (2007), this paper characterizes the boom in house prices as a rational expectations sunspot equilibrium.¹

The notion of sunspot equilibria is taken from the work by Azariadis (1981), Cass and Shell (1983), Azariadis and Guenerie (1986) and Weil (1987). The sunspot equilibria are constructed by randomizing across a finite set of steady state equilibria.² Assuming that agents share common beliefs about the sunspot activity and coordinate according to those beliefs, sunspots work as a way of moving from one equilibrium to another. Lastly, the idea of sunspots affecting a search economy is related to Farmer (2009, 2010).

3 Data from the U.S. Housing Market

This section presents three empirical observations using data from the U.S. housing market between 1975 and 2007: (i) housing tenure and vacancies were approximately constant, (ii) rents were approximately constant, and (iii) during the late 1990s, there was a large appreciation of house prices.

3.1 Tenure and Vacancies

Figure 1 presents data on housing broken down by type of occupancy. It shows the shares of rented, owned, and vacant units among the total housing units on the market.³ The data are quarterly and taken from the U.S. Census Bureau.

¹Peterson (2009) also uses a search model and presents a framework complementary to Shiller’s argument. In Peterson (2009), households ignore the effects of search frictions on past prices and think that there has been a permanent change in the value of a house.
²As shown in Cass and Shell (1983) and Azariadis and Guesnerie (1986), multiplicity of certainty equilibria is not necessary for the existence of a sunspot equilibrium.
³I excluded housing units for occasional use and those occupied by people who usually live elsewhere.
This figure shows that the proportions of owners and renters remained approximately constant over the sample period. More than 60 percent of all the housing units in the nation were occupied by owners. About 35 percent were rented, and the rest (about four percent) were vacant. Although these series display small variations, I will assume in my model that occupancy rates are constant. This is a good assumption because the movements in house prices over this period were huge, relative to the small movements in occupancy rates displayed in Figure 1.

In the census data presented in Figure 1, the count of occupied housing units is the same as the count of households.4 This implies that the number of total housing units per household was also constant over time. Over the sample period, there were 4-5 percent more housing units than the total number of households. Since the number of houses per household was approximately constant, one might expect that house prices were stable. This was not the case during the sample period.

4See U.S. Census Bureau, Housing Vacancies and Homeownership: Definitions (http://www.census.gov/hhes/www/housing/hvs/hvs.html).
3.2 House Prices

I used house price indices published by the Federal Housing Finance Board (FHFB),5 which measure changes in single-family house prices.6 I deflated the nominal series7 in two different ways. The resulting series are plotted in Figure 2, and they are annual from 1975 to 2007 with the first observation normalized to one. The dashed line is the nominal house prices deflated by the national consumer price indices (CPI),8 and the solid line is deflated by nominal income.9 The latter series is perhaps a more appropriate analog of the model construct which abstracts from both inflation and real growth.

![Figure 2: Two House Price Series Compared](image)

Figure 2 shows that deflating by nominal income emphasizes both the price stability that existed until the late 1990s and the subsequent boom. The stability before the

5Previously, it was the Office of Federal Housing Enterprise Oversight.

6They are repeat-sales indices, that is, they measure average price changes of housing properties sold at least twice. Measuring only repeat transactions on the same housing units helps control for changes in housing units’ quality. Consequently, the indices show quality-adjusted house prices.

7To construct the time series of nominal house prices, I combined the level information about the house prices with FHFB house price indices. I used the nominal median home values reported in Davis et al. (2008).

8I used the CPI for commodities less shelter from the Bureau of Labor Statistics (BLS).

9I took the annual median nominal income series from the U.S. Census Bureau.
boom is consistent with the stationary behavior of quantities noted above. This figure also implies that inflation and growth do not fully account for the recent surge in house prices.10

3.3 Rents

While house prices experienced a substantial increase, the rent series remained stable. Figure 3 presents the series of nominal rents11 deflated by nominal income with the first observation normalized to one. Like the house occupancy series, the rent series was approximately constant over the sample period.

![Figure 3: Rents in Income Units](image)

In summary, we observe the following. Quantities in the housing market were stable, in the sense that occupancy rates of housing units were approximately constant. The rent series was also stable, with only small fluctuations. Nonetheless, house prices

10It may be argued that the price increases are due to rises in the average house size because the repeated house price index does not control for trends in the quantity of housing services. To control for the increase in average house size, Van Nieuwerburgh and Weill (2010) deflate the real house price series by the average growth rate of house size between 1975 and 2007. The resulting series still exhibits a substantial increase in house prices.

11I constructed the nominal rent series by combining the level information of annual rents taken from Davis et al. (2008) with the CPI for rents published by BLS.
appreciated substantially. This paper provides a search and matching model to explain these data as a rational expectations sunspot equilibrium by allowing multiplicity of deterministic equilibria.\footnote{In my dissertation (2010), I considered a change in the interest rate and housing starts as alternative candidates to explain an asset price boom. In view of the time series, they do not seem to be important in generating the surge in prices.}

4 Model

Time is discrete and runs forever. There are two groups of people: renters and homeowners. On the supply side, there are competitive real estate agencies that allocate houses for rent or for sale. In the ownership market, however, agents must search for a transaction partner.

