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Abstract

A simple speci�cation test based on fully modi�ed residuals and the CUSUM
test for cointegration of Xiao and Phillips (Journal of Econometrics, 2002) are
considered as means of testing for functional form in long-run cointegrating
relations. It is shown that both tests are consistent under functional form mis-
speci�cation and lack of cointegration. A simulation experiment is carried out
to assess the properties of the tests in �nite samples. The Dickey-Fuller test
is also considered. The simulation results reveal that the �rst two tests per-
form reasonably well. However, the Dickey-Fuller test performs poorly under
functional form misspeci�cation.

1 INTRODUCTION

Cointegration has probably been the most popular approach in analysing macroeco-
nomic relations since it was introduced, about twenty years ago. Although the con-
cept of cointegration is very appealing from an economic theory point of view, many
data sets have failed to show evidence supporting the existence of long-run macroeco-
nomic equilibria. Lack of evidence for cointegration in certain data sets has created
doubts about the validity of the classical linear cointegration models and led some
researchers to consider the possibility of nonlinearities in macroeconomic relations.
Corradi, Swanson and White (2000), Teräsvirta and Ellianson (2001) among others,
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consider nonlinear short-run dynamics in Vector Error Correction Models (VECM).
Nonetheless the possibility of nonlinear long-run dynamics has been largely ignored.
Park and Phillips (1999, 2001) develop limit distribution theory for nonlinear trans-
formations of unit root processes which provides a theoretical framework for modeling
nonlinear long-run relations (see also Chang, Park and Phillips (2001)). In their recent
work Saikkonen and Choi (2004) follow the Park and Phillips (1999, 2001) exposition
to model smooth transitions in long-run cointegrating relations.
The development of Park and Phillips (1999, 2001) enables the applied worker

to use wide range of nonlinear speci�cations. Nonetheless, when it comes to applied
work, the ultimate problem is to choose the appropriate model. This is exactly the
problem that we address here. Two tests are considered as means of testing for
Functional Form (FF hereafter) and lack of cointegration in long-run cointegrating
relations. The �rst is a simple speci�cation test based on fully modi�ed residuals. The
second test is the CUSUM test for cointegration proposed by Xiao and Phillips (2002).
We show that both tests diverge under FF misspeci�cation or lack of cointegration.
Using some theoretical results due to Park and Phillips (1998) and with the aid of the
simulation evidence provided in this paper, we argue that the Dickey-Fuller test (DF)
that is widely used as a cointegration test, performs poorly under FF misspeci�cation
in many cases.
The present theoretical framework is similar to that of Park and Phillips (1999)

and Chang et al. (2001). The only work that is closely related to the present, that
the author is aware of, is that of Arai (2004) and Hong and Phillips (2005) who
extend Ramsey�s (1969) RESET test to cointegrating relations. Hong and Phillips
(2005) consider scalar covariate models linear in parameter and variable, while in
Arai (2004) the empirical speci�cation comprises multiple covariate models linear in
parameters and variables. The present theoretical framework is more general. We
consider additively separable multiple regression models, linear in parameters and
nonlinear in variables. Therefore we treat linearity vs. nonlinearity as a special case.
The nonlinear functions under consideration belong to the H -regular class of Park
and Phillips (1999). Park and Phillips (1999, 2001) assume that the error of the model
is a martingale di¤erence sequence. We relax this assumption. Correlated errors and
endogeneity are introduced by assuming the errors of the model and the errors that
drive the unit root variables is a vector linear process. A semiparametric approach is
followed for both tests to induce a limit distribution, under the null hypothesis, free
of nuisance parameters. Our approach is similar to that of Xiao and Phillips (2002).
The �tted model is estimated by a Fully Modi�ed Least Squares (FM-LS) type of
estimator and the sample moments of the test statistics are corrected for endogeneity
bias.
We derive the limit distribution of the tests under the null hypothesis (correct FF)

and we obtain divergence rates under the alternative hypothesis (incorrect FF or lack
of cointegration). Under the null hypothesis, the �rst test (CM) has a chi-square limit
distribution while the CUSUM test (CS) has a limit distribution speci�c to the �tted
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model, similar to the one reported by Xiao and Phillips (2002). Under the alternative,
the residuals of the �tted model are dominated by some transformation of a unit root
process, which typically is of a higher order of magnitude than the residuals of a
correctly speci�ed model. The underlying feature of the tests under consideration
is that they can detect abnormal �uctuation in the residuals. The divergence rates
under the alternative hypothesis depend on the bandwidth used, for the estimation
of long-run covariance matrices.
We expect that other FF tests can be used in this framework. The simulation

results of Kim, Lee and Newbold (2005) suggest that several linearity test statis-
tics diverge under lack of cointegration, indicating FF misspeci�cation. Kim, Lee
and Newbold (2004) interpret this as �spurious nonlinearity�. Nonetheless, this phe-
nomenon is not a nuisance as it implies that various tests for functional form can
be used as cointegration tests. After all, lack of cointegration can be seen as FF
misspeci�cation.
The DF test performs poorly under FF misspeci�cation. The DF test has been

widely used as a cointegration test. When the �tted model is of incorrect FF, it
would be desirable that the DF test favours the unit root hypothesis as this would
indicate that the �tted model is inadequate. If the DF test is applied to the residuals
of model that is misspeci�ed in terms of FF, in many cases the unit root hypothesis
is rejected, although the residuals are not stationary. The DF test is designed to
detect unit root processes. Under FF misspeci�cation the residuals are dominated by
nonlinear transformations of unit root processes. An explanation for the poor per-
formance of the DF can be found in the work of Park and Phillips (1998). Park and
Phillips (1998) analyse the limit behaviour of the DF test statistic, when it is applied
to a series, which is a nonlinear transformation of a unit root process. In particular
they consider integrable and three H -regular transformations namely, indicator, log-
arithmic and polynomial functions. For integrable and indicator functions they �nd,
that the DF test statistic diverges to minus in�nity, therefore favouring the alterative
of stationarity with probability approaching one as the sample size increases. For log-
arithmic and concave polynomial functions, the limit distribution involves negative
components making the test biased towards the alternative of stationarity. Only for
convex polynomial transformations the DF tends to favour nonstationarity. These
theoretical results are con�rmed by our simulation experiment.
The rest of this paper is organised as follows. In Section 2 our theoretical frame-

work is speci�ed. In Section 3 our testing procedures are presented and their prop-
erties derived. Section 4 provides some simulation results and Section 5 concludes.
Before proceeding to the next section, some notation is introduced. If the matrix A
is positive de�nite, that is denoted by A > 0. Further, diag(A1; :::; Am) is a block
diagonal matrix with blocks Ai. For a matrix A = (aij), kAk = (maxi;j jaijj). For
a function f , which can be matrix-valued, kfkC = supx2C kf(x)k. For a possibly
matrix-valued random variable x, kxkp (p 2 N) is its Lp-norm. As usual for a func-
tion f , _f denotes its �rst derivative with respect to its argument. Finally IfAg is the
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indicator function of a set A.

2 THEORETICAL FRAMEWORK

We assume two alternative data generating mechanisms for the series fytgnt=1:

yt = �o1f1(x1t) + :::+ �opfp(xpt) + ut (1)

= f 0(xt)�o + ut;

or:
yt = s(zt); (2)

where f and s belong to theH -regular family, the variables xt and zt are unrelated unit
root processes, and ut is some stationary error term which is speci�ed in detail later.
The �rst model postulates that yt is cointegrated, possibly in a nonlinear way, with
some variables of interest (xit�s). On the other hand if (2) holds, yt is not cointegrated
with xt. When the latter is the case, it is usually assumed in the literature (e.g. Xiao
and Phillips, 2002) that yt is a unit root process, zt say, that is unrelated to the
regressors (xit�s). Here yt is a nonlinear transformation of such a process. In this way
yt is allowed to be of di¤erent order of magnitude than zt. Clearly when s is linear,
yt is a unit root process. The �tted model is given by:

ŷt = â1g1(x1t) + :::+ âpgp(xpt) + ût (3)

= g0(xt)â+ ût;

where gi�s are H -regular functions, possibly di¤erent than fi�s. For notational con-
venience, f(xt), s(zt) and g(xt) in (1), (2) and (3) may be written as ft, st and gt
respectively.
Next, the variables, that appear in (1), (2) and (3), are speci�ed in detail. The

variables x0t = (x1t; :::; xpt) and zt are unit root processes given by:

xt = xt�1 + vt and zt = zt�1 + wt:

The following assumption about ut; vt and wt holds:

Assumption 1. The sequence e0t = (ut; v
0
t; wt) is a linear process given by:

et =
1X
j=1

�j�t�j = �(L)�t;

and the following hold:
(i) The matrix lag polynomial �(L) = diag

�
�(L)(1�1);	(L)(p�p);�(L)(1�1)

�
satis�es

the summability condition
P1

j=1 j k�jk <1.
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(ii)The random sequence �t satis�es the following conditions:
(a)
�
�0t =

�
"t; �

0
t+1; !t+1

�
;Ft = � (�s;�1 � s � t)

	
is a martingale di¤erence se-

quence with E [�t�
0
t j Ft�1] = �.

(b) The sequence �t is i.i.d. with E k�tk
l < 1 for some l > min (8; 4=(1� 2b)),

with 0 � b < 1=3. Further, �t has distribution absolutely continuous with respect to
Lebesgue measure and has characteristic function '(�) = o(k�k��) as �!1.

