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Abstract We build on recent work analyzing consumers’ ability to save by exploiting price
dispersion in grocery stores. We show that store expensiveness is not universal but varies across
consumers depending on the basket they consume. We incorporate this insight into a decomposition
of price variance that is a refinement of Kaplan and Menzio’s (2015) approach. Our analysis finds
that the ability to choose the right product at the right store is much less important than Kaplan
and Menzio found; rather, the ability to choose the cheapest stores for one’s basket is the main
source of variance in consumer savings.
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1 Introduction

There is considerable evidence of substantial dispersion in the prices of grocery store goods. Prices

for identical products vary across stores at any given point in time, and not all products are always

cheaper in the same stores. In principle, price-sensitive consumers can exploit this variation in order

to purchase their desired basket of goods at a lower overall cost. We are interested in the extent

to which this occurs in practice: how much do consumers save by exploiting different prices for

different products across stores? Which channels of saving do consumers exploit more successfully?

A number of recent papers have used detailed consumer level data to shed some light on these

questions. We aim to contribute to this literature with a different data set and a refinement of

existing methodology that offers a more nuanced answer to the issues of interest.

Our key insight is to recognize that store expensiveness is not universal, but may differ across

consumers depending on the basket they consume. In other words, one consumer’s typical basket
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may be cheaper in store A while another consumer’s basket may be cheaper in store B. The first

step of our analysis shows that this is indeed the case. We construct a consumer-specific index of

store expensiveness that is based on the basket of goods purchased by the consumer. We compute

this index for the top two stores visited by the consumer and compare it with a general index

that is based on all products sold in each store. For about 26% of consumers in our data, the

rankings do not match: these consumers would spend less if they purchased their entire basket in

a store that is more expensive according to the general index. This shows that store expensiveness

is basket-dependent.

We demonstrate the significance of this insight with an adaptation of the decomposition method-

ology of Aguiar and Hurst (2007) and its extension by Kaplan and Menzio (2015, henceforth KM).

KM construct a household-specific price index, a measure of how much households pay for their

basket of goods relative to the average market price. They decompose the index into three compo-

nents: (i) the store component, which is due to the overall expensiveness of the store as measured

by the market basket; (ii) the store-specific good component (store-good component for short), due

to the expensiveness of the basket relative to overall store expensiveness; and (iii) the transaction

component, due to the expensiveness of the consumers’ transactions relative to the overall expen-

siveness of the transacted products in the store. The variance of the household price index is the

sum of the variances of the three components and the covariance terms between them. KM’s key

finding of interest is that the store-good component is nearly as important as the store compo-

nent in explaining the variance in the household price index; about 50% of the variance is due to

the store component, 40% to the store-good component, and only 10% is due to the transaction

component. They conclude that there seems to be “significant variation in households’ abilities to

systematically take advantage of persistent price differences for the same good at different stores

by purchasing each good at the store where that particular good is, on average, cheaper”.1

We refine the KM decomposition by introducing an additional component based on our idea of

a basket-specific measure of store expensiveness. The resulting extended decomposition (which we

call the CCM decomposition) effectively breaks up the KM store-good component into two parts,

the pure store-good component and the store-basket component. The pure store-good component

is due to the expensiveness of the consumer’s basket at the stores she visits – while keeping fixed

her choice of which store to purchase each product from – relative to the expensiveness of those

stores evaluated on the basis of her basket. We call this the pure store-good component because it

measures variation in consumer ability to choose the right product in the right store on the basis

of the consumer’s basket rather than the overall market basket. The store-basket component is

due to the average cost of the consumer’s basket at the stores she visits relative to the average

expensiveness of those stores. It captures variation in the extent to which the cost of a consumer’s

basket is representative of the expensiveness of the average store she visits.

1Kaplan and Menzio (2015), p. 25.
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We apply both the KM and the CCM decompositions to a consumer level dataset similar to

the one used by KM.2 We find that the KM store-good component is even more substantial in our

dataset; in fact it is larger than the KM store component. When we apply the CCM decomposition,

however, we obtain a much more modest pure store-good effect, a bit less than half the size of the

KM store-good effect. The rest of the variance is accounted for by our store-basket effect. Hence

the degree to which households differ in their ability to capture price differences for the goods they

purchase at the stores they visit is not as large as KM found. Rather, households differ more in

their ability to save by selecting stores that are not expensive for the basket they purchase.

A second contribution of the paper is to examine whether the main findings of the variance

decomposition using KM’s method carry through to a different data set. The analysis shows that

most findings go through and are robust to a variety of different assumptions. An important excep-

tion is the transaction component, which is significantly higher in our data than in the KM data.

This finding survived a barrage of robustness tests and remains a puzzle for further exploration.