The model has many features of the standard search and matching framework, but the assumption of a fixed bargaining weight is relaxed. By relaxing this assumption I am able to construct a model with multiple underlying steady state equilibria. I exploit this multiplicity to generate a rational expectations equilibrium with a house price bubble in which housing occupancy is always at its steady state. Due to the focus on the steady state, the determination of quantities in the model is trivial. Except for the quantities, the model has five objects: (i) the value of being a renter, (ii) the value of being a homeowner, (iii) house prices, (iv) the present value of a vacant unit, and (v) rents. Below I present equations that solve for those five objects. The appendix provides the full characterization of the model.

4.1 Households

I assume that the model economy has a fixed measure of households. Households are risk neutral and discount future utility at a constant rate β. Each household either rents or owns one housing unit. I assume that households draw higher utility from owning units than from renting units because of tax benefits and psychological satisfaction (for example, pride and sense of security). Consequently, renters seek houses to purchase. The probability of finding a housing unit to buy is subject to the search and matching friction described below. I assume an endowment economy, and
in each period households receive a flow of income. Let R_t be the value of being a renter at period t. This value satisfies the following Bellman equation:

$$R_t = w + \alpha_R - q_t + \beta E_t \left[\phi_{t+1} (H_{t+1} - p_{t+1}) + (1 - \phi_{t+1}) R_{t+1} \right],$$

(1)

where w and α_R are a flow income and utility from renting a housing unit, respectively. In period t, renters pay rents q_t, and in the following period they search for homeownership. With probability ϕ_{t+1}, they find and purchase a housing unit at price p_{t+1} and then become homeowners. This probability is subject to a search and matching friction described in the appendix. The value of being a homeowner in period t is denoted by H_t. If searching renters do not find a house to buy, with probability $1 - \phi_{t+1}$, they remain renters.

Homeowners receive the same income flow w as renters. I assume that they enjoy utility $\alpha_H > \alpha_R$ from their own homes. Unlike renters, homeowners have no rent payment. In the following period, homeowners may have to move out of their housing units due to exogenous events with probability m_H. (Such an event might be, for example, a job reassignment to another location.) In these cases, I assume that homeowners sell their housing units to the real estate sector and change their housing tenure into renters. This assumption simplifies the framework because one does not have to keep track of households’ number of housing units. The real estate sector is implicitly owned by households in the model.\footnote{The real estate sector represents the opportunity cost of holding a vacant unit and trying to sell it in the ownership market at a higher price. Here, I abstract from agents who move from an owned unit to another owned unit. This approach differs from Wheaton’s (1990) framework, which focuses on the homeownership market. According to the American Housing Survey data, however, about half of homeowners who move become renters.}

The present value of a vacant housing unit at time t is denoted by W_t. I assume that the real estate sector is competitive. Hence, when homeowners move out, their housing units are sold to the real estate sector for the value of vacancy W_t, and the homeowners become renters. The value of being a homeowner is described recursively as:

$$H_t = w + \alpha_H + \beta E_t \left[m_H (R_{t+1} + W_{t+1}) + (1 - m_H) H_{t+1} \right].$$

(2)
4.2 Real Estate Sector

I assume a representative real estate sector that supplies housing units to the market. If homeowners move out of their housing units, competition implies that the real estate sector will purchase those units for the present value of a vacant unit W_t. The real estate sector has two options. First, it can rent out houses, in which case they are always occupied by renters and the real estate sector receives rent payment q_t in period t. Second, it can post housing units for sale to potential new homeowners.14 In such cases, the real estate sector finds a new homeowner with some probability, selling the housing unit at price p_t during period t. This option is subject to a search and matching friction.

Let $W_{FR,t}$ be the value of the first option, renting out a housing unit for period t. Similarly, the value of the second option, posting a housing unit for sale, is denoted by $W_{FS,t}$. The value of renting out today is described as:

$$W_{FR,t} = q_t + \beta E_t \left[\max \{ W_{FR,t+1}, W_{FS,t+1} \} \right],$$

that is, the real estate sector receives rent payment for certain today and in the next period it faces the two options again.

If the real estate sector chooses to post a housing unit for sale, it faces a search and matching friction. Let θ_t denote the probability that the real estate sector finds a new homeowner to purchase the housing unit.15 Then, $W_{FS,t}$, the value of posting a housing unit for sale, satisfies the following Bellman equation:

$$W_{FS,t} = \theta_t p_t + (1 - \theta_t) \beta E_t \left[\max \{ W_{FR,t+1}, W_{FS,t+1} \} \right].$$

The real estate sector successfully matches with a renter with probability θ_t, and in this case a transaction occurs at price p_t. With probability $1 - \theta_t$, the real estate sector holds on to the housing unit and can choose between the two options in the following period.

