THE NARNIA PROJECT
INTEGRATING APPROACHES
TO ANCIENT MATERIAL STUDIES

Edited by
Vasiliki Kassianidou &
Maria Dikomitou-Eliadou
THE NARNIA PROJECT:
INTEGRATING APPROACHES TO ANCIENT MATERIAL STUDIES

Edited by: Vasiliki Kassianidou & Maria Dikomitou-Eliadou

Publisher: The NARNIA Project and the Archaeological Research Unit, University of Cyprus
Layout Design & Cover: Thomas Costi

Copyright © 2014. All rights reserved.
No part of this publication may be reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or mechanical methods, without the
prior written permission of the publisher, except in the case of brief quotations embodied in critical
reviews and certain other noncommercial uses permitted by copyright law.

This project has received funding from the European Union’s Seventh Framework Programme for research,
technological development and demonstration under grant agreement No. 265010.
TABLE OF CONTENTS

List of abbreviations .. 6

The NARNIA Project: Integrating approaches to ancient material studies 8
Vasiliki Kassianidou and Maria Dikomitou-Eliadou

The NARNIA network .. 12

WORK PACKAGE 2

The study of ceramic artefacts from the eastern Mediterranean

Introduction ... 17
Peter M. Day

The Final Neolithic - Early Minoan transition in Phaistos, Crete: Continuity and change in pottery manufacture ... 20
Roberta Mentesana

Indirect evidence for pottery production on the island of Aegina during the transitional LH IIIB-LH IIIC Early Period .. 32
William Gilstrap

Geochemical proxies for provenancing Cypriot pottery classes from Early to Late Bronze Age contexts ... 42
Christina Makarona

A technical approach to Attic-pottery production during the historic period: Raw materials and the black glaze .. 54
Artemi Chaviara

Mechanical and thermal behaviour of functional ceramics: The influence of firing and temper on the impact resistance of archaeological ceramics 68
Noémi S. Müller

WORK PACKAGE 3

Glass production and trade in the Eastern Mediterranean

Introduction ... 83
Karin Nys
TABLE OF CONTENTS

Shedding light on the glass industry of ancient Cyprus: Archaeological questions, methodology and preliminary results
Andrea Ceglia
85

Networks of distribution at the margins of the empire: Late Antique glass vessels from the Lower Danube region
Anastasia Cholakova
94

WORK PACKAGE 3
Copper metallurgy in the eastern Mediterranean

Introduction
Vasiliki Kassianidou
107

The production and trade of Cypriot copper in the Late Bronze Age
Lente Van Brempt
110

Unravelling technological issues of metallurgical ceramics from Cyprus: The case of Kition
Demetrios Ioannides
122

pXRF analysis of Cypriot copper alloy artefacts dating to the Late Bronze and the Iron Age
Andreas Charalambous
134

Into the crucible. Methodological approaches to reconstructing ancient crucible metallurgy, from New Kingdom Egypt to Late Roman Bulgaria
Frederik Rademakers
146

Copper alloy production and consumption in the Tuscia region during the Middle Ages
Maimardo Gaudenzi Asinelli
156

WORK PACKAGE 5
The study and conservation of architectural decoration from the Eastern Mediterranean. Issues of material properties and cultural heritage