Our findings have important implications for our understanding of consumers’ ability to save

by exploiting price dispersion. If the store-good component is as large as what KM found, it would

imply that consumers wishing to maximize savings would have to do a lot of comparison shopping

in order to identify the store with the lowest average price for each product. If the store-basket

component is as large as our analysis suggests, then choosing the right store (the one that is cheapest

for one’s basket) is enough to capture most of the available savings.

The rest of the paper is organized as follows. Section 2 summarizes the literature on price

dispersion and consumer saving. Section 3 presents the KM methodology and introduces our

refinement. Section 4 presents a simple example to illustrate our notion of the store-basket price

index and highlight the differences between the two methodologies. Section 5 describes the data

and presents our findings, along with several robustness tests. Section 6 concludes.

2 Literature

In an early contribution, Pratt, Wise, and Zeckhauser (1979) noted the existence of different prices

in markets they describe as “almost competitive”. Systematic evidence of price dispersion began to

accumulate in the 2000s with studies based on a small number of products (Sorensen, 2000; Lach,

2002). Another strand of the literature focused on intertemporal price variation in the form of sales

promotions of specific products (Pesendorfer, 2002; Hendel and Nevo, 2006a,b). The increased

availability of large and detailed datasets in the last few years has made it possible to study price

dispersion using thousands or even millions of products. The grocery sector has been the subject of

many of these studies, such as Hosken and Reiffen (2004), Kaplan and Menzio (2015), Dubois and

2KM use the Nielsen Homescan data and we use the IRI BehaviorScan; section 5 describes the datasets.
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Perrone (2017), Hitsch, Hortaçsu, and Lin (2019), Kaplan, Menzio, Rudanko, and Trachter (2019),

and others. They all document large and persistent price dispersion for narrowly defined products

sold in grocery stores.

The existence of price dispersion enables consumers who are willing to spend resources searching

for low prices to save relative to non-searchers. A few papers have attempted to quantify the

savings consumers can obtain in this way. Griffith, Leibtag, Leicester, and Nevo (2009) identify

four ways in which consumers can save: by buying on sale; in bulk; generic; and from low-price

outlets. Using detailed consumer level from the UK, they calculate the amount each household

saves by exploiting each of the four dimensions. They conclude that “the average consumer realizes

significant savings from the four dimensions of choice that we study, and that the savings are

comparable in magnitude.”3

Kaplan and Menzio (2015) use the Nielsen Homescan data and employ an adaptation of the

variance decomposition methodology of Aguiar and Hurst (2007) to explore the extent of price

dispersion in US grocery stores. They apply the methodology both to actual store prices and to

a household-specific price index (a measure of how much households pay for their basket of goods

relative to the average market price). The decomposition of store price dispersion indicates that

“only 10% of the variance of prices is due to variation in the expensiveness of the stores at which

a good is sold, whereas the remaining 90% is due, in approximately equal parts, to differences

in the average price of a good across equally expensive stores and to differences in the price of a

good across transactions at the same store.”4 Our work does not focus on their decomposition of

price dispersion but rather on their decomposition of the household-specific price index, which we

introduce – and contrast with to our modified decomposition – in the next section.

Dubois and Perrone (2017) study both spatial and temporal price dispersion for a selection of

narrowly defined products sold in French supermarkets. They find evidence of substantial price

dispersion in both dimensions. Berardi, Sevestre, and Thébault (2017) reach similar conclusions in

another study of French supermarket prices with a much more extensive dataset covering about one

thousand products. Hitsch, Hortaçsu, and Lin (2019) analyze price dispersion in US supermarkets

using the Nielsen RMS retail scanner data, which include a much larger number of prices than the

Homescan data used by KM. Their analysis emphasizes temporal price dispersion in the form of

promotions. In related work, DellaVigna and Gentzkow (2019) show that U.S. food, drugstore, and

mass-merchandise chains charge nearly uniform prices across stores; that is, there is price dispersion

across chains but not within chain.

3Griffith, Leibtag, Leicester, and Nevo (2009), p. 100.
4Kaplan and Menzio (2015), abstract. They extended this work on price dispersion in Kaplan, Menzio, Rudanko,

and Trachter (2019).
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3 Methodology

We describe the key elements of the decomposition methodology developed by Aguiar and Hurst

(2007) and Kaplan and Menzio (2015). Indexes are as follows: j = 1 . . . J stands for good; s =

1 . . . S for store; w = 1 . . .W for week; i = 1 . . . I for panelist (household); k = 1 . . .∞ for trip;

m = 1 . . .M for market; and t = 1 . . . T for quarter. Two variables contain store level information:

Qj,s,w, the number of units of good j sold at store s in week w; and Pj,s,w, the average unit price

of good j at store s in week w. At the individual panelist level, transaction information is given

by qj,k, the number of units of good j purchased on shopping trip k made by panelist i(k) in store

s(k); and Pj,k, the unit price paid for the good j on shopping trip k.