Since the real estate sector is assumed to be competitive, the values of renting out and posting for sale equal the value of a vacant housing unit. This implies that

$$W_t = W_{FS,t} = W_{FR,t},$$

14The real estate sector serves as an intermediary in the model economy. Rubinstein and Wolinsky (1987) analyze the activity of intermediaries in bilateral trading. In their model, buyers and sellers can trade directly or indirectly through the intermediaries while here agents trade only through the real estate sector.

15This probability is characterized in the appendix.
for all t. Hence, the real estate sector is characterized by zero profit.\footnote{This condition attains the interior solution due to the indifference of renting out a house to posting it for sale. If the value of posting housing units for sale is higher than the other option ($W_{FS,t} > W_{FR,t}$), the real estate sector would put every housing unit in the homeownership market; as a result, there would be no housing units for renters. In the reverse case ($W_{FS,t} < W_{FR,t}$), there would be more rental units than renters. There is no friction in the rental market in that renters can find housing units to rent instantly; this pushes rents down until the value of renting out equals that of selling. This indifference condition guarantees that these two corners are avoided in equilibrium.} (Recall that the real estate sector buys housing units for W_t from homeowners.)

Taken together, the equilibrium equations that characterize the real estate sector's behavior are given by:

$$W_t = q_t + \beta E_t [W_{t+1}], \quad (3)$$

and

$$W_t = \theta_t p_t + (1 - \theta_t) \beta E_t [W_{t+1}]. \quad (4)$$

Equation (3) implies that the value of a vacant housing unit is the present discounted sum of flow rents. According to Equation (4), there is a "liquidity premium" in that the transaction price in the ownership market is higher than the value of a vacant unit that can be rented out for certain. The premium is characterized by the search friction and the discount rate. In the steady state, the transaction price p and the value of a vacant unit W satisfy $p = \frac{1-(1-\theta)\beta}{\theta} W$ and the coefficient is greater than one if $0 < \theta < 1$. The premium compensates for the risk that the real estate sector might fail to find a new homeowner and holds on to a housing unit as vacancy until the next period.

4.3 Rational Expectations Sunspot Equilibrium

While most literature assumes Nash bargaining between traders with a fixed bargaining weight, this paper’s model is closed with self-fulfilling beliefs about the housing market. This approach exploits the view that the model exhibits multiple underlying steady state equilibria, as Howitt and McAfee (1987) point out. Consequently, there can be a house price bubble characterized as a rational expectations sunspot equilibrium.

To select an equilibrium, I assume that household confidence may take one of two values: “normal” or “exuberant”. When confidence is normal, both rents and house prices are low. When confidence is exuberant, both rents and house prices are high.
The normal rents are denoted by \(q \), and the exuberant rents are denoted by \(\bar{q} \). The level of household confidence defines two underlying steady state equilibria.

I consider randomization over those two equilibria by news as a sunspot.\(^{17}\) Due to the randomization, there are multiple states in the economy, which are associated with the likelihood of the exuberant economy occurring. News acts as a sunspot that drives the economy from one state to another. The sunspot-driven states are denoted by \(s_t \). Hence a variable \(X_t \) is a function of \(s_t \) and denoted by \(X_t(s_t) \). In the model, quantities are the same for each steady state and accordingly quantities are constant in a randomized equilibrium.\(^{18}\)

I assume that there are \(N \) states and define the first and \(N \)th states, respectively, as the exuberant state and the normal state. The other states are “news” states that represent news about the likelihood of the exuberant state happening. Rents are normal in all the states but the exuberant state. Hence rents in this model are

\[
q_t(s_t) = \bar{q} \text{ if } s_t = 1 \text{ and } q_t(s_t) = q \text{ if } s_t = 2, \ldots, N. \tag{5}
\]

I assume that the evolution of sunspots is Markovian with transition probability matrix \(\Pi \), and I determine house prices endogenously for each state. The prices and rents in each state are:

\[
\begin{align*}
(p(1), \bar{q}), & \quad (p(2), q), \quad \ldots, \quad (p(N-1), \bar{q}), & \quad (p(N), q).
\end{align*}
\]

The self-fulfilling property of the rational expectations equilibrium implies that prices change because people believe that they will change in response to news. This exploits the idea of market psychology affecting house prices.

I assume that the transition probability matrix \(\Pi \) has the following structure:

\[
\Pi = \begin{bmatrix}
1 - \pi_{1,N} & 0 & \cdots & 0 & \pi_{1,N} \\
1 - \pi & 0 & \cdots & 0 & \pi \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & 1 - \pi & 0 & \pi \\
0 & \cdots & 0 & 1 - \pi_{N,N} & \pi_{N,N}
\end{bmatrix},
\]

\(^{17}\)The terminology here is different from the recent literature including Beaudry and Portier (2004) and Jaimovich and Rebelo (2009). While news is about future productivity in their works, here news is about the likelihood of the exuberant equilibrium occurring.