Introduction
Anne-Marie Guimier-Sorbets
171

The techniques and materials of Hellenistic mosaics with a special focus on the vitreous materials of the mosaics from Delos (Greece)
Francesca Licenziati
172
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Techniques and materials used in wall paintings from the Classical to the Roman period in the eastern Mediterranean</td>
<td>183</td>
</tr>
<tr>
<td>Lydia Avlonitou</td>
<td></td>
</tr>
<tr>
<td>Artificial materials used in the production of Cypriot wall mosaics</td>
<td>194</td>
</tr>
<tr>
<td>Olivier Bonnerot</td>
<td></td>
</tr>
<tr>
<td>The state of conservation of the architectural structures and mortar characterisation at the castle of Azraq, Jordan</td>
<td>207</td>
</tr>
<tr>
<td>Marta Tenconi</td>
<td></td>
</tr>
<tr>
<td>Application and development of computational intelligence methods in the analysis of archaeological data</td>
<td>219</td>
</tr>
<tr>
<td>Elisavet Charalambous</td>
<td></td>
</tr>
<tr>
<td>WORK PACKAGE 6</td>
<td></td>
</tr>
<tr>
<td>** Dating Techniques and the Palaeoenvironment**</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>Yannis Bassiakos</td>
<td></td>
</tr>
<tr>
<td>Luminescence dating and the palaeo-environment in SW Peloponnesus</td>
<td>237</td>
</tr>
<tr>
<td>John Christodoulakis</td>
<td></td>
</tr>
<tr>
<td>Luminescence dating and the palaeo-environment in SE Cyprus</td>
<td>247</td>
</tr>
<tr>
<td>Evangelos Tsakalos</td>
<td></td>
</tr>
<tr>
<td>WORK PACKAGE 7</td>
<td></td>
</tr>
<tr>
<td>** HHpXRF Application in Archaeology**</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>261</td>
</tr>
<tr>
<td>Roger Doonan</td>
<td></td>
</tr>
<tr>
<td>Keeping up with the excavations: Rapid obsidian sourcing in the field with portable XRF</td>
<td>262</td>
</tr>
<tr>
<td>Ellery Frahm</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Bronze Age</td>
</tr>
<tr>
<td>BE or BSE</td>
<td>Back-scattered Electron mode</td>
</tr>
<tr>
<td>BG</td>
<td>Black Glazed Attic pottery</td>
</tr>
<tr>
<td>CLODD</td>
<td>Clustering in Ordered Dissimilarity Data</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>DTA-TG</td>
<td>Differential Thermal Analysis - Thermogravimetry</td>
</tr>
<tr>
<td>DM</td>
<td>Digital Microscopy</td>
</tr>
<tr>
<td>EBA</td>
<td>Early Bronze Age</td>
</tr>
<tr>
<td>EDS or EDX</td>
<td>Energy Dispersive X-ray Spectrometry</td>
</tr>
<tr>
<td>ED-XRF</td>
<td>Energy Dispersive X-ray Fluorescence spectrometry</td>
</tr>
<tr>
<td>EM</td>
<td>Early Minoan period</td>
</tr>
<tr>
<td>ESD</td>
<td>Equivalent Spherical Diameter</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron Spin Resonance</td>
</tr>
<tr>
<td>FCM</td>
<td>Fuzzy C-Means clustering algorithm</td>
</tr>
<tr>
<td>FN</td>
<td>Final Neolithic period</td>
</tr>
<tr>
<td>FORS</td>
<td>Fiber Optic Reflectance Spectrometry</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared spectroscopy</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas Chromatography-Mass Spectrometry</td>
</tr>
<tr>
<td>HIT</td>
<td>High Iron Titanium glass</td>
</tr>
<tr>
<td>HIMT</td>
<td>High Iron Manganese Titanium glass</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>IC</td>
<td>Ion Chromatography</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively Coupled Plasma spectrometry</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively Coupled Plasma Mass Spectrometry</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared signal</td>
</tr>
<tr>
<td>IRSL</td>
<td>Infrared Stimulation of feldspar</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometres</td>
</tr>
<tr>
<td>LA-ICP-MS</td>
<td>Laser Ablation Ion Coupled Plasma Mass Spectrometry</td>
</tr>
<tr>
<td>LBA</td>
<td>Late Bronze Age</td>
</tr>
<tr>
<td>LC</td>
<td>Late Cypriot Bronze Age</td>
</tr>
<tr>
<td>LH</td>
<td>Late Helladic Bronze Age</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LI</td>
<td>Lead Isotope analysis</td>
</tr>
<tr>
<td>MBA</td>
<td>Middle Bronze Age</td>
</tr>
<tr>
<td>MC-ICP-MS</td>
<td>Multi-Collector-Inductively Coupled Plasma -Mass Spectrometry</td>
</tr>
<tr>
<td>MIP</td>
<td>Mercury Intrusion Porosimetry</td>
</tr>
<tr>
<td>μ-PIXE</td>
<td>Micro Proton-Induced X-ray Emission</td>
</tr>
<tr>
<td>μ-XRF</td>
<td>Micro X-Ray Fluorescence spectrometry</td>
</tr>
<tr>
<td>NAA</td>
<td>Neutron Activation Analysis</td>
</tr>
<tr>
<td>ORO</td>
<td>Firing cycle that includes successive firing stages under Oxidising, Reducing, and Oxidising kiln atmosphere conditions</td>
</tr>
<tr>
<td>OSL</td>
<td>Optically Stimulated Luminescence</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PIGE</td>
<td>Particle Induced γ-ray Emission spectrometry</td>
</tr>
<tr>
<td>pIRIR</td>
<td>post-Infrared Infrared-Stimulated luminescence</td>
</tr>
<tr>
<td>PIXE</td>
<td>Particle Induced X-ray Emission spectrometry</td>
</tr>
<tr>
<td>PLM</td>
<td>Polarised Light Microscopy</td>
</tr>
<tr>
<td>pXRF</td>
<td>Portable X-Ray Fluorescence spectroscopy</td>
</tr>
<tr>
<td>PWWM</td>
<td>Plain White Wheel-made ware</td>
</tr>
<tr>
<td>Redox</td>
<td>Portmanteau of words reduction and oxidation</td>
</tr>
<tr>
<td>SAR</td>
<td>Single-Aliquot Regenerative dose</td>
</tr>
<tr>
<td>SE</td>
<td>Secondary Electron mode</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TG</td>
<td>Thermogravimetry</td>
</tr>
<tr>
<td>TL</td>
<td>Thermoluminescence</td>
</tr>
<tr>
<td>TRS</td>
<td>Transverse Rupture Strength</td>
</tr>
<tr>
<td>UV-vis</td>
<td>Ultraviolet Visible spectrophotometry</td>
</tr>
<tr>
<td>UV-vis-NIR</td>
<td>Ultra Violet-visible-Near Infra Red</td>
</tr>
<tr>
<td>VAT</td>
<td>Visual Assessment Tendency</td>
</tr>
<tr>
<td>w%</td>
<td>Weight percentage (mass concentration)</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>
THE NARNIA PROJECT:
INTEGRATING APPROACHES TO ANCIENT MATERIAL STUDIES