3.1 Price indexes

Table 1 summarizes how we follow KM to construct household price indexes. We start from the

raw data to construct normalized prices P̄j,m,t and pj,s,w. P̄j,m,t is the sales-weighted average price

paid for good j in market m in quarter t; pj,s,w is the price of good j in store s in week w as a

fraction of the mean market-quarter price P̄j,m,t. We take the sales-weighted average of the weekly

prices pj,s,w to obtain the normalized store price for good j in quarter t, µj,s,t. The sales-weighted

average of the latter over goods gives the store average price µs,t.

The normalized prices are used to construct the household’s overall price index pi,t, as well as

several specific indexes. The store price index psi,t is the overall price index of stores visited by the

household. The store-good price index psgi,t is the price index for stores visited by the household

based on products purchased by the household. We also define pmi,t = 1 as the normalized average

market cost of consumer i’s purchases, which is equal to one by construction.

We augment the KM methodology by computing an additional price, the store-basket average

price µi,s,t defined in Table 2. It measures the cost of consumer i’s basket in store s: the total cost

of the basket had the consumer purchased all of it from store s instead of the actual stores where

the purchases were made. After weighing each store visited by its share of total expenditure, we

obtain the consumer’s store-basket price index psbi,t as given in Table 2. According to the store-

basket counterfactual spending, the consumer substitutes her purchases across the stores she visits

holding good and store expenditure shares constant; that is, the consumer purchases her entire

basket in each of the stores she visits in proportion to her overall spending in each store.

3.2 Decompositions

We are now in a position to define KM’s decomposition and our proposed modification, which we

will refer to as CCM for brevity. We start with an overall decomposition of the panelist’s price
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Table 1: Normalized prices, price indexes and household price indexes

Normalized prices

P̄j,m,t KM2 P̄j,m,t =
∑

s,w∈m∩t
Pj,s,w

Qj,s,w∑
s,w∈m∩t

Qj,s,w

pj,s,w KM1 pj,s,w =
Pj,s,w

P̄j,m(s),t(w)

Weighted average prices

Market average KM3 µj,m,t =
∑

s,w∈m∩t
pj,s,w

Qj,s,w∑
s,w∈m∩t

Qj,s,w
= 1

Store-good average KM4 µj,s,t =
∑
w∈t

pj,s,w
Qj,s,w∑

w∈t
Qj,s,w

Store average KM5 µs,t =
∑

j∈s∩t
µj,s,t

Rj,s,t∑
j∈s∩t

Rj,s,t

Store-good revenues KM6 Rj,s,t =
∑
w∈t

Pj,s,wQj,s,w

Household price indexes

Household expenditure KM11 X̄i,t =
∑

j,k∈i∩t
P̄j,m(i),tqj,k

Household exp. shares KM13 wi,j,k,t =
P̄j,m(i),tqj,k

X̄i,t
, wi,j,s,t =

∑
k∈i∩j∩s∩t

wi,j,k,t

Household price index KM12 pi,t =
∑

j,s,w∈i∩t
pj,s,wwi,j,s,t

Store-good KM14 psgi,t =
∑

j,s∈i∩t
µj,s,twi,j,s,t

Store KM14 psi,t =
∑

s∈i∩t
µs,twi,.,s,t

Market KM14 pmi,t =
∑

j,k∈i∩t
µj,m,twi,j,k,t = 1

Note: The second column provides the reference to the equation number in Kaplan and Menzio
(2015). Notation ‘.’ in a variable’s subindex means that the variable is summed over that subindex:
wi,.,s,t =

∑
j

wi,j,s,t.

Table 2: Household basket prices

Store-basket average price

µi,s,t Store-basket price µi,s,t =
∑

j∈i∩t
µj,s,twi,j,·,t

Household store-basket price index

psbi,t Household store-basket
price index

psbi,t =
∑

s∈i∩t
µi,s,twi,.,s,t =

∑
j,s∈i∩t

µj,s,twi,j,·,twi,·,s,t
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index as

pi,t − pmi,t = (pi,t − psgi,t)︸ ︷︷ ︸
transaction

+ (psgi,t − p
sb
i,t)︸ ︷︷ ︸

pure store-good

+ (psbi,t − psi,t)︸ ︷︷ ︸
store-basket

+ (psi,t − pmi,t)︸ ︷︷ ︸
store

. (1)

The interpretation of each difference is as follows:

pi,t − pmi,t is the difference between the price paid by the consumer and the price she would have

paid for the goods in her basket, had she paid the average market price.

pi,t − psgi,t is the transaction component. It is the difference between the actual normalized price

paid for each good and the average price for the same good at the store she purchased that

good. It measures the panelist’s ability to take advantage of temporal changes in price.

psgi,t − psbi,t is the pure store-good component. It is the difference between the average cost of the

goods she purchases at the stores where each purchase is made and the cost of her basket at

the stores she visits. It measures the panelist’s ability to purchase each good in her basket at

the store where that good is relatively cheaper within the set of stores visited.

psbi,t − psi,t is the store-basket component. It is the difference between the average cost of the panelist’s

basket at the stores she visits and the average expensiveness of the stores she visits. It

measures the extent to which the panelist purchases a basket that is representative of the

expensiveness of the stores she visits.

psi,t − pmi,t is the store component. It is the difference between the average cost of the stores visited

by the panelist and the average store in the market. It measures the panelist’s ability to

select cheap stores.

