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1 Introduction

The most extensively studied nonparameteric regression techniques are based

on p-dimensional local averaging: the estimate of the regression surface at a

point x0 is the average of the responses of those observations with predictors

in a neighborhood of x0. These techniques can be shown to have desirable

asymptotic properties. In high-dimensional settings, however, they do not

perform well for reasonable sample sizes. The reason is the inherent sparsity

of high-dimensional samples. This is the well known “curse of dimensionality”

that plagues nonparametric methods.

Among the methods developed in the last few years in order to deal with

the above problem is the Projection Pursuit Regression (PPR), see Friedman

and Steutzle (1981) and Huber (1985) for an excellent review. The PPR

is based on an approach designed to detect structure in high-dimensional

data sets by viewing lower dimensional representations of the data by means

of linear projections. The power of the technique stems from its ability to

overcome the “curse of dimensionality” since it relies in estimation in at most

tri-variate settings. The term Projection Pursuit was coined by Friedman and

Tukey (1974) in the first successful implementation of the technique.

Hall (1989) proved that the common form of kernel-based PPR did es-

timate projections with convergence rates identical to those encountered in

one-dimensional problems, although a greater degree of smoothness (in fact,

an extra derivative) must be assumed to achieve this end.

In this paper we will employ PPR in a partially linear semiparametric

regression (PLR) model and by means of Monte Carlo simulations evaluate

the efficiency gains that are obtained using PPR as compared with the more
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widely applied local constant kernel methods. In the next section we present

a brief presentation of the idea behind PPR. We proceed then to present

the PLR model, see Robinson (1988). Finally we present the results of the

simulation.

2 The Projection Pursuit Regression Approach

The PPR approach is based on projections of the data on planes spanned by

the endogenous variable y and a linear combination αTx of the explanatory

variables. The idea of PPR is to approximate the mean regression function by

a sum of unknown ridge functions. Diaconis and Shahshahani (1984) provide

an approximation theory justification as the number of ridge functions goes

to infinity.

Many data sets are high dimensional. It has been a common practice

to use lower dimensional linear projections of the data for visual inspec-

tion. The lower dimension is usually 1 or 2 (or maybe 3). More precisely,

if x1, ..., xn ∈ Rp are p-dimensional data, then a k(< p)-dimensional linear

projection is w1, ..., wn ∈ Rk where wi = αTxi for some p× k matrix α such

that αTα = Ik, the k-dimensional identity matrix. When k = 1, the struc-

ture of the projected data can be viewed through a histogram; when k = 2,

the structure can be inspected through its scatter plot; and when k = 3, it

can be comprehensived by spinning a three-dimensional scatter plot.

Since there are infinitely many projections from a higher dimension to

a lower dimension, it is important to have a technique of pursuing a finite

sequence of projections that can reveal the most interesting structures of the

1



data. Below we will present a simple description of the mechanics involved

in regression estimation for the case k = 1.

In a typical regression model, (X, y) is an observable pair of random

variables, where X ∈ Rp is a p-dimensional variable and y ∈ R is the de-

pendent variable. The goal is to estimate the unknown regression function

f(x) = E(y|X = x), using a random sample (x1, y1), ..., (xn, yn). PPR ap-

proximates the unknown regression function f(x) by a finite sum of ridge

functions gm(x) =
Pm
j=1 gj(x

T
j a). The regression function f(xi), (xi is 1× p)

is written then as the sum of m < p unknown nonlinear functions in scalars

wij = x
T
i aj

yi =
mX
j=1

gj(x
T
i aj) + εi (1)

Suppose that we want to estimate a1 in wi1 = xTi a1. We start by condi-

tioning (1) on wi1.

E(yi|wi1) =
kX
j=1

E[gj(wij)|wi1] (2)

We can write

yi = E(yi|wi1) + ui (3)

where

ui =
kX
j=2

{gj(xTi aj)− E[gj(wij)|wi1}+ εi

Hence by construction, E(ui|wi1) = 0. The above can be also written as

yi = f(wi1) + ui (4)

If f(.) were known in (4) one could simply apply Nonlinear Least Squares

(NLS) to obtain an estimate of a1. However, since f(.) is unknown we proceed

as follows.

2



Step 1: We start with an initial guess for a1, say a01, then form w
0
i1 = x

T
i a

0
1.

We then estimate by nonparametric kernel methods E(yi|w0i1). We choose
the value of a1 than minimizes the Sum of Squared Residuals (SSR) functionPn
i=1(yi −E(yi|wi1))2. That yields an estimate of g1(wi1), say bg1(wi1).
Step 2: We form y∗i = yi− bg1(wi1) and we repeat the procedure of step 1

above to obtain g2(wi2).

Step 3: We proceed to form y∗∗i = y
∗
i− bg2(wi2) and we continue as before.

We stop whenever the improvement in the SSR function between successive

iterations is less than some than some predetermined small tolerance value.

Note that in the implementation of the PPR method we only have to deal

with univariate constant kernel regressions. They have to be computed for

all n observations at each stage of the each iteration however, and for large

n there is a computattional burden invlolved.