\(^{18}\)State variables (which appear in the appendix) \(\mu_{R,t+1}, \mu_{H,t+1} \) and \(\mu_{V,t+1} \) are respectively denoted by \(\mu_{R,t+1}(s_t), \mu_{H,t+1}(s_t) \) and \(\mu_{V,t+1}(s_t) \). Since this paper focuses on the steady state, they are constant.
where the rows and columns represent current and subsequent states, respectively. I define the Nth state as the normal state and assume that it is very stable in that the probability of remaining there ($\pi_{N,N}$) is very high. At the normal state, however, there is a small probability of moving to the $(N-1)$th state. Once this shock is drawn, there is a fixed probability $1 - \pi$ of moving up by one state. With probability π, the economy goes back to the normal state. This structure allows easy computation of the expected duration of booms conditional on the economy in the $(N-1)$th state. In the later part, I parameterize the probabilities by targeting an expected duration of a boom. The constant probability assumption is not crucial for the computation of duration. One can assume different probabilities of moving up by one state for different states, but the assumption that in news states the economy will move up by one state or return to the normal state is important for simplifying the algorithm.\footnote{Suppose more generally, the probability of returning to the normal state is different for different states. Let the probability of returning to the normal state if the economy is in state s be $\pi_{s,N}$. As I assume that at news states, the economy either moves up by one state or collapses to the normal state, the expected duration conditional on the economy is in the $(N-1)$th state is}

\begin{equation}
D = \pi_{N-1,N} + \sum_{i=2}^{N-2} \left[i \times \pi_{N-i,N} \left(\prod_{j=N-i+1}^{N-1} (1 - \pi_{j,N}) \right) \right] + \left(N - 1 + \frac{1 - \pi_{1,N}}{\pi_{1,N}} \right) \prod_{j=2}^{N-1} (1 - \pi_{j,N}).
\end{equation}

19\footnote{If the model is closed with a Nash bargain, prices are solved given the Nash bargaining weight. Let λ_t be the bargaining weight of a renter. In this approach, prices are formed through maximizing the Nash product $(H_t - R_t - p_t)\lambda_t (p_t - W_t)^{1-\lambda_t}$ and the resulting surplus sharing rule $\frac{\lambda_t}{\lambda_t - p_t} = \frac{1-\lambda_t}{p_t - W_t}$ works as a condition to solve for prices. Hence, using the model closed with confidence, the implied}

In this model, shifts in states generate a house price appreciation. On the other hand, those shifts have no feedback on the measures of rented, owned or vacant units. This is due to the assumption that housing units are fixed in the economy and that exogenous moving shocks govern the evolution of renters and homeowners. I focus on balanced flow of renters and homeowners in order to match the observation discussed in Section 3. For each state, quantities are the same.

A rational expectations equilibrium must satisfy the individual rationality condition that each trader in the ownership market appropriates positive surplus from a match. For each period t, the surplus of a match is the difference in values of being a homeowner and a renter less the value of a vacant unit, $H_t(s_t) - R_t(s_t) - W_t(s_t)$. Then a house buyer receives the surplus of $H_t(s_t) - R_t(s_t) - p_t(s_t)$ from a transaction with price $p_t(s_t)$ and a seller appropriates the rest. Hence individual rationality implies that prices are subject to $H_t(s_t) - R_t(s_t) - p_t(s_t) > W_t(s_t)$.
Since I focus on an equilibrium in which quantities are constant and equal to their steady state values,
\(^{21}\) a rational expectations equilibrium is characterized by the values of being a renter and a homeowner, \(\{R_t(s_t), H_t(s_t)\}\), house prices and rents \(\{p_t(s_t), q_t(s_t)\}\), and the present value of a vacant housing unit \(\{W_t(s_t)\}\). These five objects are subject to the Bellman equations (1) and (2), pricing equations (3) and (4), rents defined by confidence (5), sunspot events \(\{s_t\}\) evolving according to the transition probability matrix \(\Pi\) and the individual rationality condition \(H_t(s_t) - R_t(s_t) > p_t(s_t) > W_t(s_t)\).

5 Quantitative Analysis

This section discusses some quantitative implications of the model and shows that a house price bubble can be characterized as a rational expectations equilibrium. With the calibrated parameters presented below, the model generates a house price bubble as a consequence of multiple underlying steady state equilibria. I conduct a sensitivity analysis to show that the existence of house price bubbles is a robust feature of the model.