This book introduces the research work conducted in the four-year lifespan of the European Marie Curie Actions Initial Training Network (FP7 – PEOPLE – Marie Curie Actions – ITN – Project no. 265010) New Archaeological Research Network for Integrating Approaches to ancient material studies, with the acronym NARNIA. This is currently the largest project to receive funding from the European Commission in the fields of archaeology and archaeological sciences, with a budget over 4.5 million Euros and 20 recruited research fellows.

NARNIA was envisaged and realised on the basis that the most comprehensive archaeological studies are those which combine traditional methods of typological and stylistic classification with analytical techniques deriving from the natural and digital sciences, and that the relationship between fieldwork and laboratory is a critical factor for the successful completion of any project. The ultimate objective of NARNIA, therefore, was the development of a new generation of scholars, who understand the complexities of interdisciplinary projects, and may integrate in their research differing techniques and methodological approaches for a holistic study of ancient material culture, enhancing our knowledge on different aspects of the history and archaeology of the eastern Mediterranean.

NARNIA provided a unique opportunity and a rigorous research platform for the collaboration of nine partners; six academic institutions, one research centre and two private enterprises. These are the University of Cyprus – which was the coordinating institution –, Vrije Universiteit Brussel, Université Paris-Ouest, the Hashemite University, University College London, the University of Sheffield, the National Centre for Scientific Research “Demokritos”, G. M EuroCy Innovations Ltd and Thetis Authentics Ltd. The NARNIA partnership was active in six different countries, i.e. Cyprus, Belgium, France, Greece, Jordan, and the United Kingdom.

