Staff Catalogue


Department of Biological Sciences
FST 02 - Faculty of Pure and Applied Sciences, FST02, B160A
University Campus
B.Sc. in Biology (1998) Department of Biology, University of Crete, Heraklion
M.Sc. in Molecular Biology & Biomedicine (2000) Department of Biology, University of Crete and IMBB, Heraklion
Ph.D. in Molecular Biology & Biomedicine (2005) Department of Biology, University of Crete and IMBB, Heraklion
Postdoctoral Research Fellow (2005-2011) Department of Genetics, Harvard Medical School, Boston
Assistant Professor (2012-2021) Department of Biological Sciences, University of Cyprus, Nicosia
Associate Professor (2021-) Department of Biological Sciences, University of Cyprus, Nicosia

In the Drosophila Development and Homeostasis Laboratory at the University of Cyprus, we are using genetics, genomics and microscopy to understand the molecular and cellular mechanisms underlying remodelling of organs, such as the tracheal system and the intestine, during development, homeostasis, damage-induced regeneration and cancer. Specific ongoing lab projects include the following:

  1. Intestinal damage-induced inflammation and tumors promote neotracheogenesis. Our recently published work shows that remodelling of gas-transporting tracheoles (“neotracheogenesis”) drives intestinal damage-induced regeneration and tumorigenesis in adult flies (Tamamouna et al, 2021, Nature Cell Biology) in a process reminiscent of neoangiogenesis of tumors. Ongoing work aims to the identification of novel regulators of neotracheogenesis using state-of-the-art tissue-specific transcriptomics.
  2. Characterization of novel regulators of intestinal tumorigenesis. In this project we investigate the role of the Toll/NF-kB pathway, chitin-binding genes, and nutrient transporters in intestinal regeneration and Ras-induced cancer.
  3. Assessing the role of dietary and microbiota-produced nutrients in intestinal homeostasis, infection-induced regeneration and cancer. We have shown that microbiota-derived biotin transported in intestinal stem cells is necessary for their mitosis and contributes to intestinal tumorigenesis (Neophytou and Pitsouli, 2022, Cell Reports).
  4. Characterization of novel regulators of terminal tracheal cell branching. Through a population genetics screen, we have identified novel cytoskeletal regulators of tracheole branching under hypoxia in Drosophila. We are currently investigating their specific cellular roles using genetics, imaging and cell biology tools.
  5. Modelling glioblastoma multiforme angiogenesis in Drosophila. We are using the versatile Drosophila genetic toolkit to establish glioblastoma models that allow simultaneous imaging and manipulation of the tumor and cerebral tracheal cells to understand the basic molecular mechanisms driving neotracheogenesis (the equivalent of neoangiogenesis) in the tumorous brain. 
  1. Neophytou, C. and Pitsouli, C. (2022). Biotin transport in intestinal stem cells controls regeneration and tumorigenesis. Cell Reports 38(10): 110505.
  2. Neophytou, C. and Pitsouli, C. (2021). How gut microbes nurture intestinal stem cells. Metabolites 12(2): 169
  3. Charidemou, E., Tsiarli, M.A., Theophanous, A., Yilmaz, V., Pitsouli, C., Strati, K., Griffin, J.L., and Kirmizis, A(2022). Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. BMC Biology 20, 22.
  4. Tamamouna, V., Rahman, M., Petersson, M., Kux, K., Charalambous, I., Mainor, H., Bolender, V., Isbilir, B., Edgar, B. and Pitsouli, C. (2021). Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in DrosophilaNature Cell Biology 23, 497-510.
  5. Tamamouna, V., Panagi, M., Theophanous, A., Demosthenous, M., Michail, M., Papadopoulou, M., Teloni, S., Pitsouli, C.* and Apidianakis, Y.* (2020). Evidence of two types of balance between stem cell mitosis and enterocyte nucleus growth in the Drosophila Development 147(11): dev189472. *corresponding authors
  6. Evangelou, A., Ignatiou, A., Antoniou, C., Kalanidou, S., Ellina, S., Athanasiou, R., Shianiou, G., Apidianakis, Y., and Pitsouli, C. (2019). Unpredictable effects of the genetic background of transgenic lines in physiological quantitative traits. G3: Genes, Genomes, Genetics 9(11): 3877-3890.
  7. Tamamouna, V. and Pitsouli, C. (2018). The Hypoxia Inducible Factor-1α in angiogenesis and cancer: insights from the Drosophila InTechOpen, Edited by: Fumiaki Uchiumi, Gene Expression and Regulation in Mammalian Cells Chapter 10: 209-241.
  8. Apidianakis, Y., Tamamouna, V., Teloni, S. and Pitsouli, C. (2017). Intestinal stem cells: a decade of intensive research in Drosophila and the road ahead. Elsevier, Edited by: Petros Ligoxygakis, Advances in Insect Physiology Vol 52, Insect Immunity: 139-178. 
  9. Kux, K. and Pitsouli, C. (2014). Tissue communication in regenerative inflammatory signalling; lessons from the fly gut. Front Cell Infect Microbiol. 4:49.
  10. Pitsouli, C.# and Perrimon, N. (2013). The homeobox transcription factor Cut coordinates patterning and growth during Drosophila airway remodeling. Science Signaling 6(263):ra12. #corresponding author
  11. Perrimon, N., Pitsouli, C. and Shilo, B.N. (2012). Signalling mechanisms controlling cell fate and embryonic patterning. CSHL Press, Edited by: Lewis Cantley, Tony Hunter, Richard Sever, and Jeremy Thorner, Cold Spring Harbor, Perspectives in Biology, 1:a005975. 
  12. Bangi, E., Pitsouli, C., Rahme, L.G., Cagan, R. and Apidianakis, Y. (2012). Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells. EMBO Reports 13(6): 569-76.
  13. Pitsouli, C.# and Perrimon, N. (2010). Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis. Development 137(21): 3615-24. #corresponding author
  14. Pitsouli, C., Apidianakis, Y. and Perrimon, N. (2009). Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe 6(4): 301-7.
  15. Apidianakis, Y.*, Pitsouli, C.*, Perrimon, N. and Rahme, L.G. (2009). Synergy between Bacterial Infection and Genetic Predisposition in Intestinal Dysplasia. Proc Natl Acad Sci USA106(49): 20883-8. *equal contribution
  16. Vinegoni, C., Razansky, D., Pitsouli, C., Perrimon, N., Ntziachristos, V. and Weissleder, R. (2009). Mesoscopic fluorescence tomography for in-vivo imaging of developing DrosophilaJ Vis Exp pii: 1510. 
  17. Pitsouli, C. and Perrimon, N. (2008). Developmental Biology: Our Fly Cousins’ gut. Nature 454: 592-3.
  18. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E. and Perrimon, N. (2008). Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genetics 40(4): 476-83.
  19. Vinegoni, C. *, Pitsouli, C. *, Razansky, D. *, Perrimon, N. and Ntziachristos, V. (2008). In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods 5(1): 45-7. *equal contribution
  20. Glittenberg, M., Pitsouli, C., Garvey, C., Delidakis, C. and Bray, S. (2006). Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J 25(20): 4697-706. 
  21. Pitsouli, C. and Delidakis, C. (2005). The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 132(18): 4041-50
  22. Pavlopoulos, E. *, Pitsouli, C. *, Klueg, K.M., Muskavitch, M.A., Moschonas, N.K. and Delidakis, C. (2001). neuralized encodes a peripheral membrane protein involved in Delta signaling and endocytosis. Developmental Cell 1(6): 807-16. *equal contribution