By merging the second and third components in equation (1), we obtain KM’s decomposition:

pi,t − pmi,t = (pi,t − psgi,t)︸ ︷︷ ︸
transaction

+ (psgi,t − p
s
i,t)︸ ︷︷ ︸

KM store-good

+ (psi,t − pmi,t)︸ ︷︷ ︸
store

. (2)

The first and last terms on the right hand side of equation (2) are the same terms as in equation (1).

The middle term is the KM store-good component, which is the sum of the pure store-good and

store-basket components from equation (1). It is important to take note that we have introduced

two distinct store-good components: the pure store-good component defined in equation (1), and

the KM store-good component, defined in equation (2).

Since our focus in on the relative magnitudes of the store and store-good components in the KM

and CCM decompositions, and in order to simplify the exposition, we will suppress the transaction
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component for the main part of the analysis.5 We rewrite equation (2) as

psgi,t = pmi,t + (psgi,t − p
s
i,t)︸ ︷︷ ︸

KM store-good

+ (psi,t − pmi,t)︸ ︷︷ ︸
store

, (3)

In this simplified version of the KM decomposition, the store-good price index is broken down

into the market index (pmi,t = 1) and the store and KM store-good components. The store compo-

nent measures the expensiveness of the stores visited relative to the market. The KM store-good

component is the expensiveness of the household’s basket in those stores relative to overall store ex-

pensiveness. Similarly, the CCM decomposition can be obtained from equation (1) after removing

the transaction component:

psgi,t = pmi,t + (psgi,t − p
sb
i,t)︸ ︷︷ ︸

pure store-good

+ (psbi,t − psi,t)︸ ︷︷ ︸
store-basket

+ (psi,t − pmi,t)︸ ︷︷ ︸
store

, (4)

3.3 Formal comparison of the two decompositions

The two decompositions will coincide when the pure store-good component is zero, psgi,t = psbi,t, or

when the store-basket component is zero, psbi,t = psi,t. Combining the definition of psbi,t in Table 2

with equation KM14, the former condition is written

psgi,t − p
sb
i,t =

∑
j,s∈i∩t

µj,s,t (wi,j,s,t − wi,·,s,twi,j,·,t) . (5)

This expression equals zero when wi,j,s,t = wi,·,s,twi,j,·,t, meaning that each consumer purchases the

same basket shares in all stores visited but purchases different amounts of that basket in different

stores. The relative chance of purchasing a product in one store over another is independent of the

good purchased,
wj,s,t

wj,s′,t
=

wj′,s,t
wj′,s′,t

for any (j, j′, s, s′).

Combining the definition of psbi,t in Table 2 with equations KM5 and KM14 we obtain

psi,t − psbi,t =
∑

j,s∈i∩t
µj,s,twi,·,s,t

 Rj,s,t∑
j∈s∩t

Rj,s,t
− wi,j,·,t

 . (6)

The two indexes are the same when the above sum, which is a non-linear function of the primitives

(transaction prices and quantities), equals zero. This occurs in three cases worth mentioning: (i) the

trivial case when there is a single product or single store; (ii) when the store-good prices are constant

across stores, µj,s,t = µs,t; and (iii) when the share of each good purchased by each consumer is

equal to the share sold by each store wi,j,·,t =
Rj,s,t∑

j∈s∩t
Rj,s,t

. The next proposition formalizes these

5We bring back the transaction component when we discuss robustness in section 5.4.
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insights.

Proposition 1. The KM and CCM decompositions are identical if any of the following four con-

ditions hold:

(a) Consumers select stores independently of the product purchased: For all i,
wj,s,t

wj′,s,t
=

wj,s′,t
wj′,s′,t

for

any (j, j′, s, s′).

(b) There is a single store (S = 1) or single product (J = 1).

(c) Uniform store prices: µj,s,t = µs,t, j = 1 . . . J ; a sufficient pair of conditions for this to hold

is:

(c1) Stores sell the same relative quantity of products,
∑

w Qj,s,w∑
w Qj′,s,w

=
∑

w Qj,s′,w∑
w Qj′,s′,w

for any (j, j′, s, s′);

and

(c2) The same holds for sales,
Rj,s,t

Rj′,s,t
=

Rj,s′,t
Rj′,s′,t

for any (j, j′, s, s′).