The success of the NARNIA project was already betokened by the success of the initial application to secure the funding. It can be argued - paraphrasing the Roman philosopher Seneca – that success is what happens when preparation meets opportunity. The application that the NARNIA partnership submitted for funding had to compete with 862
other proposals, from all fields of research, and secured both the highest rating and the largest budget among the 63 applications that were finally selected for funding. This was a promising beginning for a project that became an amazing success story and a great school for all those actively involved for its implementation.

During its four-year lifespan, NARNIA brought together the crème de la crème of the archaeological research community – already friends and colleagues – from various research institutions with the shared ambition to join forces, each one offering their expertise, for the realisation of a training and research agenda that could never have been achieved by a sole academic institution. The NARNIA partnership recruited 16 Early Stage Researchers and four Experienced Researchers that became the core focus of the project and its driving force. The duration of the 16 Early Stage Researcher fellowships was three years; during that time they all embarked on doctoral research, following training courses that would enable them to complete a doctoral thesis. The four Experienced Researchers were recruited for two years, in order to complement the training and research activities of the project and conduct research on a post-doctoral level. It is our belief that among the hundreds of applications that the NARNIA partnership received prior to recruitment, we have succeeded in selecting a multinational group of brilliant young scholars that will continue to contribute to archaeological research, putting into practice everything that they have learnt during their involvement in the NARNIA project.

As NARNIA is a Marie Curie ITN, a significant component of the project was dedicated to the training of the fellows. The *raison d’être* of the network was to improve the career prospects for employment of our 20 fellows by enabling them to develop lab-based skills needed for the study of ancient materials. In order to achieve this aim, the partner institutions organised an impressive series of research and training activities. During its four-year lifespan, NARNIA offered 26 training courses across the six participating countries, on the interdisciplinary study of ancient pottery, glass, metals, architectural decoration and building materials, as well as dating and the palaeo-environment, and the application of portable X-ray fluorescence spectroscopy in the field of archaeology. All NARNIA training courses were open to researchers outside the network, and the 16 Early Stage Researchers and four Experienced Researchers recruited by the NARNIA partnership had the opportunity to communicate and interact with scholars and researchers from different disciplines and research backgrounds.

The training agenda of NARNIA was structured to include both scientific training, and training for the development of complementary skills. This assorted corpus of training...
courses was designed specifically for the diverse research community of NARNIA, which was composed by archaeologists, conservators, physicists, chemists, engineers, and IT analysts. Furthermore, the generous funding that we had received, allowed us to invite high-profile scholars, specialists in the various topics scrutinised by our training courses, in order to train, exchange and discuss ideas and methodologies with our fellows and scientific staff. The NARNIA training courses attracted the interest of the wider research community, and were, thus, also followed by young and more experienced researchers outside the project network.

In addition to the prime scope of NARNIA, which was to offer our fellows the best possible training on archaeological sciences and the analytical techniques applied to the study of ancient materials, improving their prospects of employment and career development, the NARNIA network has been also contributing to the history and archaeology of the eastern Mediterranean basin, a region of great historical, cultural and geopolitical significance. Ancient technology has had a significant effect on the development of humans and their societies, as both human and social evolution are directly entwined with the materials, which, on the one hand, were accessible at any given time and place, and on the other, had the appropriate properties to lend themselves for making artefacts and serving functions. Therefore, the assessment of ancient materials and their processing for the production of artefacts and the evaluation of ancient techniques and know-how are essential prerequisites in composing the history of science and technology, as well as understanding cultural change, and both local and regional histories.

The core research area of NARNIA was focused on the interdisciplinary study of ancient ceramics, glass, copper and its alloys, architecture and building decoration, as well as on techniques of dating and chemical analysis of ancient materials. This requires the full integration of analytical methodologies from the mainstream fields of chemistry, geosciences and engineering in order to develop a supra-disciplinary area of science and technology applied in archaeology. It is emphasised that the combination of infrastructures and analytical equipment made available within the partnership provided our fellows the means and support to conduct an interdisciplinary study of the materials that they have been assigned to investigate, and to answer key archaeological and cultural questions.