2.1 Semiparametric Estimation of Partially LinearMod-

els

Our analysis will follow closely that of Robinson (1988). We consider a

semiparametric partially linear model (e.g., Engle, et al (1986), Robinson

(1988), Stock (1989)):

yi = x
0
iβ + θ(zi) + ui, (5)

where xi is of dimension p× 1 and zi is of dimension q× 1. β is an unknown
parameter of dimension p× 1. E(ui|xi, zi) = 0 and the conditional variance
function σ2(xi,zi) = E(u

2
i |xi, zi) is not specified, θ(·) is an unknown smooth

function. We interested (mainly) in estimating β.
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Following Robinson (1988), we use a two-step procedure and we will first

estimate β. Taking conditional expectation of (1) (conditional on zi) and

then subtracting it from (1) yields

yi −E(yi|zi) = {xi −E(xi|zi)}0β + ui. (6)

Equation (2) no longer has the unknown function θ(·). Therefore, we can
estimate β based on equation (2). However, E(yi|zi), E(xi|zi) are unknown
in practice. These conditional expectations can be consistently estimated

using some nonparametric methods. In this paper we will use the kernel

method. In order to avoid the random denominator problem associated with

nonparametric kernel estimation, we choose to estimate a density weighted

version of equation (2) (e.g., Powell, Stock and Stoker (1989)).

Let φ(·) be the density function of zi. Multiplying equation (2) by φ(zi)

gives

φ(zi){yi −E(yi|zi)} = φ(zi){xi − E(xi|zi)}0β + φ(zi)ui. (7)

We estimate E(ui|zi), E(xi|zi) and φ(zi) by kernel estimators given by

byi ≡ Ê(yi|zi) = 1

Nhq
X
s6=i
ysKi,s/bφi (8)

bxi ≡ Ê(xi|zi) = 1

Nhq
X
s6=i
xsKi,s/bφi (9)

and bφi ≡ bφ(zi) = 1

Nhq
X
s6=i
Ki,s, (10)

where Ki,s = K(
zi−zs
h
) is the kernel function and h is the smoothing param-

eter. We use the product kernel K(zi) =
Qq
l=1 k(zi,l), where k is a univariate

kernel and zi,l is the l−th component of zi.

4



Then replacing the unknown functions in (7) by their respective kernel

estimates we get bφi(yi − byi) = bφi(zi − ẑi)0β + bφiui. (11)

Therefore we estimate β by the least squares method of regressing (yi −
byi)bφi on (xi− ∧

xi)bφi. bβ = S−1
(x−bx)bφS(x−bx)f̂ ,(y−by)bφ, (12)

where for scalar or column-vector sequences with ith elements Aibφi and Bibφi,
the notations S

Abφ,Bbφ = 1
N

P
iAi

bφiB0ibφi and SAbφ = SAbφ,Abφ. The estimator bβ
is then shown to be

√
n − consistent. Below we will investigate its small

sample properties when we compute it using the standard approach based

on constant kernel methods as in equation (11) and applying PPR to E(yi|zi)
and E(xi|zi) and then using least squares estimation directly on equation (6).

3 Monte Carlo Simulations

We implement the PPR method on the partially linear regression model by

obtaining estimates of E(yi|zi) and E(xi|zi) and then using least squares
estimation directly on equation (6) to obtain an estimate of β. We carry out

simulations to investigate the behavior of bβ in small to moderate sample sizes
under two different cases, a low dimensional and a high dimensional z−vector.
The standard approach is implemented using the density weigthed method

outlined in the previous section. The Monte Carlo design is similar to that

of Robinson (1988).

Table 1 contains the results for the model
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yi = xiβ + z
2
i γ + ui, (13)

The variables X and Z are taken to be scalars from a bivariate normal

population with zero means, variances 4 and 3 respectively and covariance 2;

The error term u is also chosen to be standard normal. The parameters are

taken to be β = γ = 1 and the the sample size n is chosen as 50, 100, 200

and 300. The bandwidth selection was done by cross validation both for the

standard density weighted semiparametric estimator and the PPR estimator.

For each sample size we report the mean square error (MSE) for
Λ

βsemi, the

standard density weighted semiparametric estimator of β and
Λ

βppr, the PPR

estimator of β. We also report a measure of relative efficiency between the

two estimators as the ratio of the standard deviation bβppr to that of bβsemi.
A value greater than unity indicates that bβppr is less efficient than bβsemi
and a value less than unity the opposite. The results suggest that for an

one-dimensional z, the standard density weighted approach produces overall

more efficient results, since all the values of the relative efficiency measure

are greater than unity, except for the case when n = 50. The MSE values are

also smaller for the estimates from the standard approach.

Table 2 presents the results for the case of a Z which is higher dimensional.

The equation that generates the data is given by

yi = α+ xiβ +
qX
j=1

z2jiγj + ui, (14)

where q = 5, and β, γj, (j = 1, ..., 5) are all 1; u is as before standard

normal and X and the Z 0js are equicorrelated identically distributed N(1, 3)

variables, with correlation 2/3. The results are presented in Table 2. It
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becomes quite apparanet that the PPR approach produces considerable im-

provements in relative efficiency. As the sample size increases the measure

of relative efficiency increases as well from about 0.5 for n = 50 to about

0.75 for n = 300. As it is expected as n increases the performace of the stan-

dard semiparametric estimator improves but it is apparent that for small to

moderate sizes the PPR approach offers substantial efficiency gains. Hence,

it can become a useful tool to improve the small sample efficiency of local

averaging nonparametric estimators obtained in high dimensional settings.
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