(d) Uniform store-basket prices: µi,s,t = µs,t, i = 1 . . . I; both (c2) and condition (d1) below must

hold:

(d1) Consumers spend the same share of total expenditure on each good, wi,j,·,t = wi′,j,·,t for

any (i, i′, j).

Proof. See appendix.

Condition (a) says that each consumer purchases in each store the same normalized (up to

scaling factor) basket, which may be different across consumers, with the consequence that a

consumer’s normalized basket is the same basket as the one used to construct the consumer’s

store-basket price index. The intuition for condition (b) is straightforward. With a single product,

the market basket and each consumer’s basket are the same, hence there can be no difference

between the store and store-basket price indexes. When there is a single store, that store’s overall

expensiveness has to be equal to 1, regardless of which basket of goods we are considering. Hence

again store and store-basket indexes will coincide.6

Conditions (c1) and (c2) are statements about store scalability: store and store-basket indexes

will be the same if stores are replicas of each other up to some scaling factor. Condition (c1)

says that store quantities sold can be written as the product of a store and product component,

Qj,s,t = αjβs, where αj and βs are positive numbers less than one and each sum up to one. Each

store controls the same share of each product, where βs is the market share or scale, of store s and

6 The store and store-basket may differ even when there is a single consumer. To see why, note that the weights
Rj,s,t∑

j∈s∩t
Rj,s,t

and w1,j,·,t in equation (6) may not be equal even with a single consumer.
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each store sells the same portfolio of products, where αj is the share of product j in the common

portfolio. Condition (c2) makes the same statement about revenue instead of quantity.

Condition (d) says that all consumers purchase the same basket and all store also sell the

same basket up to a scaling factor. The cost of a consumer basket in a given store, µi,s,t, which is

evaluated using the store-good prices, ends up being the same as the measure of store expensiveness,

µs,t, because the store sells goods in the same proportions as what the consumer purchases, and

we obtain psbi,t − psi,t =
∑

s∈i∩t
(µi,s,t − µs,t)wi,.,s,t = 0.

4 An illustrative example

We present a simple example to help clarify the main concepts and highlight the difference between

KM’s methodology and ours. Consider a market with two stores selling the same two products, say

bread and milk. One store specializes in bread (call it a bakery) and the second one specializes in

milk (a dairy). Both stores offer lower prices on their specialty products. Letting pi,j denote the

price of good i ∈ {b,m} in store j ∈ {B,D}, we have pb,B < pb,D and pm,B > pm,D.

Consumers differ in two dimensions: the composition of their basket and their shopping be-

havior. One fifth of consumers are shoppers and the other four fifths are loyals. Loyals have a

basket containing both bread and milk. They buy from a single store that could be chosen, say, on

the basis of location. Shoppers buy each item in their basket at the lowest available price. They

come in three types of equal size. One type has only bread in their basket (“bread shoppers”),

another type has only milk (“milk shoppers”), and the third type has both (“all-shoppers”). Table

3 describes the consumer types and their purchase shares in each store. Bread shoppers purchase

only from the bakery, milk shoppers only from the dairy, and all-shoppers purchase milk from the

dairy and bread from the bakery. Loyals are evenly split between the bakery and the dairy.

Table 3: Consumer types and their choices

(Stores) Bakery Dairy

(Products) Bread Milk Bread Milk
(Prices) pb,B = 1.0 pm,B = 1.1 pb,D = 1.1 pm,D = 1.0

Consumer type Frac. Expenditure shares wijs

1 Bread shopper 1/15 1 0 0 0
2 Milk shopper 1/15 0 0 0 1
3 All-shopper 1/15 1/2 0 0 1/2

4 Bakery loyal 2/5 0 0 1/2 1/2
5 Dairy loyal 2/5 1/2 1/2 0 0

Quantity purchased 3/10 1/5 1/5 3/10
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By design, there is no intertemporal price variation. Suppose that posted prices in the stores

are pb,B = pm,D = 1.0 and pb,D = pm,B = 1.1. The sales-weighted average price is the same for

both goods, P̄b = P̄m = 1.04. The weighted average store-good prices vary in opposite fashion

across stores, µb,B = µm,D = 0.96 and µm,B = µb,D = 1.06, and the same holds for revenues

(Rb,B = Rm,D and Rm,B = Rb,D). The implication is that the two stores are equally expensive

with respect to the market basket, µB = µD = 1. Thus, this example has neither transaction nor

store components. The point is to narrow the analysis down to the KM store-good and CCM pure

store-good components.

Table 4 reports the consumer price indexes and the components from the two decompositions.