We were very pleased to observe that despite the division of the project into six distinct work packages, our fellows identified areas of research overlap, and developed important synergies among them, integrating different approaches and areas of research, always with the support and guidance of their supervisors and other members of the partnership. This
has resulted in a number of joined publications, as well as the establishment of research collaborations that will continue to flourish after the completion of the project.

Towards the end date of the NARNIA project, we have prepared this book as a solid reflection of the individual and collective work that has been conducted for the past four years by all our fellows and members of the NARNIA partnership. The short papers presented by our fellows in the following pages, are only a glimpse of their research, which will be more extensively published in peer-reviewed journals and, hopefully, monographs following the submission of their doctoral theses. We envisage this book to serve as a medium for people outside the network to become acquainted with the research that was undertaken by our fellows under the supervision of the NARNIA scientific staff, but also as a token of the hard work, dedication and passion of all the people that worked hard for NARNIA to become a milestone in archaeological research.

Prof. Vasiliki Kassianidou, NARNIA Project Coordinator

&

Dr Maria Dikomitou-Eliadou, NARNIA Project Manager

Archaeological Research Unit, University of Cyprus

Nicosia, November 2014
THE NARNIA NETWORK

Members of supervisory board, Early Stage Researchers (ESR), Experienced Researchers (ER), and other scientific staff per work package