5.1 Parameterization

I calibrate the fixed parameters to a deterministic steady state that corresponds to the period of stability in the U.S. house prices from 1975 to 1998. First, the moving probability of homeowners \(m_H\) is calibrated to 0.04, which is the mean ratio of homeowners who become renters to the total homeowners, according to the American Housing Survey. I normalize the total measure of households to be one, \(\tilde{N} = 1\). The total housing units relative to the number of households \(\tilde{H}\) is taken from the U.S. Census Bureau. From the total housing units in the data, I subtract vacant units occupied by people who usually live elsewhere, units for temporary use and seasonally vacant units. In surplus sharing rate can be computed for state \(s_t\) by \(\lambda_t(s_t) = \frac{H_t(s_t) - R_t(s_t) - p_t(s_t)}{H_t(s_t) - R_t(s_t) - W_t(s_t)}\). With the implied sharing rate for each state and the transition probability matrix, the model closed with the Nash bargaining implies the same rents and prices. In this sense, the model closed with beliefs is isomorphic to the bargaining framework. Moreover, the individual rationality condition is equivalent to the notion that the implied surplus sharing rate \(\lambda_t\) is in an open interval \((0, 1)\).

\(^{21}\)See the appendix for the full description of a rational expectations sunspot equilibrium.
other words, the vacant units in the model correspond to vacant units on the market. The measure of total housing units is 1.045 per household.

As described in the appendix, the measure of matches M_t depends on the measure of renters $µ_{R,t}$ and the measure of houses posted on the ownership market $µ_{FS,t}$. I assume that the matching technology takes a Cobb-Douglas form:

$$M(µ_{R,t}, µ_{FS,t}) = κ(µ_{R,t})^γ(µ_{FS,t})^{1−γ}.$$

To calibrate the parameters of the matching function, I target the homeownership rate, which was stable at 65 percent. The curvature parameter $γ$ is set to be 0.5.\(^\text{22}\) Given this curvature parameter, targeting the steady state homeownership rate to be 65 percent implies that $κ$ is 0.144. Note that the choice of $γ$ by itself is not important for the main analysis, as long as the scale parameter $κ$ is properly specified to match the observed homeownership rate; this is so because the relevant probabilities $ϕ$ and $θ$ in the ownership market are determined by the steady state homeownership rate. Those probabilities are computed as $ϕ = 0.074$ and $θ = 0.37$. The rate that renters become homeowners is consistent with the data on tenure change. According to the American Housing Survey data, the rate was about seven percent.

Data on the rent-price ratio were used for calibrating the time discount rate. The series was very stable around five percent before the housing price boom. Assuming that this is the steady state value of the rent-price ratio, the discount rate $β$ can be calibrated as 0.945.

To calibrate the parameter of flow utility from a housing unit, I used observed rents. Assuming that surplus is equally split in the targeted steady state, then rents are proportional to the difference in the flow utility from housing units, $α_H − α_R$. Nominal rents deflated by nominal income were stable around 0.196, which is the average value between 1975 and 1998. I normalize the flow utility from a rental unit $α_R$ to zero. And the flow utility from homeownership $α_H$ is calibrated as 0.0866. Note that to be compatible with prices in income units presented in Section 3, I normalize the flow income w to one. Hence, homeowners enjoy extra utility equivalent to 8.66 percent of income from their own housing units relative to renters. This number is reasonable

\(^{22}\)This specification potentially leads to a situation in which $M_t > \min\{µ_{R,t}, µ_{FS,t}\}$ while it is not the case with the parameterization in the quantitative experiment.

\(^{23}\)The choice of the curvature parameter does not have welfare consequences because the model assumes fixed housing units.
considering that there are tax benefits for homeownership24 and that owning a house gives people psychological satisfaction in the form of pride and a sense of safety.

I focus on two sorts of confidence associated with rents: normal and exuberant. Considering the observation that rents in income units were stable over time, the normal rents are taken from the data on nominal rents deflated by nominal income whose average value over the stable period (1975-1998) was 0.196. Rents in the exuberant state are assumed to be 2.5 times higher than normal rents. Among the states of the economy, only the one I call the exuberant state is associated with high rents; the others are associated with normal rents. I argue that rents and prices observed in the data are associated with those on the path towards the exuberant state. The existence of the exuberant state is the key to account for the surge in house prices and stable rents during the boom.

To parameterize the transition probabilities, I assume that the exuberant state is very stable once the economy gets there. For the probability of staying in the exuberant state, I assume a value of 0.99. Also, the probability of moving to the boom path from the normal state \((1 - \pi_{N,N})\) is set to be 0.03, which is calibrated to the frequency of booms in asset prices that we have observed in other asset markets.25 According to the price-earnings ratio data used in Shiller (2005),26 there were two rapid booms in stock prices over the sample period of 1881 to 2008. These two booms lasted from 1922 to 1929 and from 1991 to 2000, respectively. Excluding the boom and crash periods, there were about 100 periods.

I assume that there are 12 states. Given this assumption, the structure of the transition probability matrix and the probability of staying in the exuberant state once reached, one can calibrate the probability of a crash for news states by targeting booms’ expected durations. I target expected durations to eight periods. Then, the probability of a crash for news states is calibrated as \(\pi = 0.268\); this implies that the probability of reaching the exuberant state conditional on the economy in the \((N - 1)\)th state is \((1 - \pi)^{N-2} = 0.044\). Since the probability of going to the boom path is quite small \((1 - \pi_{N,N} = 0.03)\), the state is an extremely rare event. Table 1 summarizes the parameterization.