The first three indexes are the ones constructed by KM: the market index pm, store index ps and

store-good index psg. The fourth price index is our store-basket index psb. The market index is

pm = 1 by construction. As mentioned above, the store index is also equal to one (ps = 1) for all

consumers. The store-good index psg is the average price of the goods each consumer purchases at

the store where those purchases are made. Shoppers (consumers 1, 2 and 3) purchase goods from

stores where they are cheap while loyals (consumers 4 and 5) purchase from relatively expensive

stores. The store-basket index psb is the average cost of the consumer’s basket at the stores she

visits. The index is low for single-item shoppers (consumers 1 and 2) because they only visit the

store that is cheap for the sole item in their basket. It is higher for the other three consumer types

because they have both items in their basket, therefore calculation of psb will include high-priced

items.

Table 4: Consumer price indexes and decompositions

Price indexes Components

store store-good pure store-good store-basket
Consumer KM/CCM KM CCM CCM

type pm ps psg psb ps − pm psg − ps psg − psb psb − ps

1 1.00 1.00 0.96 0.96 0.00 -0.04 0 -0.04
2 1.00 1.00 0.96 0.96 0.00 -0.04 0 -0.04
3 1.00 1.00 0.96 1.01 0.00 -0.04 -0.05 0.01
4 1.00 1.00 1.01 1.01 0.00 0.01 0 0.01
5 1.00 1.00 1.01 1.01 0.00 0.01 0 0.01

Market level decomposition 0% 100% 39% 72%

Note: The CCM decomposition adds up to 100% once the covariance term, cov(psb− pm, psg − psb) =
−5.5%, is included.

The components of interest are reported in the last four columns of Table 4, first for each

consumer and then, on the last line, for the entire market. The store component, which is common

to both decompositions, is zero in all cases (column 6). This is expected, as the price of the market

basket is the same in both stores. As a result, the KM decomposition attributes price dispersion for

all consumers entirely to the KM store-good component. This is appropriate for the all-shoppers
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(consumer type 3) because these consumers save by purchasing the goods in their basket in the

stores where these goods are cheap. They have a KM store-good component psg − ps = −0.04,

and a CCM pure store-good component of a similar magnitude, psg − psb = −0.05. Hence the two

decompositions lead to similar conclusions with respect to type 3 consumers. They differ, however,

with respect to the other four types. The KM store-good component is nonzero for the remaining

four consumers (types 1, 2, 4, and 5). We argue that this is problematic. Consumers 1 and 2 have

a negative KM store-good component because the cost of their single-item basket is lower than the

overall expensiveness of the store they visit. Yet there is no basis on which to conclude that these

consumers buy the right product from the right store, which is the KM interpretation of a nonzero

store-good component, since consumers 1 and 2 only purchase a single item from a single store.7

In contrast, the CCM pure store-good component is zero for the four consumer types: these

consumers’ store-good price index is equal to their store-basket price index. For consumers 1 and

2 we get instead a negative store-basket component because their basket is cheaper than overall

store expensiveness, while for consumers 3 and 4 we get a small positive store-basket component

because their basket is more expensive than overall store expensiveness.

This explains the striking difference between the two decompositions reported on the last line

of Table 4. As expected, neither decomposition attributes any of the dispersion in price index to

the store component. The KM decomposition attributes 100 percent of the dispersion to the KM

store-good component while the CCM decomposition attributes only 39 percent to the pure store-

good component, while 72 percent being attributed to the store-basket component. The conclusion

from the CCM decomposition is that consumer price dispersion is primarily due to variation in

consumers’ ability to select stores on the basis of the expensiveness of their basket in these stores.

5 Data and analysis

5.1 Data

We use the well-known BehaviorScan consumer panel provided by the market research company

IRI.8 The panel tracks consumers in two markets (Eau Claire, Wisconsin and Pittsfield, Mas-

sachusetts) over a period of twelve years, 2001-2012. A total of about ten thousand distinct

households are represented on the BehaviorScan panel, with an average of roughly five thousand

households every year. Unless stated otherwise, we follow KM to compute statistics that apply to

the entire dataset. We first calculate statistics for each market quarter and then aggregate them

by taking the expenditure-weighted averages across markets and quarters.

7Consumer 4 and 5 have a small positive KM store-good component because they do not purchase goods propor-
tionally to the store-good revenue shares at the store they visit. See footnote 6.

8See Bronnenberg, Kruger, and Mela (2009). The dataset has been widely used in this literature, including
recently by Pires (2016) and Ching and Osborne (2017).
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Table 5: Information about the dataset

Eau Claire Pittsfield

Observation count

Quarters 48 48
Goods 3,812 3,836
Purchases 3,862,540 3,977,461
Panelists 5,609 5,144
Stores 6 7

Average across panelists

# quarters panelists remain in the dataset 23.31 24.98
# distinct goods bought per quarter 17.82 18.49
# categories purchased per quarter 3.94 3.96
# stores visited per quarter 2.00 2.41
# purchases per quarter 26.94 29.04