<table>
<thead>
<tr>
<th>Work Package</th>
<th>Name</th>
<th>Institution, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Package 1
Project management</td>
<td>Prof. Vasiliki Kassianidou (Project Coordinator)</td>
<td>University of Cyprus, Cyprus</td>
</tr>
<tr>
<td></td>
<td>Dr Maria Dikomitou-Eliadou (Project Manager)</td>
<td></td>
</tr>
<tr>
<td>Work Package 2
The study of ceramic artefacts from the eastern Mediterranean</td>
<td>Dr Peter Day (Work Package leader)</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td></td>
<td>Dr Vassilis Kilikoglou</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td></td>
<td>Dr Eleni Aloupi-Siotis</td>
<td>THETIS Authentics Ltd, Greece</td>
</tr>
<tr>
<td></td>
<td>Dr Maria Dikomitou-Eliadou</td>
<td>University of Cyprus, Cyprus</td>
</tr>
<tr>
<td></td>
<td>Dr Anno Hein</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td></td>
<td>Dr Ioannis Karatasios</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td></td>
<td>Prof. Philippe Claeys</td>
<td>Vrije Universiteit Brussel, Belgium</td>
</tr>
<tr>
<td></td>
<td>Dr Noemi Müller (ER)</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td></td>
<td>Christina Makarona (ESR)</td>
<td>Vrije Universiteit Brussel, Belgium</td>
</tr>
<tr>
<td></td>
<td>Roberta Mentesana (ESR)</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td></td>
<td>William Gilstrap (ESR)</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td></td>
<td>Artemi Chaviara (ESR)</td>
<td>THETIS Authentics Ltd, Greece</td>
</tr>
<tr>
<td>Work Package 3
Glass production and trade in the eastern Mediterranean</td>
<td>Prof. Karin Nys (Work Package leader)</td>
<td>Vrije Universiteit Brussel, Belgium</td>
</tr>
<tr>
<td></td>
<td>Prof. Thilo Rehren</td>
<td>University College London Qatar</td>
</tr>
<tr>
<td></td>
<td>Prof. Philippe Claeys</td>
<td>Vrije Universiteit Brussel, Belgium</td>
</tr>
<tr>
<td></td>
<td>Prof. Wendy Meulebroeck</td>
<td>Vrije Universiteit Brussel, Belgium</td>
</tr>
<tr>
<td></td>
<td>Prof. Herman Terryn</td>
<td>Vrije Universiteit Brussel, Belgium</td>
</tr>
<tr>
<td>Work Package 4</td>
<td>Copper metallurgy in the eastern Mediterranean</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Prof. Vasiliki Kassianidou</td>
<td>University of Cyprus, Cyprus</td>
<td></td>
</tr>
<tr>
<td>Prof. Marcos Martínón-Torres</td>
<td>University College London, UK</td>
<td></td>
</tr>
<tr>
<td>Prof. Thilo Rehren</td>
<td>University College London Qatar</td>
<td></td>
</tr>
<tr>
<td>Dr George Papasavvas</td>
<td>University of Cyprus, Cyprus</td>
<td></td>
</tr>
<tr>
<td>Dr Roger C. Doonan</td>
<td>University of Sheffield, UK</td>
<td></td>
</tr>
<tr>
<td>Dr Andreas Charalambous (ER)</td>
<td>University of Cyprus, Cyprus</td>
<td></td>
</tr>
<tr>
<td>Lente Van Brempt (ESR)</td>
<td>University of Cyprus, Cyprus</td>
<td></td>
</tr>
<tr>
<td>Demetrios Ioannides (ESR)</td>
<td>University of Cyprus, Cyprus</td>
<td></td>
</tr>
<tr>
<td>Frederik Rademakers (ESR)</td>
<td>University College London, UK</td>
<td></td>
</tr>
<tr>
<td>Mainardo Gaudenzi Asinelli (ESR)</td>
<td>University College London, UK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work Package 5</th>
<th>The study of architectural decoration and building materials from the eastern Mediterranean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Anne Marie Guimier-Sorbets (Work package leader)</td>
<td>Université Paris-Ouest, France</td>
</tr>
<tr>
<td>Prof. Demetrios Michaelides</td>
<td>University of Cyprus, Cyprus</td>
</tr>
<tr>
<td>Dr Virginie Fromageot-Laniepce</td>
<td>Centre national de la recherche scientifique, France</td>
</tr>
<tr>
<td>Dr Veronique Vassal</td>
<td>Centre national de la recherche scientifique, France</td>
</tr>
<tr>
<td>Dr Fadi Balaawi</td>
<td>Hashemite University, Jordan</td>
</tr>
<tr>
<td>Dr Firas Alawneh</td>
<td>Hashemite University, Jordan</td>
</tr>
<tr>
<td>Dr Yahya AlshawabkehL</td>
<td>Hashemite University, Jordan</td>
</tr>
<tr>
<td>Dr Naif Haddad</td>
<td>Hashemite University, Jordan</td>
</tr>
<tr>
<td>Dr Mohammed El-Khalili</td>
<td>Hashemite University, Jordan</td>
</tr>
<tr>
<td>Dr. Abdulraouf Mayyas</td>
<td>Hashemite University, Jordan</td>
</tr>
<tr>
<td>Work Package 6</td>
<td>Dating techniques and the palaeoenvironment</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr Yannis Bassiakos</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td>(Work package leader)</td>
<td></td>
</tr>
<tr>
<td>Dr Constantinos Athanassas</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td>Dr Eleni Philippaki</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td>Dr Ioannis Karatasios</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td>Ioannis Christodoulakis (ESR)</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
<tr>
<td>Evangelos Tsakalos (ESR)</td>
<td>National Centre for Scientific Research “Demokritos”, Greece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work Package 7</th>
<th>pXRF application in archaeology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Roger C. Doonan</td>
<td>University of Sheffield, UK</td>
</tr>
<tr>
<td>(Work package leader)</td>
<td></td>
</tr>
<tr>
<td>Dr John Hurley</td>
<td>NITON UK, UK</td>
</tr>
<tr>
<td>Dr Ellery Frahm (ER)</td>
<td>University of Sheffield, UK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geological Survey Department, Cyprus</td>
</tr>
<tr>
<td>Department of Antiquities, Cyprus</td>
</tr>
<tr>
<td>The Jordan Museum, Jordan</td>
</tr>
<tr>
<td>NITON UK, UK</td>
</tr>
</tbody>
</table>