24One could imagine a situation in which one third of an agent’s income goes to mortgage interest payments and the tax rate is 25 percent.

25As long as the probability of moving to the boom path \(1 - \pi_{N,N}\) is a small number, the parameterization is insignificant for the result.

26The most recent data can be found at http://www.econ.yale.edu/~shiller/data.htm
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Discount rate</td>
<td>0.945</td>
</tr>
<tr>
<td>α_H</td>
<td>Utility from owning a house</td>
<td>0.0866</td>
</tr>
<tr>
<td>α_R</td>
<td>Utility from renting a house</td>
<td>0</td>
</tr>
<tr>
<td>γ</td>
<td>Curvature parameter on matching function</td>
<td>0.5</td>
</tr>
<tr>
<td>\bar{H}</td>
<td>Measure of housing units in a location</td>
<td>1.045</td>
</tr>
<tr>
<td>N</td>
<td>Total measure of households</td>
<td>1</td>
</tr>
<tr>
<td>κ</td>
<td>Scaling parameter on matching function</td>
<td>0.144</td>
</tr>
<tr>
<td>w</td>
<td>Flow income</td>
<td>1</td>
</tr>
<tr>
<td>m_H</td>
<td>Moving probability of homeowners</td>
<td>0.04</td>
</tr>
<tr>
<td>\bar{q}</td>
<td>Exuberant rents</td>
<td>0.49</td>
</tr>
<tr>
<td>q</td>
<td>Normal rents</td>
<td>0.196</td>
</tr>
<tr>
<td>\bar{N}</td>
<td>Number of states</td>
<td>12</td>
</tr>
<tr>
<td>$\pi_{1,N}$</td>
<td>Crash probability in the exuberant state</td>
<td>0.01</td>
</tr>
<tr>
<td>$\pi_{N,N}$</td>
<td>Staying probability in the normal state</td>
<td>0.97</td>
</tr>
<tr>
<td>π</td>
<td>Crash probability in a news state</td>
<td>0.268</td>
</tr>
</tbody>
</table>

Table 1: Parameter Values

5.2 Bounded Bubbles as a Rational Expectations Equilibrium

Assuming that the measures of renters and homeowners are constant, the price profile is computed as

$$ p = \begin{bmatrix} 9.02 & 7.11 & 6.14 & 5.47 & 5.01 & 4.69 & 4.46 & 4.31 & 4.20 & 4.13 & 4.08 & 3.97 \end{bmatrix}', $$

and house prices substantially increase as the economy moves to higher states. As long as the economy is not in the exuberant state, rents are constant. As I show below, this house price profile satisfies individual rationality. Thus, the recent U.S. housing market can be characterized as a rational expectations sunspot equilibrium.

House prices in the exuberant state are high because of the stability and high rents in that state. To support the constant rent profile for the other states, house prices need to be expected to appreciate moderately. If the house prices are expected to decrease, rents would have to be very high to compensate the expected depreciation. Also, if the expected appreciation is too high, rents would be very small (or even negative) because the value of a vacant house is the discounted sum of future rent payments. Note that the
The expected value of a house at each news state is characterized by house prices in the state above by one and in the normal state due to the structure of the transition probability matrix. For states with high house values, moving further towards the exuberant state implies a substantial house price increase for moderate expected appreciation; this is because there could be a crash and prices could plummet. By modeling the exuberant state where rents are high, the framework implies that a surge in house prices could occur while rents are stable. This framework generates a boom in house prices with stable rents.

I compare prices in the bottom nine states with data from the recent boom observed from 1998 through 2006. As Figure 4 shows, the model closely matches the empirical surge in house prices. This addresses the main theme of the paper: Due to a steady state indeterminacy in the search and matching framework, self-fulfilling beliefs can drive a boom in house prices. If people believe that there is a small chance of reaching the exuberant state, house prices will appreciate substantially while rents remain constant.

![Figure 4: House Prices Derived from the Model](image)

Figure 5 illustrates that the division of the surplus in each state is individually rational. Accordingly, the model characterizes a house price bubble as a rational ex-

27The series are nominal house prices (including level information) deflated by nominal income. Note that in Figure 2, I normalized the first observation to one.
pectations equilibrium. A match surplus in period t is the gain in the values by changing housing tenure $H_t - R_t$ minus the intrinsic value of a housing unit W_t. The transaction price p_t must stay inside the set $[W_t, H_t - R_t]$ so that each side of the match appropriates a nonnegative surplus. Even in the exuberant state with very high prices, agents are willing to trade if they match.