BehaviorScan contains about 30 product categories. We ranked categories by total purchase

count, and selected the top 5 categories (carbonated soft drinks, milk, salty snacks, yogurt, cold

cereal). The sixth (soup) and the seventh (frozen dinner) categories could not be used because

they had missing product characteristic values that prevented us from accurately sorting UPCs

into unique products. The five categories selected cover 55% of all purchases in the dataset and

adding a few more product categories would only marginally increase this figure. The online

data appendix explains how we merge UPCs into unique products, and delete products, stores

and panelists with few purchases. Table 5 gives some summary information about the subset of

panelists, products and purchases used in this paper. Panelists stay on average about six years in

BehaviorScan. Each quarter, they visit on average two stores, buy eighteen distinct products from

four of the five categories, and make close to thirty purchases total. The summary statistics are

very similar in Eau Claire and Pittsfield. The two IRI markets do not reveal the existence of market

heterogeneity, although one should be cautious in drawing conclusions based on two observations.

Tables 10 and 11 in the Appendix replicate some of the KM results with the IRI dataset. Table

10 reports a value of 0.09 for the standard deviation in the overall price index across panelists (pi,t

from equation 1) for KM and the slightly lower value of 0.073 in IRI. Table 11 replicates KM’s

price decomposition (KM equation 7, p.13). For the sake of comparability, we report KM’s results

from Table 3 (p14) in the last two columns. The results are fairly similar although the transaction

component is slightly higher in the IRI dataset.

Table 6 reports some statistics on the household price indexes defined in section 3. The three

columns give measures of dispersion for the store-good, store, and store-basket indexes respectively

and report the same statistics as those reported in KM’s Table 2. As expected, the standard

deviation of the store-good price index, 0.039, is greater than the standard deviation in the other

two indexes. The panelist who save can save a significant amount relative to those who don’t: the

panelist at the top 10 percentile of spenders spend about 10% more on groceries that the panelist
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at the top 10 percentile of savers.

Table 6: Household price indexes

psg ps psb

Standard deviation 0.039 0.023 0.037
90-10 ratio 1.098 1.060 1.089
90-50 ratio 1.047 1.027 1.043
50-10 ratio 1.049 1.033 1.044

5.2 Store preferences

For each panelist-quarter observation, we select the top two stores (s1, s2) in terms of overall

expenditure. We rank the stores in two ways: according to their household-specific price level µi,s,t

and according to their overall price level µs,t. We then aggregate this information for 954 store-pair

quarters.9 For each store-pair quarter triplet (s1, s2, t), we compute the fraction of panelists who

have different orderings with the two store price indexes:

Pr[(µi,s1,t − µi,s2,t)(µs1,t − µs2,t) < 0]. (7)

The order under KM’s store index is the same for all panelists for a given store pair-quarter. Figure

1 shows the distribution of the fraction of panelists having different orderings using our store-basket

index. For about 26 percent of panelists the expensiveness ranking of the two stores where they

spend the most is different with the average store price index than with a price index specific

to their own basket. This demonstrates that preferences over stores are consumer specific for a

significant fraction of panelists.

The finding that the store rankings are different suggests that store preference may be basket

specific for some consumers. Thus, the large store-good component found in KM may be due to

the their decomposition underestimating the role of the store component. After accounting for the

fact that the store component is consumer specific, as proposed in the CCM decomposition, the

relative roles of the store and store-good components may change.

5.3 Decomposition results

Table 7 shows the results of applying the CCM and KM decompositions to our data. The CCM

decomposition is presented in column 2. The KM decomposition is presented in the second to last

line of the right panel. The components are obtained by summing terms in each column. Looking

9There are 1517 store-pair-quarter observations: both stores in the pair are one of the top two stores by expen-
diture for at least one panelist in that quarter (the upper bound is 36 store-pairs time 48 quarters=1728). After
filtering out store pair-quarters with less than 50 panelists, we end up with 954 observations.
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Figure 1: Distribution of the fraction of panelists with different expensiveness rankings by store
pair-quarter

first at the CCM decomposition, note that the store-basket component (psbi,t − psi,t) accounts for

about half the overall variance (48%). This confirms the result from the previous section that

store expensiveness and store-basket expensiveness are not the same thing. The next important

component is the store component (psi,t−pmi,t), which accounts for about 41% of the overall variance.

The pure store-good component (psgi,t − psbi,t) is the smallest of the three, contributing 27% to the

overall variance.

The KM store-good component is more than double the size of the CCM pure store-good

component (57% to 27%). This difference in the estimated store-good components can be seen

clearly in Figure 2, which plots their full distributions for an indicative market-quarter.10 Using

the CCM method, there is a large spike at zero: almost 40% of consumers have a zero pure store-

good component. The distribution using the KM method has no such spike and is much more

spread out. This is reminiscent of the illustrative example reported in Table 4, which showed that

the KM store-good component is much larger than the CCM pure store-good component.