For vt; ut and wt de�ne the usual partial sum processes: (Un(r); V 0n(r);Wn(r)) =

n�1=2
P[nr]

t=1 (ut; v
0
t; wt) with 0 � r � 1. In addition, (U(r); V 0(r);W (r)) is a (p+ 2)-

dimensional Brownian motion with covariance matrix 
 =
P1

k=�1E
�
ete

0
t+k

�
and

one-sided covariance matrix � =
P1

k=0E
�
ete

0
t+k

�
. Under Assumption 1, the strong

approximation

sup
0�r�1

k(Un(r); V 0n(r);Wn(r))� (U(r); V 0(r);W (r))k = oa:s:(1)

holds on some Skorokhod space (e.g. Park and Phillips, 2001). The above result is
utilised in the rest of the paper without any further reference. For the purpose of the
subsequent analysis, 
 and � are conformably partitioned as follows:


 =

0@ 
uu 
uv 
uw

vu 
vv 
vw

wu 
wv 
ww

1A and � =

0@ �uu �uv �uw
�vu �vv �vw
�wu �wv �ww

1A :
Next, we specify in detail the functions that appear in (1), (2) and (3). As

mentioned earlier, the functions under consideration are con�ned to the H -regular
family of Park and Phillips (1999). TheH -regular family comprises of transformations
that are asymptotically homogeneous. An H -regular transformation f say, behaves
as

f(�x) � kf (�)hf (x) for large �;
where the functions hf and kf are the so called limit homogenous function and as-
ymptotic order of f , respectively. The limit homogenous function satis�es certain
regularity conditions. Functions that do so are called by Park and Phillips (1999)
�regular�. The asymptotic results provided by Park and Phillips (1999) for regular
transformations are extended by de Jong (2004) to a more general class of trans-
formations that comprise of locally integrable functions with �nite many poles and
which are monotone between poles1.
Due to the introduction of weak dependence, the asymptotic theory for sample

covariance terms is di¤erent, than that originally developed by Park and Phillips
(1999, 2001). A relevant asymptotic result is provided by de Jong (2002), Saikkonen
and Choi (2004) and Ibragimov and Phillips (2004). In order to obtain asymptotic
power rates for the tests, we need a certain generalisation of this asymptotic result
along the lines of Phillips (1991). This generalisation is provided in Appendix A. The
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three aforementioned papers impose certain smoothness restrictions on the functions
under consideration. A similar approach is followed here. We restrict our functions
to a subset of the H -regular class of Park and Phillips (1999). Our smoothness
assumptions are shown below:

Assumption 2. The transformation f : Rp ! Rp, with f 0(x) = (f1(x1); :::; fp(xp))
satis�es:
(i) f(�x) = kf (�)hf (x) +Rf (x; �) with hf (:) regular and
(a) jRf (x; �)j � af (�)Pf (x), with lim sup�!1

af (�)k�1f (�) = 0 and Pf (:) locally
integrable, or
(b) jRf (x; �)j � bf (�)Qf (�x), with lim sup�!1

bf (�)k�1f (�) < 1 and Qf (:)
locally integrable and vanishing at in�nity.
(ii) � _f(�x) = kf (�) _hf (x) + _Rf (x; �) with _hf (:) regular and

(a)
��� _Rf (x; �)��� � _af (�) _Pf (x), with lim sup�!1

� _af (�)k�1f (�) = 0 and _Pf (:)

locally integrable, or
(b)

��� _Rf (x; �)��� � _bf (�) _Qf (�x), with lim sup�!1
�_bf (�)k�1f (�) < 1 and _Qf (:)

locally integrable and vanishing at in�nity.
(iii)
(a) _hf (x) is continuous,

or
(b) For any 0 < C < 1 and some 0 < b < 1=3, there is a sequence jn # 0 as

n!1, such that

lim sup
n!1

n1=2+bkf (pn)�1 sup
kx1k�C

sup
kx1�x2k�jn

 _f(pnx1)� _f(
p
nx2)

 = 0:
As usual, hf and kf are the limit homogenous function and asymptotic order of
f respectively. Moreover, note that when f is a p-dimensional vector, kf and _f
are (p� p) diagonal matrices. Condition (iiib) in Assumption 2 is a smoothness
condition similar to the one in de Jong (2002)2. To obtain the limit distribution
of the test statistics under correct speci�cation, we employ Assumption 2(i)-(iiia).
The particular limit results can be also established under Assumption 2(i)-(ii) and
(iiib) with b = 0. To obtain power rates under misspeci�cation, we make a stronger
smoothness assumption. For this case, we employ Assumption 2(i)-(ii) and (iiib).
The convergence rate of the sequence jn is determined by l, i.e. the order of �nite
moments of the process �t. In general, for a large b, a large l is required.
Next, FF misspeci�cation and lack of cointegration are de�ned precisely.
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DEFINITION 1. Suppose f , s and g satisfy Assumption 2.
(i) The �tted model (3) is of correct FF, when gi(:) = fi(:), for all i = f1; ::; pg and
(1) holds.
(ii) The �tted model (3) is of incorrect FF, when the true model is given by (1) and
gi(:) 6= fi(:), for some i = f1; :::; pg and one of the following conditions hold:
C1: gi(:)�fi(:) = qi(:), qi satis�es Assumption 2 and kqi(�)=kgi(�), kqi(�)=kfi(�)!

0 as �!1; or
C2: kgi(�)=kfi(�)! 0 or 1 as �!1:

(ii) There is no cointegration, when the �tted model is given by (3) and the true model
by (2).

Condition C1 postulates that some term is correctly speci�ed up to some lower order
H -regular component, while C2 postulates that a �tted component does not agree
in asymptotic order with its counterpart at all. The possibility of having a second
cointegrating relationship between f1(x1t);...; fp(xpt), is ruled out. It is obvious from
De�nition 2 that the present theoretical framework does not allow for omitted or
redundant variables. An extension of the subsequent results in that direction is
possible but is not attempted here, as it would result in more complexity in our
presentation.
Saikkonen and Choi (2004) consider cointegrating models with smooth transition

functions, which typically are distribution type of functions. As shown by Park and
Phillips (2001), the parameters of these functions lack identi�cation, when the co-
variates are unit root processes. Saikkonen and Choi (2004) avoid the identi�cation
problem by considering models where the covariates are normalised by the square
root of the sample size. The present framework does not cover �tted models of this
kind, because they are nonlinear in parameters. Limit results for the Nonlinear Least
Squares estimator under FF misspeci�cation in models with unit roots have been
derived by the author and some extensions of the current results along these lines are
possible. Nonetheless, models with normalised variables create extra complications.
To obtain asymptotic power rates for this kind of models, development of second
order asymptotic theory for H -regular transformations is required.

3 TESTS

The main focus in this section is to develop two speci�cation tests as means of testing
for FF in the theoretical framework of Section 2. Both tests are residual based.
When the errors of the model are martingale di¤erences (e.g. Park and Phillips,
2001), the �rst test under consideration belongs to the Conditional Moment (CM)
class of Newey (1985). Under Assumption 1 though, such moment conditions do not
hold, because the covariates are endogenous. Nonetheless, for purposes of brevity, we
call the �rst test CM. The second test is the CUSUM test (CS) for cointegration of
Xiao and Phillips (2002), generalised to cope with �tted models that are nonlinear
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in variables. The underling feature of the CM and CS tests is that they can detect
abnormal �uctuation in the residuals that typically arises under misspeci�cation. The
limit properties of the tests are derived under correct FF, incorrect FF and lack of
cointegration.
Because under our assumptions the limit distribution theory is not mixed normal,

t-tests and the usual likelihood based tests do not have pivotal distributions under
the null hypothesis3. In addition the limit distribution of non standard tests like the
CUSUM test involve nuisance parameters. To resolve this problem the model is �tted
by a FM-LS type of estimator and an endogeneity correction term is introduced in
the statistic. To obtain the estimator and the correction term, kernel estimators for

uu, 
vv, 
vu, �vu and �vv are used:


̂uu =
PMn

h=�Mn
�
�

h
Mn

�
Cuu(h); 
̂vv =

PMn

h=�Mn
�
�

h
Mn

�
Cvv(h);


̂vu =
PMn

h=�Mn
�
�

h
Mn

�
Cvu(h); �̂vv =

PMn

h=0 �
�

h
Mn

�
Cvv(h);

�̂vu =
PMn

h=0 �
�

h
Mn

�
Cvu(h);

where � (:) is some kernel on [�1; 1] such that � (0) = 1 and Mn is a bandwidth
such that Mn ! 1, n=Mn ! 0 as n ! 1. Moreover, Cuu(h), Cvv(h), and Cvu(h)
are sample covariances de�ned by Cuu(h) = n�1

P0
t ûtût+h, Cvv(h) = n�1

P0
t vtv

0
t+h

and Cvu(h) = n�1
P0

t vtût+h, where û are the residuals from LS estimation and
P0

t

is summation over 1 � t, t + h � n (e.g. Cuu(h) = n�1
Pn

t=h+1 ût�hût for h � 0 and
Cuu(h) = n

�1Pn
t=�h+1 ûtût+h, for h < 0). Consistency results for this kind of kernel

estimators can be found in Jansson (2002).
The estimator under consideration is due to de Jong (2002) and resembles the

original FM-LS estimator introduced by Phillips and Hansen (1990). Before the
estimator is presented, the following quantities need to be de�ned:

y+t = yt � v0t
̂�1vv 
̂vu and �̂+vu = �̂vu � �̂vv
̂�1vv 
̂vu:
Our estimator is:

â =

"
nX
t=1

g(xt)g
0(xt)

#�1 " nX
t=1

g(xt)y
+
t � _gn�̂

+
vu

#
;

with _gn =
Pn

t=1 _g(xt). Under correct speci�cation, the following result holds:

LEMMA 1. (de Jong, 2002) Let U(r)+ = U(r) � V 0(r)
�1vv 
vu and suppose that
Assumption 1 and Assumption 2 hold. Then under correct FF, as n!1

p
nkg(

p
n) (â� �o)

d!
�Z 1

0

hg (V (r))h
0
g (V (r)) dr

��1 Z 1

0

hg (V (r)) dU(r)
+:

Notice that the limit distribution of the estimator is mixed normal as V and U+ are
independent.
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Both of the tests under consideration are residual based. An endogeneity bias
correction term is introduced in the residuals of the �tted model giving the so called
fully modi�ed residuals (û+t ) de�ned as:

û+t = yt � â0g(xt)� v0t
̂�1vv 
̂vu:

Before we present the test statistics, we introduce some notation. Let w be a weight
function of the form w(x1; :::; xp) =

Pp
i=1wi(xi) (additively separable), with each wi

being H -regular of asymptotic order kw, satisfying Assumption 2. De�ne the matrices
Ân, B̂n, A, B, 
̂+, 
+ and their inverses, when they exist, as follows:

1
n
k�1g (

p
n)k�1w (

p
n)Ân =

1
n
k�1g (

p
n)k�1w (

p
n)
Pn

t=1w(xt)g(xt)
p! A;

1
n
k�1g (

p
n)B̂nk

�1
g (
p
n) = 1

n
k�1g (

p
n)
Pn

t=1 g(xt)g
0(xt)k

�1
g (
p
n)

p! B;


̂+ = 
̂uu � 
̂uv
̂�1vv 
̂vu and 
+ = 
uu � 
uv
�1vv 
vu:

The CM and the CS test statistics are:

CMn =

�Pn
t=1 û

+
t w(xt)� _wn

�2

̂+
Pn

t=1

h
Â0nB̂

�1
n g(xt)�w(xt)

i2 and CSn = max
m=1;:::;n

��Pm
t=1 û

+
t

��p
n
̂+

;

with _wn =
Pp

i=1

Pn
t=1 _wi(xit)

�
�̂viu � �̂viv
̂�1vv 
̂vu

�
.

Remark:
(a) The use of the weight functions (w) in the CM test statistic creates additional

nuisance terms in the limit, that need to be corrected to obtain a pivotal test. The
term _wn is employed to correct the particular nuisance terms.
(b) One may wish to employ weights in order to enhance power against certain

alternatives (see for example Bierens, 1990, p.1446). Nonetheless, weight functions
are particularly useful, when an intercept is included in the model. For this case,
the CM test would be invalid if no weights were employed, as the sum of the Least
Squares (LS) residuals is zero by the �rst order conditions of the LS problem4.

The behaviour of the tests under the null hypothesis is shown in the theorem below.

THEOREM 1. Let B; 
+ > 0 and suppose that Assumption 1 and Assumption
2 hold. Then under correct FF we have, as n!1

CMn
d! �21 and CSn

d! sup
0���1

�� �U(�)��
p

+

;

where
�U(�) = U(�)+ �

hR 1
0
dU(r)+hg(V (r))

0
i hR 1

0
hg(V (r))hg(V (r))

0dr
i�1 �R �

0
hg(V (r))dr

�
.
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The limit distribution of the CUSUM test is free of any nuisance parameters and
resembles the one derived by Xiao and Phillips (2002). If hg is allowed to be linear
in the expression above, �U(s) will be as in Xiao and Phillips (2002). Note that
the distribution of the CUSUM test is not standard and simulations are required to
obtain critical values. Moreover, the limit distribution is speci�c to the �tted model
and therefore di¤erent critical values are required for di¤erent models. This makes
the test somewhat impractical, when the �tted model is nonlinear. Nonetheless, it
can be easily implemented as a linearity vs. nonlinearity test. On the other hand the
CM test has standard limit distribution irrespective of the empirical model employed.
Next we examine the asymptotic power of the tests. The behaviour of the test

statistics under the alternative hypothesis is shown by the following result:

THEOREM 2. Let B, 
+ > 0, Mn = bnbc and suppose that Assumption 1 and
Assumption 2 hold. Then under incorrect FF or no cointegration we have, as n!1:

P(CMn > �1n); P(CSn > �2n)! 1;

for any nonstochastic sequences �1n and �2n such that

�1n = o(n=Mn); �2n = o
�
(n=Mn)

1=2
�
:

The divergence rates in both cases are bandwidth dependent. For the �rst test, the
divergence rate is the same as the rate of the RESET test of Hong and Phillips (2005).
The divergence rate of the CUSUM test is the same as that reported by Xiao and
Phillips (2002), when there is lack of cointegration in the linear framework.
None of the tests are consistent, when the true model is an integrable transforma-

tion of a unit root process. The inconsistency of the DF test can be explained by the
results of Park and Phillips (1998). In addition, it can be shown that the CM and
CS test statistics are bounded in probability under the alternative hypothesis. The
regression residuals, under this kind of misspeci�cation, are driven by integrable com-
ponents, which are known to exhibit weaker signal than that of a stationary process
(see Park and Phillips, 1999). Consequently, the �uctuation in the residuals under
the alternative hypothesis is the same as that under the null hypothesis and as result
none of the two tests under consideration can detect this kind of misspeci�cation.
The simulation study of Xiao and Phillips (2002) reveals that, when it comes

to the choice of the bandwidth parameter, there is a trade-o¤ between size and
power. Andrews (1991) proposes automatic bandwidth methods. A similar band-
width method is considered by Xiao and Phillips (2002), where Mn = 1:447(�̂n)1=3

with �̂ = 4�̂2=
�
1� �̂2

�2
and �̂ is the LS estimator from the residuals autoregression.

This method is inappropriate in our case. As Xiao and Phillips (2002) point out this
kind of procedures are appropriate for stationary processes. In our case the regression
residuals are stationary only under the null hypothesis. Xiao and Phillips (2002) sug-
gest that, when this bandwidth method is used under lack of cointegration, Mn � n
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and as result the CUSUM test has no power. The following lemma demonstrates,
that this is true here as well.

LEMMA 2. Suppose Assumption 1 holds and _f , _g and _s satisfy Assumption 2.
Then under incorrect FF or no cointegration we have, as n!1:

(�̂n)1=3 = Op(n):

4 SIMULATION EVIDENCE

In this section a Monte Carlo experiment is performed to assess the �nite sample
properties of the CM, CS and DF tests. First, we examine the size properties of the
CM and CS tests and secondly, the ability of the CM, CS and DF tests to detect lack
of cointegration and FF misspeci�cation. Clearly, for CM and CS this corresponds
to the power of the tests. The DF test is commonly used as a linear cointegration
test. FF misspeci�cation and lack of cointegration cannot be rigorously embedded
in the hypothesis structure of the test. Nonetheless, it would be desirable in the
presence of FF misspeci�cation that the DF test favours the unit root hypothesis,
as this would be an indication that the regression residuals are nonstationary and
therefore the �tted model inadequate. For this reason, the frequency with which the
DF test favours the unit root hypothesis, will be used as a measure of its ability to
detect incorrect FF or lack of cointegration in the nonlinear sense. We conventionally
refer to it as the �power�of the DF test. All the experiments use 10,000 simulations
and signi�cance level is set at 5%. The Barlett spectral window is employed for the
kernel estimators.
The �tted model used in the experiment is linear with a scalar covariate given by:

ŷt = âxt + ût:

For the data generating mechanism, a wide range of H -regular speci�cations including
threshold, polynomial, logarithmic and smooth transition models are considered. Un-
der lack of cointegration and incorrect FF the data is generated by the speci�cations
listed below:

yt = zt (R1) yt = sign(zt) jztj0:5 (R2)

yt = sign(xt) jxtj0:75 + ut (R3) yt = sign(xt) jxtj1:25 + ut (R4)

yt = ln(1 + jxtj) + ut (R5) yt = xt + jxtj0:5 + ut (R6)
yt = 0:4xt1fxt < 0g+ 1:8xt1fxt � 0g+ ut (R7) yt = xt + 1:8

xt
1+exp(�xt=

p
n�2)

+ ut (R8)

yt = xt + zt + ut (R9) yt = sign(xt) (jxtj jztj)0:5 + ut (R10)

The variables xt, zt and ut are constructed as follows:
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ut = �ut�1 + �t;
�xt = vt, with vt = �vt�1 + �t;
�zt = wt, with wt = 0:3wt�1 + !t;

and
�
�t; �t+1; !t+1

�0
= r0t(1�3)D

0
(3�3), where

D =

0@ 1 0:2 0:1
0:3 2 0
0 0:1 1:2

1A and rt � i:i:d: N(0; I):