![Figure 5: Individual Rationality in Each State](image)

The figure shows how the surplus is split between renters and the real estate sector. In the normal state (12th state) the total surplus is equally split.\footnote{Precisely speaking, the implied sharing rate differs slightly from 0.5 (0.5002) due to randomization. The parameters are calibrated so that the surplus is split equally at the deterministic steady state with the observed rents.} For most states, the surplus is shared approximately equally. Even in the state in which the price appreciates more than 50 percent (4th state), the sharing rate on the renter’s side is 0.54. An obvious exception is the exuberant state, where the real estate sector appropriates most surplus. Such an extreme state is still supported as a rational expectations equilibrium. Table 2 summarizes rents, house prices and the fraction of surplus that renters appropriate in each state.
Since the model implies a substantial house price appreciation similar to the data, the model can address the probability distribution of house prices. The model is simulated for 30 periods starting from the normal state, which corresponds to the period from 1975 to 2006. This is iterated 10^5 times. The simulation provides the house price distribution in 2006 with the initial period (1975) in the normal state. Figure 6 presents the result. The vertical axis is the probability and the horizontal axis is the state indexed as in Table 2.

It is highly likely that the economy is in the normal state with probability 0.88. With probability 0.1, the economy is in one of the news states. Since the economy moves towards the exuberant state one by one and potentially collapses to the normal state from each state, the probability is monotonically decreasing as the economy approaches the exuberant state. Among the news states, the 4th state, which corresponds to the price level observed in 2006, occurs with probability 0.003. The simulation also suggests that the economy is in the exuberant state with probability 0.02. This probability is low but higher than the probabilities of relatively high news states being observed, due to the assumption that the exuberant state is stable once the economy gets there.
5.3 Sensitivity

This subsection examines the implications of different values of rents and sustainability in the exuberant state. First, I consider variation in rents in the exuberant state, keeping the transition probability matrix fixed. I use rents in the exuberant state of 2.5 times (as used in the analysis above), 2.25 times and two times as much as the normal rents. In Figure 7, I plot the appreciation of house prices as moving from the normal state upward by eight states for different values in rents in the exuberant state. The graph with rents 2.5 times higher than normal corresponds to Figure 4. With rents of 2.25 times and two times as high as the normal rents, house prices appreciate more than 30 percent and about 25 percent, respectively.
In the second experiment, I consider a case in which the probability of collapsing from the exuberant state to the normal state is the same as the crash probabilities from the news states, $\pi_{1,N} = \pi$. This probability is set as 0.125 by targeting the same expected duration of a boom. The same experiment, which Figure 8 summarizes, shows that there is still a considerable increase in house prices moving towards the exuberant state, though the magnitude is not as large as the case with the original crash probability in the exuberant state. With the selected values of rents, prices appreciate more than 15 percent in eight periods.

With the transition probabilities used in the second experiment, exuberant rents 2.5 times higher than normal violates the individual rationality condition. Changes in the transition probability matrix affect not only prices but also households’ values. The smaller sustaining probability of the exuberant state lowers prices’ upper bound more than it lowers house prices in the exuberant state.

Figure 7: Price Appreciation for Variations in Rents in the Exuberant State
6 Conclusion

This paper focuses on three observations about the U.S. housing market from 1975 to 2007. First, housing tenure and vacancy were approximately constant. Second, rents were approximately constant. Third, house price data nonetheless showed a large appreciation after the late 1990s. It then provides a model that characterizes those observations as an equilibrium.

The model takes ideas developed in search and matching theory, and is closed with self-fulfilling beliefs. In particular, it focuses on two levels of confidence (normal and exuberant) regarding the housing market that are associated with rents; each defines a deterministic steady state equilibrium.

This paper formalizes the idea that sunspots drove the recent boom in the U.S. housing market using an equilibrium framework. I have shown that because of multiple underlying deterministic equilibria, a house price bubble driven by self-fulfilling beliefs can exist in a rational expectations equilibrium. The bubble occurs as the economy moves towards the exuberant equilibrium and is driven by the arrival of news.
Appendix

This appendix presents the determination of quantities in the model and provides the full characterization of the model.

Evolution of Housing Inventory

This subsection describes how the measures of renters and homeowners evolve in the model over time. Let $\mu_{R,t}$ and $\mu_{H,t}$ be the measures of renters and homeowners at the beginning of period t, respectively. As I assume that each household either rents or owns one housing unit, these variables also indicate the respective measures of rented and owned units. I consider a stationary model by abstracting from population growth and increases in housing units. The total number of households is denoted by \bar{N}, which implies that

$$\mu_{R,t} + \mu_{H,t} = \bar{N},$$

for all t. I also assume that the total number of housing units is exogenous and constant. Let $\mu_{V,t}$ denote the stock of vacant housing units at the beginning of period t. As all the housing units are rented, owned or vacant, we have

$$\mu_{R,t} + \mu_{H,t} + \mu_{V,t} = \bar{H},$$

for all t, where \bar{H} denotes the total measure of housing units and is constant. In this framework, the measure of vacant units is simply given by $\mu_{V,t} = \bar{H} - \bar{N}$. This model abstracts from fluctuations in vacant units, based on the observation that the numbers of households and housing units grew at approximately the same rate. Carefully examining this margin is interesting.29 I, however, take the opposite approach of fixed housing units in the model economy.