As Xiao and Phillips (2002) point out, when the autoregressive parameter (�)
is close to unity, the innovation errors become nearly integrated and this adversely
a¤ects the size of the test. In order to investigate how sensitive the size of the
tests is to the intensity of the innovation errors, a wide range of values is used for
the autoregressive parameter. In particular, � = 0; 0:2; 0:4; 0:6; 0:8 and 0:9 has been
chosen.
The performance of the tests depends on the sample size and the bandwidth

parameter. To achieve good size properties a large bandwidth parameter will be
required, if the innovation errors exhibit strong intensity. Moreover it is apparent
from our theoretical results, that a large bandwidth adversely a¤ects the power of
the tests. Further, the employment of the automatic bandwidth methods proposed
by Andrews (1991) results in inconsistent tests. This is because under FF or lack
of cointegration �̂ converges very quickly to one (n-consistent). Alternatively, Sul,
Phillips, and Choi (2004) propose the following rule for choosing the autoregressive
parameter:

~� = min
�
�̂; 1� n�'

�
; ' = 0:5:

If ~� is employed instead of �̂, we get CMn � n
2
3
(1�2') and CSn � n

1
3
(1�2'). In

general, a small ' improves power but makes the size properties of the tests worse.
In order to assess the extent of the trade o¤ between size and power, three values for
the bandwidth are considered: M1 = n1=5,M2 = n1=3 andM3 = 1:447(�̂n)1=3, where
~� with ' = 0:1 is employed5 instead of �̂. In addition, we consider several sample
sizes: n = 50; 100; 200; 300 and 500.
Table 1 shows the empirical size of the CM and CS tests for several sample sizes.

The �ndings are similar to those reported by Xiao and Phillips (2002). As seen in
Table 1, the size performance of the tests is good for M = M1 as long as � � 0:2,
while forM =M2 the performance is good as long as � � 0:4. The best performance
is attained, when M3 is employed. In particular, the size properties for both tests
are quite good for � � 0:6. If the autoregressive parameters are restricted within
this range, the performance of both tests is comparable. For larger autoregressive
coe¢ cients, severe overrejection of the null hypothesis occurs, whenM1 is used, with
the CM test performing better.
Table 2 shows the empirical power performance of the CM, CS and DF i.e. the

ability of the tests to detect lack of cointegration and FF. All three tests perform
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well under lack of cointegration. The DF test has the best performance in small
samples while the CS test outperforms the other two tests in large samples, when
the spurious regression is nonlinear andM1 andM2 are employed. Under functional
form misspeci�cation the DF test performs very poorly. Although the residuals are
nonstationary in this case, the DF test favours stationarity. The CM and CS tests
perform reasonably well under FF misspeci�cation. Obviously the power of the tests
varies with choice of the bandwidth parameter. Best performance is attained when
M1 is used, while in most cases the employment of M3 does not result in a severe
reduction in power.
The relative performance of the tests varies with the type of misspeci�cation.

The simulation results seem to suggest that the CM test performs better for loga-
rithmic and threshold alternatives. On the other hand the CS test performs better
for polynomial alternatives and under lack of cointegration. Interestingly, for half of
the cases considered in Table 2, the CS test outperforms the CM test, despite the
fact the latter attains faster divergence rates. Note that under misspeci�cation the
regression residuals are dominated by some H -regular transformation, u(:) say, of a
unit root process. We see that CM performs very well, when the regression residuals
are dominated by some component, u(xt), that does not change sign. If the residual
process is allowed to change sign, then the CS test tends to perform better. Clearly,
the larger the sample moment of the test statistic is, the better the test performs. If
the function u(:) is allowed to change sign, u(xt) exhibits the typical random walk
type of behaviour. Lengthy periods in which the term is positive, alternate with
lengthy periods in which the term in negative, undermining the magnitude of the
sample moment of the test statistic. The CS test is more adequate in this case. The
CS test adjusts the summation horizon in a way that maximises the sample moment
and as result, better power performance is achieved. This becomes more apparent if
one considers the limit expressions for the test statistics. As shown in the Appen-
dix, when misspeci�cation is committed the test statistics behave asymptotically as
follows:

CMn � (n=Mn)

�Z 1

0

hu(V (r))dr

�2
and CSn � (n=Mn)

1=2 sup
0���1

����Z �

0

hu(V (r))dr

���� :
Clearly, the magnitude of the integral terms in the expressions above a¤ect the power
of the test. The CS test maximises the integral term with respect to the integration
horizon. We expect that other speci�cation tests may also perform well. For instance,
the underling principle behind a MOSUM test that uses fully modi�ed residuals is
similar to that of the CS test. The KPSS test (e.g. Shin, 1994) can detect abnormal
�uctuation in residuals as well. Just like the CS test, Shin�s KPSS is based on partial
sums of regression residuals. The CS test opts the maximal partial sum, while the
KPSS test averages over all partial sums. Using similar arguments as those for the
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CS test, it can be shown that the relevant KPSS statistic6 behaves as follows:

KPSSn
d!
R 1
0
�U(r)2=
+dr, under correct speci�cation,

KPSSn � (n=Mn)
R 1
0

�R �
0
hu(V (r))dr

�2
d�, under incorrect speci�cation.

5 Conclusion

We have considered two residual based tests as means of testing for functional form in
long-run cointegrating relations. A semiparametric approach was followed to induce
limit distributions free of nuisance parameters. The limit distribution of the CM
statistic is chi-square, while the limit distribution of the CS test statistic involves
functionals of Brownian motion and is speci�c to the �tted model. We have shown
that both test statistics diverge under FF misspeci�cation or lack of cointegration and
explicit asymptotic power rates have been obtained. Divergence rates are bandwidth
dependent and are n=Mn for the �rst test and

p
n=Mn for the second.

The Monte Carlo experiment suggests that both tests perform reasonably well.
The choice of the bandwidth parameter plays important role. If a small bandwidth
parameter is selected, the tests have relatively good power properties but can be
severely oversized, when the intensity of the errors is strong. Although Andrews�
(1991) automatic methods are inappropriate in our framework, when combined with
the Sul, Phillips and Choi (2005) rule for the selection of the autoregressive parameter,
they provide a good compromise between size and power. In particular we �nd that
it results in quite good size without causing a big reduction in the power of the tests,
when the parameter ' is set equal to 0.1. The simulation results suggest that the
CM test performs better for logarithmic and threshold alternatives. The CS test
performs better for polynomial alternatives and under lack of cointegration. The
simulation study of Hong and Phillips (2005) seems to suggest that the performance
of the RESET test is comparable to performance of the tests considered here.
A �nding of this paper that is of importance, is that the DF test which is widely

used as a cointegration test, performs very poorly under FF misspeci�cation. If the
DF test is applied to the residuals of a model misspeci�ed in terms of FF, it favours
stationarity, when in fact the residual process is nonstationary. The work of Park
and Phillips (1998) provides some useful theoretical results that justify this.
The present theoretical framework is by no means exhaustive. Many speci�ca-

tions that are appealing for applied econometric work are not included. In order
to handle the more complicated asymptotic theory resulting from the introduction
of weak dependence in the error structure of the model, the theoretical framework
has been con�ned to continuously di¤erentiable transformations. In addition, many
speci�cations of interest are nonlinear in parameters. Extensions to these directions
may prove quite challenging. Some extensions to models nonlinear in parameters, are
possible and are under development by the author. Moreover we expect that several
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other FF tests, apart from the CM, CS and RESET tests, are adequate means of test-
ing for FF in a nonstationary framework. Therefore further future work is required,
to assess the adequacy and relative performance of all these tests.

NOTES

1. Pötscher (2004) generalises these results to all locally integrable transformations
under the assumption, that the process t�1=2xt possess uniformly bounded density
functions.
2. See de Jong (2002) pages 5 and 21 and Remark A1 in Appendix A.
3. Under similar assumptions, Hong and Phillips (2005) show that quadratic form

statistics have noncentral mixed chi-square limit distributions rather than ordinary
chi-square distributions.
4. I would like to thank an anonymous referee for pointing out this problem.
5. In a preliminary simulation experiment we tried ~� with ' = 0:5. We found

that the size performance of the tests was very good, but power was poor.
6. KPSSn = n�2

Pn
m=1

�Pm
t=1 û

+
t

�2
=
̂+.
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APPENDIX A (TECHNICAL RESULTS)
In this Appendix we provide some auxiliary results required to prove the main results
of the paper. The proofs of our main results are provided in Appendix B below.
For notational convenience, the sequence kf (

p
n) relating to the asymptotic order of

any H -regular function f will be written kn;f . Further, K; K and K are de�ned as
follows:

K =

Z 1

�1
�(s)ds; K =

Z 1

0

�(s)ds; K =

Z 0

�1
�(s)ds:

LEMMA A1: Set Mn = bnbc with b as in Assumption 1. Then we have, as n!1:
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(a) Under Assumption 1:

sup
r2[0;1]

1p
n

X
jhj�bnbc

vbnrc+h = oa:s:(1):
(b) Suppose that hf is continuous. Under Assumption 1 and Assumption 2(i):

1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1

n
k�1n;f

nX
t=1

f(xt)f
0(xt+h)k

�1
n;f

p! K

Z 1

0

hf (V (r))h
0
f (V (r))dr:

(c) Under Assumption 1 with b = 0 and Assumption 2(i)-(iiia):

1p
n
k�1n;f

nX
t=1

f(xt) (ut; v
0
t)

p!
Z 1

0

hf (V (r))d (U(r); V
0(r)) +

Z 1

0

_hf (V (r))dr (�vu;�vv) :

(d) Suppose that
 _hf (x)4 = O

�
eckxk

�
, as kxk ! 1, for some c > 0. Under

Assumption 1 and Assumption 2(i)-(ii), (iiib):

1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n
k�1n;f

nX
t=1

f(xt+h) (ut; v
0
t)

p! K

Z 1

0

hf (V (r))d (U(r); V
0(r)) +K

Z 1

0

_hf (V (r))dr (
vu;
vv) :

Remark A1:
(a) The limit result of Lemma A1(c) is also shown by de Jong (2002), Saikko-

nen and Choi (2004) and Ibragimov and Phillips (2004), under di¤erent smoothness
conditions. Here we assume continuously di¤erentiable functions, which is a weaker
condition than those used by Saikkonen and Choi (2004) and Ibragimov and Phillips
(2005). Further, the result can be established, when continuity is replaced by As-
sumption (iiib) with b = 0. The latter is a weaker smoothness condition than that
of de Jong (2002), although the assumptions about the processes are more general in
the aforementioned paper.
(b) The following one-sided analogs of Lemma A1(d) also hold:

(i)
1

Mn

MnX
h=0

�

�
h

Mn

�
1p
n
k�1n;f

nX
t=1

f(xt+h)ut
p! K

Z 1

0

hf (V (r))dU(r) +K

Z 1

0

_hf (V (r))dr
vu;

(ii)
1

Mn

0X
h=�Mn

�

�
h

Mn

�
1p
n
k�1n;f

nX
t=1

f(xt+h)ut
p! K

Z 1

0

hf (V (r))dU(r):
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Proof of Lemma A1. For part (a) notice that

sup
r2[0;1]

1p
n

X
jhj�bnbc

vbnrc+h � max
jjj�n+bnbc

2bnbcp
n
kvjk :

Now, for any � > 0,
1X
n=1

P

�
max

jjj�n+bnbc
kvjk > �n

1
2
�b
�

�
1X
n=1

X
jjj�n+bnbc

P
�
kvjk > �n

1
2
�b
�
�

1X
n=1

X
jjj�n+bnbc

E kvjkl

�lnl(
1
2
�b)

�
1X
n=1

�
n+ bnbc+ 1

� 2E kvjkl
�lnl(

1
2
�b)

�
1X
n=1

6E kvjkl

�lnl(
1
2
�b)�1

<1;

and the result follows.
Next, we prove part (b). First, we show that 1Mn

MnX
h=�Mn

�

�
h

Mn

�
1

n
k�1n;f

nX
t=1

f(xt) ff 0(xt+h)� f 0(xt)g k�1n;f

 = op(1):
Given this the result follows easily, since by Theorem 3.3 in Park and Phillips (2001),

1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1

n
k�1n;f

nX
t=1

f(xt)f
0(xt)k

�1
n;f

p! K

Z 1

0

hf (V (r))h
0
f (V (r))dr:

By part (a) we get

sup
r2[0;1]

sup
jhj�Mn

xbnrc+hp
n

�
xbnrcp
n

 = oa:s:(1): (A1)

Set C = supr2[0;1] kV (r)k+1. Then by (A1) and the strong approximation (e.g. Park
and Phillips, 1999, Lemma 2.3) we have, for n large enough,

sup
r2[0;1]

sup
jhj�Mn

xbnrc+h=pn ; sup
r2[0;1]

xbnrc=pn � C a:s: (A2)

Further notice, that 1Mn

MnX
h=�Mn

�

�
h

Mn

�
1

n
k�1n;f

nX
t=1

f(xt) ff 0(xt+h)� f 0(xt)g k�1n;f


�

����� 1Mn

MnX
h=�Mn

�

�
h

Mn

������ k�1n;fk�1n; _f supr2[0;1]
sup
jhj�Mn

f �xbnrc+h� f 0(xbnrc+h)� f 0(xbnrc)
� 2

k�1n;fk�1n; _f sup
r2[0;1]

sup
jhj�Mn

f(xbnrc+h)f 0(xbnrc+h)� f 0(xbnrc)
� 2 khfkC sup

r2[0;1]
sup
jhj�Mn

hf �xbnrc+hp
n

�
� hf

�
xbnrcp
n

�+ oa:s:(1);
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for n large enough. The last inequality above follows from (A2). Further, khfkC <
1 a:s:, as hf is locally bounded (see for example Park and Phillips, 2001 p.159).
Therefore, by the uniform continuity of hf (x) on kxk � C and (A1) we get

sup
r2[0;1]

sup
jhj�Mn

hf �xbnrc+hp
n

�
� hf

�
xbnrcp
n

� = oa:s:(1);
and this completes the proof.

Part (c) can be proved using similar arguments to those used in the proof of part
(b) above and part (d) below. A proof can be provided by the author upon request.

Finally, we show part (d). For purposes of brevity, we show the result for the left
block of the sample sum. The proof for right block is identical. Write

1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n
k�1n;f

nX
t=1

f(xt+h)ut

=
1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n
k�1n;f

(
nX
t=1

f(xt)ut +

nX
t=1

(f(xt+h)� f(xt))ut

)
� S1n + S2n:

By part (c), the �rst summand

S1n
p! K

Z 1

0

hf (V (r))dU(r) +K

Z 1

0

_hf (V (r))dr�vu: (A3)

Set
P�;h

� =
Ph

�=1 1 fh > 0g �
P0

�=h�1 1 fh < 0g and �xht = xt + t
P�;h

� vt+� , t =
diag

�
1t; :::; pt

�
with it�s 2 [�1; 1]. Then, by the mean value theorem, the second

summand is

S2n =
1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n
k�1n;f

nX
t=1

_f
�
�xht
�X�;h

�
vt+�ut

=
1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n

nX
t=1

_f (xt)
X�;h

�
vt+�ut + op(1); (A4)

where the last equality can be established as follows. By part (a),

jn = sup
r2[0;1]

sup
jhj�bnbc

1p
n

�xhbnrc � xbnrc) = oa:s:(1):
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Therefore we have, 1Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n
k�1n;f

nX
t=1

h
_f
�
�xht
�
� _f (xt)

iX�;h

�
vt+�ut


�

n1=2+bk�1n;f
 
sup

kx1k�C
sup

kx1�x2k�jn

 _f(pnx1)� _f(
p
nx2)

!

� 1

Mnn1+b

MnX
h=�Mn

�

�
h

Mn

� nX
t=1

X�;h

�
kvt+�utk

p! 0; (A5)

as n ! 1, given Assumption 2(iiib) and the fact that the expectation of the last
term above is bounded by 4 kvtk2 kutk2 <1. In view of (A4) we can write,

S2n =
1

Mn

MnX
h=�Mn

�

�
h

Mn

�
1p
n

nX
t=1

_f (xt)
X�;h

�
fE (vt+�ut) + (vt+�ut � E (vt+�ut))g+ op(1)

� S3n + S
4
n + op(1):

By Toeplitz�s lemma and Theorem 3.3 of Park and Phillips (2001), the �rst summand
above

S3n
p!
Z 1

0

_hf (V (r))dr

(
K

1X
�=1

E(vtut��)�K
1X
�=0

E(vtut+�)

)
: (A6)

Moreover, it can be shown that

sup
jhj�nb

 1nkn; _f
nX
t=1

f(xt)
X�;h

�
(vt+�ut � E (vt+�ut))

 = op(1): (A7)

Notice that (A7) implies that S4n = op(1). In view of this the requisite result follows
from (A3) and (A6). Finally, we show (A7). For notational brevity we consider the
case h > 0. Using the convention that 	j, �j are zero for negative index, we can
write (see for example Phillips and Solo, 1992, Remark 3.8)

1

n
k�1
n; _f

nX
t=1

_f(xt)
hX
�=1

(vt+�ut � E (vt+�ut)) =

1

n
k�1
n; _f

nX
t=1

_f(xt)
hX
�=1

1X
j=0

	j+��1�j
�
�t�j+1"t�j � ���

�
+
1

n
k�1
n; _f

nX
t=1

_f(xt)
hX
�=1

1X
j=0

1X
r=1

	j+��1+r�j�t�j�r+1"t�j

+
1

n
k�1
n; _f

nX
t=1

_f(xt)

hX
�=1

1X
j=0

1X
r=1

	j+��1�r�j�t�j+1+r"t�j � I1n;h + I2n;h + I3n;h:
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It can be shown that I1n;h; I2n;h; and I3n;h are asymptotically negligible uniformly
over jhj � nb. The proof for I1n;h and I2n;h is relatively easy. We show the result for
I3n;h. De�ne the lag polynomials B�r(L), ~B�r(L) by:

B�r(L) =
1X
j=0

B�rjL
j; with B�rj = 	j+��1�r�j;

~B�r(L) =
1X
j=0

~B�rjL
j; with ~B�rj =

1X
s=j+1

B�rs:

Let �ht =
P1

r=1

Ph
�=1B�r(1)�t+1+r"t and ~�ht =

Ph
�=1

P1
r=1

P1
j=0

~B�rj�t�j+1+r"t�j.
Then, from second order Beveridge-Nelson decomposition (e.g. Phillips and Solo,
1992 equation (23)) on I3n;h we get

I3n;h =
1

n
k�1
n; _f

nX
t=1

_f(xt)

hX
�=1

1X
j=0

1X
r=1

B�rj�t�j+1+r"t�j

=
1

n
k�1
n; _f

nX
t=1

_f(xt)�ht �
1

n
k�1
n; _f

nX
t=1

_f(xt)�~�ht: (A8)

First, we show that the �rst summand in (A8) is op(1) uniformly in jhj � nb. Without
loss of generality assume that _f(xt) and �ht are scalars. Then,

P

 
max
jhj�nb

����� 1nk�1n; _f
nX
t=1

_f(xt)�ht

����� > �
!
� ��2

X
jhj�nb

E

 
1

n
k�1
n; _f

nX
t=1

_f(xt)�ht

!2

= ��2
X
jhj�nb

E

 
1

n2
k�2
n; _f

nX
t=1

_f(xt)
2�2ht

!
+ ��2

X
jhj�nb

E

 
1

n2
k�2
n; _f

X
s 6=l

_f(xs)�hs _f(xl)�hl

!
= T1n + T2n:

The �rst term,

T1n �
��2

n2

X
jhj�nb

nX
t=1

k�1
n; _f
_f(xt)

2
4
k�htk

2
4 �

��2

n2

�
E
h _f4C�1=2 X

jhj�nb

nX
t=1

k�htk
2
4 ;

where the last inequality holds for n large enough. In addition, under our assumptions
we have E

h _f4C <1 (e.g. Park and Phillips, 2001, p.147). Next,

k�htk4 � lim inf
s1;s2!1


hX
�=1

s1X
r=1

s2X
j=0

	j+��1�r�j�t+1+r"t


4

(by Fatou�s lemma)

�
hX
�=1

1X
r=1

1X
j=0

	j+��1�r�j�t+1+r"t4 (by Minkowski�s inequality)
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�
hX
�=1

1X
r=1

1X
j=0

k	j+��1�r�jk
�t+1"t4 � k�tk8 k"tk8 hX

�=1

1X
r=1

1X
j=0

k	j+��1�r�jk

� h k�tk8 k"tk8
1X
i=0

1X
j=0

k	ik k�jk � h k�tk8 k"tk8
1X
i;j=0

k	ik k�jk :

Therefore, we get

n�2
X
jhj�nb

nX
t=1

k�htk
2
4 �

 
k�tk8 k"tk8

1X
i;j=0

k	ik k�jk
!2

sup
jhj�nb

h2
�
2nb + 1

�
n

! 0;

as n!1. Hence, T1n = op(1).
Next, we show that T2n = 0. Assume s > l, without loss of generality. Then we

have

E

 
1

n2
k�2
n; _f

X
s 6=l

_f(xs)�hs _f(xl)�hl

!
=

 
1

n2
k�2
n; _f

X
s 6=l

E
h
_f(xs) _f(xl)E [�hs�hl j Fs]

i!

Next,

E [�hs�hl j Fs] =
1X

r1;r2=1

hX
�1;�2=1

B�1r1(1)B�2r2(1)"s"lE
�
�s+1+r1�l+1+r2 j Fs

�

=
1X
r1=1

r1+(s�l)�1X
r2=1

hX
�1;�2=1

B�1r1(1)B�2r2(1)"s"l�l+1+r2

0z }| {
E
�
�s+1+r1 j Fs

�

+
1X
r1=1

1X
r2=r1+(s�l)+1

hX
�1;�2=1

B�1r1(1)B�2r2(1)"s"lE
�
�s+1+r1�l+1+r2 j Fs

�

+

1X
r1=1

hX
�1;�2=1

B�1;r1(1)B�2;s�l+1+r1(1)"s"lE
�
�2s+1+r1 j Fs

�

=

1X
r1=1

1X
r2=r1+(s�l)+1

hX
�1;�2=1

B�1r1(1)B�2r2(1)"s"lE

24�s+1+r1
0z }| {

E
�
�l+1+r2 j Fs+r1

�
j Fs

35

+"s"l

1X
r1=1

hX
�1;�2=1

B�1;r1(1)B�2;s�l+1+r1(1)��� = "s"l ~���;
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where the �rst equality above follows from dominated convergence. Therefore

1

n2
k�2
n; _f

X
s 6=l

E
h
_f(xs) _f(xl)E [�hs�hl j Fs]

i
= ~���

1

n2
k�2
n; _f

X
s 6=l

E

24 _f(xs) _f(xl)"l 0z }| {
E ["s j Fs�1]

35 = 0
In view of this it follows that the �rst term in (A8) is op(1) uniformly over jhj � nb.
Next, we show that the second term in (A8) is negligible uniformly over jhj � nb.

Write
1

n
k�1
n; _f

nX
t=1

_f(xt)�~�ht =
1

n
k�1
n; _f
_f(xn)~�hn �

1

n
k�1
n; _f

nX
t=1

� _f(xt)~�ht: (A9)

Further, n�b supjhj�nb E
~�ht <1, because

n�b sup
jhj�nb

E
~�ht � n�b sup

jhj�nb
lim inf

s1;s2!1
E


hX
�=1

s1X
r=1

s2X
j=0

~B�rj�t�j+1+r"t�j


� k�tk2 k"tk2 n�b sup

jhj�nb
h

1X
r=1

1X
j=0

1X
s=j+1

k	s�1�r�sk

� k�tk2 k"tk2
1X
r=1

1X
s=1

ks	s�1�r�sk � k�tk2 k"tk2
1X
r=1

1X
s=1

k	rk ks�sk <1:

In view of this and using the same arguments as those in (A5), it follows that
the second terms in (A8) converges in probability to zero, uniformly in jhj � nb.
�

Note that under the alternative hypothesis, some of the kernel estimators men-
tioned earlier are inconsistent. Before their limit behaviour is considered, some nota-
tion needs to be introduced. De�ne d = f � g with f , g as in (1) and (3). Moreover
denote by ���the index of the leading element(s) of d, which can be expressed as
d� = f� � g�, and kd�, kf�, kg� are the relevant asymptotic orders. We consider two
scenarios:

S1: kd�(:) < kf�(:) and kg�(:),
S2: kd�(:) = kf�(:) or kg�(:):

Under S1 the leading misspeci�ed component behaves as in C1, while under S2 the
behaviour of the leading misspeci�ed component is given by C2. Denote by âLS the
least squares estimator corresponding to the �tted model. Under FF misspeci�cation,
we partition f as follows: f 0(1�p) =

�
f 10(1�p1); f

20
(1�p2)

�
with f 2 being the components

of f that have not been correctly speci�ed. The leading element(s) of f 2 is denoted
as f 2� and its asymptotic order is kf2�. The vector �o is also partitioned as �o =
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�
�10o(1�p1); �

20
o(1�p2)

�
, where �1o and �

2
o are the coe¢ cients of f

1 and f 2 respectively.

Also ��o is de�ned by ��
0
o(1�p) =

�
�10o(1�p1); 0

0
(1�p2)

�
. Finally, some further notation is

introduced:

DEFINITION A.
(i) The vectors �1, �2 and �3 are the following limits:

kn;g
kn;d�

(âLS � �o)
p! �1, under incorrect FF when S1 holds,

kn;g
kn;f2�

�
âLS � ��o

� p! �2, under incorrect FF when S2 holds,
kn;g
kn;s
âLS

p! �3, under no cointegration.

(ii) The vectors h �d(:)
0
(1�p), h(:)

0
�f2(1�p2) and the matrices

_h �d(:)(p�p), _h �f2(:)(p2�p2) are
de�ned as:

(nkn;d�)
�1Pn

t=1 dt
p!
R 1
0
h �d(V (r))dr;

(nkn;f2�)
�1Pn

t=1 f
2
t

p!
R 1
0
h �f2(V (r))dr;

(
p
nkn;d�)

�1Pn
t=1

_dt
p!
R 1
0
_h �d(V (r))dr;

(
p
nkn;f2�)

�1Pn
t=1

_ft
p!
R 1
0
_h �f2(V (r))dr:

(iii) The vectors ��1, ��2, ��3, �h1, �h2, �h3 and the matrices _H1, _H2, _H3, �
 are:

��
0
1 = (�

0
o;�� 01) ; ��

0
2 =

�
�20o ;�� 02

�
; ��

0
3 = (1;�� 03) ;

�h01 =
�
h0�d; h

0
g

�
; �h02 =

�
h0
�f2
; h0g

�
; �h03 =

�
hs; h

0
g

�
;

_H 0
1 =

�
_h0�d;
_h0g

�
; _H 0

2 =
�
_h0
�f2
; _h0g

�
; _H 0

3 =
�
_hs; _h

0
g

�
;

�
 = (
vw;
vv) :

Remark A2:
The expressions in De�nition A(i) characterise the limit behaviour of the LS es-

timator under FF misspeci�cation and lack of cointegration. It is apparent from
De�nition A(i) that under incorrect FF, the slope estimators do not always converge
to the parameter of interest. For instance, when S1 holds, an individual slope esti-
mator, âLSi, converges to �oi only if gi dominates d� in terms of asymptotic order.
Generally, under FF misspeci�cation one of the following holds: a) The estimator
may converge to the parameter of interest. b) It may converge to functionals of
Brownian motion. c) It may vanish i.e. converge to zero. d) It may be unbounded in
probability.