Renters seek housing units to purchase but face a search and matching friction. Let M_t denote the measure of new matches between renters and housing units posted for sale. Among the stock of renters, measure M_t of them purchase houses and become homeowners. At the same time, there is an inflow of renters, as homeowners who move sell their units to the real estate sector and become renters. The probability of

29For example, Kiyotaki \textit{et al.} (2008) present a model in which housing units are produced from capital and fixed land.
drawing a moving shock is m_H. Hence, the stock of renters in the following period is characterized by the law of motion of renters:

$$\mu_{R,t+1} = \mu_{R,t} - M_t + m_H \mu_{H,t},$$

(6)

for all t. Accordingly, the new flow of homeowners is given by the new match, M_t. The outflow is those who are hit by the moving shock. The law of motion of homeowners is given by:

$$\mu_{H,t+1} = \mu_{H,t} + M_t - m_H \mu_{H,t},$$

(7)

for all t. This follows from the law of motion of renters (Equation (6)) and the fixed measure of households.

Matching

The measure of new matches, M_t, is a function of the measure of households searching for housing units to purchase and the measure of housing units that the real estate sector posts for sale. As every renter searches for a housing unit in the model, the first element is the measure of renters, $\mu_{R,t}$. Let $\mu_{FS,t}$ be the measure of housing units posted for sale. As in the bulk of the labor search literature, the matching function is assumed to be constant returns to scale and increasing in both arguments. The measure of new matches is given by

$$M_t = M (\mu_{R,t}, \mu_{FS,t}).$$

After the moving shock is realized, the real estate sector adds the new flow of houses from homeowners who move out to its stock of houses, rental and vacant units. In period t, the new flow is $m_H \mu_{H,t}$ and the existing stock of houses in the real estate sector is the rental and vacant units, $\mu_{R,t} + \mu_{V,t}$. The real estate sector allocates these housing units between those marketed for rent and those marketed for sale. Let $\mu_{FR,t}$ be the measure of housing units to be rented out. The measure of houses posted for sale is denoted by $\mu_{FS,t}$. Accordingly, the resource constraint on housing stock is

$$\mu_{FS,t} + \mu_{FR,t} = \mu_{R,t} + \mu_{V,t} + m_H \mu_{H,t}.$$

(8)

As I assume no friction in the rental market, the real estate sector should supply the same rental units as renters to clear the market. The measure of renters at the
beginning of period $t + 1$ is denoted by $\mu_{R,t+1}$. Recall that this is a state variable in period $t + 1$ and determined within period t. Hence the real estate sector rents out the measure $\mu_{R,t+1}$ of housing units to clear the rental market. Therefore, the measure of housing units to be rented out $\mu_{FR,t}$ satisfies:

$$\mu_{FR,t} = \mu_{R,t+1}. \tag{9}$$

The law of motion of renters, equation (6), implies that

$$\mu_{FS,t} - M_t = \mu_{V,t+1}.$$

The stock of vacant units at the beginning of each period equals the measure of housing units that are posted for sale but failed to match with renters.30

The measure of matches depends on the measure of renters $\mu_{R,t}$ and the measure of housing units posted for sale $\mu_{FS,t}$. The measure of matches divided by the measure of renters is the probability that a renter succeeds in finding a house, ϕ. Similarly, the measure of matches divided by the measure of houses posted for sale is the probability that a housing unit on the homeownership market is occupied, θ. Hence, those probabilities are determined through the evolution of the measure of renters and houses posted for sale:

$$\phi_t = \frac{M_t}{\mu_{R,t}}, \quad \theta_t = \frac{M_t}{\mu_{FS,t}},$$

for all t.

Full Description of a Rational Expectations Equilibrium

Having described the determination of quantities in the model, a rational expectations sunspot equilibrium is defined as follows.

Definition. A rational expectations sunspot equilibrium is a sequence of measures of renters, homeowners and vacant units $\{\mu_{R,t+1}(s_t), \mu_{H,t+1}(s_t), \mu_{V,t+1}(s_t)\}$ with their initial steady state values, the measure of housing units rented out and posted for sale $\{\mu_{FR,t}(s_t), \mu_{FS,t}(s_t)\}$, the values of being a renter and a homeowner, $\{R_t(s_t), H_t(s_t)\}$, house prices and rents $\{p_t(s_t), q_t(s_t)\}$, and the present value of a vacant housing unit $\{W_t(s_t)\}$. These variables are subject to the Bellman equations (1) and (2),

30The time subscript is for purposes of correct interpretation. For derivation, the time subscript on the measure of vacant units can be ignored because it is constant.
pricing equations (3) and (4), rents defined by confidence (5), laws of motion (6) and (7), the resource constraint of housing units (8), the rent market clearing condition (9), vacancy equation $\mu_{V,t+1}(s_t) = \bar{H} - \bar{N}$, sunspot events $\{s_t\}$ evolving according to the transition probability matrix Π and the individual rationality condition $H_t(s_t) - R_t(s_t) > p_t(s_t) > W_t(s_t)$.
References