LEMMA A2. Let Assumption 1 hold. Then we have as, n!1 :
(i) Under incorrect FF, when S1 holds,

n1=2

Mkn;d�

̂vu

p! K
R 1
0
dV (r)�h01(V (r))

��1 +K
vv
R 1
0
_H 0
1(V (r))

��1dr;
n1=2

Mkn;d�
�̂vu

p! K
R 1
0
dV (r)�h01(V (r))

��1 +K
vv
R 1
0
_H 0
1(V (r))

��2dr;
1

Mk2
n;d�

̂uu

p! K
R 1
0
��
0
1
�h1(V (r))�h

0
1(V (r))

��1dr:
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(ii) Under incorrect FF, when S2 holds,

n1=2

Mkn;f2�

̂vu

p! K
R 1
0
dV (r)�h02(V (r))

��2 +K
vv
R 1
0
_H 0
2(V (r))

��2dr;

n1=2

Mkn;f2�
�̂vu

p! K
R 1
0
dV (r)�h02(V (r))

��2 +K
vv
R 1
0
_H 0
2(V (r))

��2dr;

1
Mk2

n;f2�

̂uu

p! K
R 1
0
��
0
2
�h2(V (r))�h

0
2(V (r))

��2dr:

(iii) Under no cointegration

n1=2

Mkn;s

̂vu

p! K
R 1
0
dV (r)�h03(W (r); V (r))

��3 +K �

R 1
0
_H 0
3 (W (r); V (r))

��3dr
n1=2

Mkn;s
�̂vu

p! K
R 1
0
dV (r)�h03(W (r); V (r))

��3 +K �

R 1
0
_H 0
3 (W (r); V (r))

��3dr
1

Mk2n;s

̂uu

p! K
R 1
0
��
0
3
_H3 (W (r); V (r)) _H

0
3 (W (r); V (r))

��3dr:

Proof of Lemma A2. We start with the proof of part (i). Under incorrect FF
the LS estimator can be written as

kn;g
kn;d�

(âLS � �o) =
"
1

n
k�1n;g

nX
t=1

gtg
0
tk
�1
n;g

#�1
1

nkn;d�

"
nX
t=1

gtd
0
t�o + k

�1
n;g

nX
t=1

gtut

#
Hence, by Theorem 3.3 of Park and Phillips (2001) and Lemma A1(c) we get

kn;g
kn;d�

(âLS � �o) =
�Z 1

0

hg (V (r))h
0
g (V (r)) dr

��1 Z 1

0

hg (V (r))h
0
d� (V (r)) �odr+Op(1=

p
nkn;d�)

= �1 + op(1):

De�ne the normalising matrix Nn;d� = diag
�
I(p�p); kn;g=kn;d�

�
. In what follows the

regression residuals (from OLS estimation) will be written in the following form:

ût = f 0t�o � g0tâLS + ut
= d0t�o � g0t (âLS � �o) + ut

Hence

n1=2

Mkn;d�

̂vu =

1

Mnkn;d�

MnX
h=�Mn

�

�
h

Mn

� 
1

n

nX
t=1

vt
�
d0t+h g0t+h

�
N�1
n;d�Nn;d�

�
�o

� (â� �o)

�!

+
n1=2

Mkn;d�

vu + op(1)

= K

Z 1

0

dV (r)
�
h0d�(V (r))�o � h0g(V (r))�1

�
+K
vv

Z 1

0

h
_h0d�(V (r))�o � _h0g(V (r))�1

i
dr +

n1=2

Mnkn;d�

vu + op(1)

= K

Z 1

0

dV (r)�h01(V (r))
��1 +K
vu

Z 1

0

_H 0
1(V (r))

��1dr +
n1=2

Mnkn;d�

vu + op(1);(A10)
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where the second equality above is due to Lemma A1(d). By Remark A1(b) and
using similar arguments as above, we get

n1=2

Mnkn;d�
�̂vu = K

Z 1

0

dV (r)�h01(V (r))
��1+K
vv

Z 1

0

_H 0
1(V (r))

��dr+
n1=2

Mnkn;d�
�vu+ op(1)

(A11)
Next, we �nd the order of 
̂uu. By Lemma A1(b,d), it easy to show that

1

Mnk2n;d�

̂uu = K

Z 1

0

��
0
1
�h1(V (r))�h

0
1(V (r))

��1dr +
2

Mn

p
nkn;d�

K

Z 1

0

��
0
1
�h1(V (r))dU(r)

+
2

Mn

p
nkn;d�

K

Z 1

0

��
0
1
_H1(V (r))dr
vu + op(1): (A12)

By (A9) and (A11) we have


̂uu � 
̂uv
̂�1vv 
̂vu = Op
�
Mnk

2
n;d�
�
+Op

�
M2
nk

2
n;d�

n

�
= Op

�
Mnk

2
n;d�
�
: (A13)

Next, we prove part (ii). For any two H -regular transformations T1 and T2 let
IT1T2 =

R 1
0
T1(V (r))T2(V (r))

0dr. Without loss of generality partition g0 = (f 10; g20)
and kg = diag (kf1 ; kg2). Using results for partitioned matrices it follows after some
lengthy but straightforward algebraic manipulations that

kn;g
kn;f2�

�
âLS � ��o

�
=

�
P 1n
P 2n

�
�2o + op(1) +Op(1=kn;f2�

p
n);

where P 1n
p! P 1 and P 2n

p! P 2 with

P 1 =
�
Ihf2�hf1 � Ihf2�hg2I

�1
hg2hg2

Ihg2hf1

�
(P 3)

�1
;

P 2 = Ihf2�hg2I
�1
hg2hg2

�
�
Ihf2�hf1 � Ihf2�hg2I

�1
hg2hg2

Ihg2hf1

�
(P 3)

�1
Ihf1hg2I

�1
hg2hg2

and P 3 = Ihf1hf1 � Ihf1hg2I
�1
hg2hg2

Ihg2hf1 .

Setting � 02 = �
20
o

�
P 1

0
; P 20

�
the LS residuals

1

nkn;f2�

Xn

t=1
(yt � g(xt)0âLS) =

1

nkn;f2�

Xn

t=1
f 0t�o �

1

nkn;f2�

Xn

t=1
g(xt)

0âLS + op(1)

=
1

nkn;f2�

Xn

t=1
f 20t �

2
o �

1

n

Xn

t=1
g(xt)

0k�1n;g
kn;g
kn;f2�

�
âLS � ��o

�
+ op(1)

=

Z 1

0

�
h0f2� (V (r)) �o � h0g (V (r)) �2

�
dr + op(1) =

Z 1

0

�h02 (V (r))
��2dr + op(1):
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Now similar arguments as those above give

n1=2

Mkn;f2�

̂vu = K

Z 1

0

dV (r)�h02(V (r))
��2 +K
vv

Z 1

0

_H 0
2(V (r))

��2dr + op (1) ;

n1=2

Mkn;f2�
�̂vu = K

Z 1

0

dV (r)�h02(V (r))
��2 +K
vv

Z 1

0

_H 0
2(V (r))

��2dr + op (1) ;

and
1

Mk2n;f2�

̂uu = K

Z 1

0

��
0
2
�h2(V (r))�h

0
2(V (r))

��2dr + op (1) :

The proof for (iii) is similar to that of (i) and (ii) and is therefore omitted. �

APPENDIX B (PROOFS OF MAIN RESULTS)
Proof of Theorem 1. First, we show the result for the CM test. Set ~An =

1
n
k�1n;gk

�1
n;wÂn, ~Bn =

1
n
k�1n;gB̂nk

�1
n;g. By Lemma A1(c)

n�1=2k�1n;w

nXn

t=1

�
ut � v0t
�1vv 
vu

�
wt � _wn

o
=

Z 1

0

hw(V (r))dU
+(r) + op(1): (A14)

Next notice that

CMn =
[
Pn

t=1 (g
0
t (â� ao)� ut + v0t
�1vv 
vu)wt � _wn]

2

(
uu � 
uv
�1vv 
vu)
Pn

t=1

h
Â0nB̂

�1
n gt �wt

i2 + op(1)

=

h
~A0n ~B

�1
n k

�1
n;g

1p
n

hPn
t=1 gtu

+
t � _gn�̂

+
vu

i
� k�1n;wp

n

Pn
t=1 (ut � v0t
�1vv 
vu)wt � k�1n;wp

n
_wn

i2
(
uu � 
uv
�1vv 
vu) 1n

Pn
t=1

h
~A0n
~B�1n k

�1
n;ggt � k�1n;wwt

i2
=

hR 1
0
[A0B�1hg(V (r))� hw(V (r))] dU+(r)

i2
(
uu � 
uv
�1vv 
vu)

R 1
0
[A0B�1hg(V (r))� hw(V (r))]2 dr

+ op(1);

where the last line is due to Theorem 3.3 of P&P, Lemma A1(c) and (A14). The
result follows from the fact that V and U+ are independent.
The CS test statistic is:

CSn =
sup0���1

1p
n

���P[�n]
t=1 (g

0
t (â� ao)� ut + v0t
�1vv 
vu)

���p

uu � 
uv
�1vv 
vu

+ op(1)

The numerator above is:

sup
0���1

������ 1n
X[�n]

t=1
g0tk

�1
n;g

"
1

n
k�1n;g

nX
t=1

gtg
0
tk
�1
n;g

#�1
k�1n;g

1p
n

"
nX
t=1

gtu
+
t � _gn�̂

+
vu

#
� 1p

n

X[�n]

t=1

�
ut � v0t
�1vv 
vu

�������
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= sup
0���1

�� �U(�)��+ op(1)
by Theorem 3.3 of P&P and Lemma A2, the result follows. �

Proof of Theorem 2. We will prove the result under incorrect FF, when S1
holds. The proof for the other cases is similar and will be omitted. Rearranging the
expression for the FM-LS estimator and in view of (A10) and (A11), we get:

kn;g
kn;d�

(â� �o) =

"
1

n
k�1n;g

nX
t=1

gtg
0
tk
�1
n;g

#�1

� 1

nkn;d�
k�1n;g

"
nX
t=1

gtd
0
t�o +

nX
t=1

gtut �
nX
t=1

gtv
0
t
̂

�1
vv 
̂vu � _gn�̂

+
vu

#

= �1 +Op

�
1p
nkn;d�

�
+Op

�
Mn

n

�
:

Recall that the CM test statistic is:

CMn =
[
Pn

t=1 (g
0
t (â� ao)� ut + v0t
�1vv 
vu)wt � _wn]

2�

̂uu � 
̂uv
̂�1vv 
̂vu

�Pn
t=1

h
Â0nB̂

�1
n gt �wt

i2 :
Consider �rst the numerator rescaled by (nkn;d�kn;w)

2:�
1

nkn;d�kn;w

�2 hXn

t=1

n�
y+t � gt0â

�
wt � v0t
̂�1vv 
̂vuwt

o
� _wn

i2
=

�
1

nkn;d�kn;w

�2 �Xn

t=1
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Next, by Theorem 3.3 in Park and Phillips (2001) and (A13), the denominator
rescaled by n:�
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(A16)

In view of (A15) and (A16) we have CMn � (n=Mn)
hR 1
0
�h01(V (r))

��1hw(V (r))dr
i2
,

which gives the requisite result.
For CS test note that the numerator of test statistic rescaled by
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By (A12) the denominator rescaled by
p
n is:r�


̂uu � 
̂uv
̂�1vv 
̂vu
�
=n = Op

�p
Mnkn;d�

�
:

ThereforeCSn � (n=Mn)
1=2 sup0���1

��R �
0
�h01(V (r))

��1dr
�� ; which completes the proof. �

Proof of Lemma 2. We will show that the result under FF misspeci�cation,
when C1 holds. The proof for the other cases is similar and therefore omitted.
Denote by u(xt) the regressions residuals from FM-LS estimation and without loss
of generality assume that xt is scalar. From the proof of Lemma A3 we have that
(nkn;d)

�1Pn
t=1 u(xt) =

R 1
0
�h01(V (r))

��1dr+op(1) =
R 1
0
hu(V (r))dr+op(1) and similarly

de�ne _u(xt), �u(xt), _hu and �hu. First consider

�̂2 � 1 = f
Pn

t=2 u(xt) (u(xt) + u(xt�1))g f
Pn

t=2 u(xt) (u(xt)� u(xt�1))g
f
Pn

t=2 u(xt�1)
2g2

Hence by Lemma A1(c) and Lemma A2 we have
p
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�
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2dV (r) +
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�
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2 dr

��1
+ op(1):

Since kn;d=kn; _d =
p
n, the result follows easily. �

TABLE 1. Empirical size for CM , CS (5% level)
�jn 100 200

M1 M2 M3 M1 M2 M3
CM CS CM CS CM CS CM CS CM CS CM CS

0 0.030 0.028 0.026 0.028 0.032 0.031 0.030 0.029 0.030 0.031 0.035 0.031
0.2 0.047 0.041 0.037 0.037 0.041 0.037 0.049 0.048 0.040 0.040 0.035 0.031
0.4 0.076 0.071 0.056 0.505 0.046 0.037 0.079 0.079 0.056 0.052 0.045 0.046
0.6 0.137 0.134 0.089 0.081 0.065 0.057 0.141 0.150 0.087 0.082 0.064 0.058
0.8 0.270 0.282 0.181 0.165 0.129 0.109 0.281 0.336 0.165 0.171 0.118 0.108
0.9 0.406 0.441 0.296 0.280 0.225 0.189 0.425 0.538 0.287 0.307 0.213 0.202
�jn 300 500

M1 M2 M3 M1 M2 M3
CM CS CM CS CM CS CM CS CM CS CM CS

0 0.029 0.031 0.031 0.034 0.033 0.032 0.034 0.034 0.038 0.038 0.038 0.035
0.2 0.044 0.046 0.040 0.041 0.033 0.032 0.049 0.051 0.047 0.048 0.038 0.035
0.4 0.069 0.068 0.054 0.053 0.047 0.048 0.074 0.075 0.058 0.058 0.053 0.052
0.6 0.115 0.124 0.077 0.080 0.059 0.058 0.118 0.133 0.078 0.081 0.064 0.060
0.8 0.238 0.279 0.152 0.162 0.101 0.101 0.236 0.308 0.144 0.157 0.101 0.090
0.9 0.383 0.487 0.268 0.298 0.186 0.184 0.381 0.541 0.251 0.303 0.173 0.186
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TABLE 2. Empirical power for CM , CS & DF (5% level)
n 50 100 200 300 500 50 100 200 300 500

(R1) (R2)
DF 0.916 0.921 0.936 0.940 0.943 0.854 0.861 0.850 0.855 0.845

M1 CM 0.566 0.701 0.788 0.800 0.848 0.632 0.744 0.819 0.827 0.873
CS 0.527 0.762 0.920 0.936 0.984 0.578 0.790 0.930 0.947 0.984

M2 CM 0.486 0.600 0.698 0.733 0.787 0.565 0.665 0.741 0.770 0.817
CS 0.414 0.589 0.757 0.828 0.912 0.473 0.635 0.788 0.849 0.924

M3 CM 0.411 0.519 0.619 0.658 0.723 0.493 0.593 0.679 0.707 0.762
CS 0.330 0.463 0.627 0.692 0.811 0.386 0.518 0.672 0.728 0.827

(R3) (R4)
DF 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.002 0.005 0.007

M1 CM 0.079 0.202 0.398 0.502 0.603 0.268 0.491 0.627 0.660 0.741
CS 0.078 0.180 0.377 0.515 0.698 0.186 0.430 0.706 0.770 0.902

M2 CM 0.062 0.170 0.363 0.454 0.554 0.208 0.419 0.552 0.597 0.654
CS 0.050 0.133 0.302 0.423 0.609 0.133 0.321 0.536 0.643 0.771

M3 CM 0.055 0.154 0.339 0.432 0.526 0.116 0.358 0.500 0.541 0.592
CS 0.044 0.114 0.263 0.377 0.544 0.099 0.248 0.421 0.505 0.640

(R5) (R6)
DF 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

M1 CM 0.518 0.830 0.980 0.997 1.000 0.396 0.742 0.958 0.993 1.000
CS 0.423 0.706 0.901 0.956 0.993 0.334 0.626 0.862 0.937 0.989

M2 CM 0.469 0.788 0.970 0.996 1.000 0.352 0.689 0.943 0.990 0.999
CS 0.378 0.638 0.856 0.934 0.985 0.296 0.563 0.813 0.908 0.979

M3 CM 0.440 0.763 0.970 0.995 1.000 0.324 0.659 0.933 0.987 0.997
CS 0.348 0.599 0.856 0.911 0.975 0.274 0.528 0.781 0.886 0.967

(R7) (R8)
DF 0.017 0.012 0.011 0.010 0.011 0.013 0.015 0.014 0.013 0.013

M1 CM 0.385 0.547 0.655 0.698 0.754 0.179 0.363 0.565 0.663 0.804
CS 0.335 0.485 0.597 0.644 0.704 0.148 0.327 0.557 0.657 0.825

M2 CM 0.356 0.517 0.629 0.680 0.738 0.139 0.301 0.506 0.621 0.751
CS 0.299 0.444 0.551 0.608 0.671 0.113 0.260 0.455 0.580 0.754

M3 CM 0.333 0.494 0.613 0.669 0.728 0.113 0.257 0.466 0.582 0.717
CS 0.274 0.406 0.515 0.566 0.637 0.088 0.214 0.391 0.503 0.681
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TABLE 2. (continued)
(R9) (R10)

DF 0.336 0.329 0.346 0.343 0.345 0.001 0.001 0.001 0.000 0.000
M1 CM 0.545 0.692 0.786 0.799 0.847 0.148 0.227 0.497 0.534 0.647

CS 0.508 0.753 0.915 0.935 0.983 0.156 0.411 0.702 0.753 0.904
M2 CM 0.471 0.597 0.694 0.731 0.786 0.106 0.221 0.349 0.420 0.509

CS 0.405 0.584 0.753 0.827 0.911 0.107 0.244 0.441 0.541 0.707
M3 CM 0.401 0.514 0.618 0.659 0.735 0.091 0.164 0.257 0.317 0.403

CS 0.325 0.459 0.625 0.693 0.810 0.094 0.166 0.293 0.367 0.517
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