10Since the variance is computed by market-quarter, it is not possible to show the distributions for all market-
quarters in a single graph. The distributions displayed are for Eau Claire 2001:1.
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Table 7: The KM and CCM decompositions

CCM decomposition
KM decomposition

Store Store-good Cov

var(psgi,t − psbi,t) 27% X

var(psbi,t − psi,t) 48% X

var(psi,t − pmi,t) 41% X

2cov(psbi,t−psi,t, p
sg
i,t−psbi,t) -17% X

2cov(psi,t−pmi,t, p
sg
i,t−psbi,t) 3% X

2cov(psi,t−pmi,t, psbi,t−psi,t) -1% X

Sum=var(psgi,t − pmi,t) 100%
41% 57% 2%

Sum=100%

Note: All variances and normalized by the total variance, var(psgi,t−pmi,t). The full
CCM decomposition is reported on the left. The KM decomposition is reported
on the second to last line and computed as vertical sums of the relevant terms
from the CCM decomposition.

Figure 2: The distribution of the KM store-good component and the CCM pure store-good com-
ponent in an indicative market-quarter
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5.4 Robustness

We conducted a wide array of robustness tests in order to ensure that our finding is not the result of

special circumstances. We provide a summary here and a more detailed explanation in the Online

Appendix. Table 8 replicates the full decomposition presented in the second column of Table 7

for seven robustness checks. Table 9 reports the variances of the KM store-good and the CCM

pure store-good components for the same robustness tests. The ‘Baseline’ scenario (first column in

Table 8 and first row in Table 9) corresponds to the CCM decomposition from Table 7.

The “Filter” column reports results obtained when we filter out panelist-quarter observations

with fewer than 50 purchases per quarter. The concern being addressed is that the average purchase

count in IRI is smaller than in Nielsen. We want to check that the results do not change when we

increase the purchase count per panelist-quarter.

Columns “Eau” and “Pitts” show results for each of the two markets separately. Nielsen contains

54 geographically dispersed markets. One concern is that our two markets may not be representative

of the average Nielsen market. Although we are limited in what we can do about this, we can at

least check that the results are not driven by a single market. Both markets point to the same

conclusion: The KM store-good component is more than twice the size of the pure CCM store-good

component.

Columns “SW2” and “SW3” report estimates using alternative store-good weights to the weight

wi,j,·,t and wi,·,s,t used in the definition of psbi,t in Table 2 to weight the store-good prices in the

calculation of the store-basket price index. A problem with these weights is that they overestimate

the store-basket price index if a good in the panelist’s basket has an abnormally high price in a

store visited by the panelist. The good may never be bought by the panelist in that store, and

for that matter, by most consumers. SW2 assumes that the panelist purchases each good in her

basket proportionally to how the average consumer in the market would purchase the good among

the stores visited by the panelist. This method takes care of the problem presented above. Another

concern is that the panelists’ baskets vary from quarter to quarter because the one-quarter window

is too short. SW3 computes the weights for the goods in a consumer’s basket, wi,j,.,t, using a

centered three-quarter window.

Finally, the last column consider a different way to aggregate the variance decompositions across

markets and quarters. The method reported in the baseline column follows KM’s approach. We

conduct the variance decomposition by quarter and then aggregate over quarters. The method

reported in column vari,m,t(∆it) computes a single variance decomposition for all panelist-quarter

observations.

The full variance decomposition does not change much across the seven columns in Table 8.

In Table 9 we see that in every case, the variance of the CCM pure store-good component is
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Table 8: Robustness check of the CCM decomposition

Baseline Filter Eau Pitts SW2 SW3 vari,m,t(∆it)

var(psgi,t − psbi,t) 27% 27% 19% 36% 41% 38% 31%

var(psbi,t − psi,t) 48% 45% 36% 63% 42% 34% 49%

var(psi,t − pmi,t) 41% 44% 50% 28% 41% 41% 39%

2cov(psbi,t − psi,t, p
sg
i,t − psbi,t) -17% -18% -11% -25% -26% -16% -22%

2cov(psi,t − pmi,t, p
sg
i,t − psbi,t) 3% 3% 6% -1% 26% 3% 3%

2cov(psi,t − pmi,t, psbi,t − psi,t) -1% 0% 0% -2% -24% 0% 0%

Sum=var(psgi,t − pmi,t) 100% 100% 100% 100% 100% 100% 100%

substantially larger than the variance of the KM store-good component, roughly about double the

size.

Table 9: Robustness check of the variances of the pure store-good and KM store-good components

CCM pure store-good KM store-good
var(psgi,t − psbi,t) var(psgi,t − psi,t)

Baseline 27% 57%
Filter 27% 54%
Eau Claire 19% 44%
Pittsfield 36% 75%
Store weight 2 41% 57%
Store weight 3 37% 57%
vari,m,t(∆it) 31% 58%

Table 12 in the Appendix presents nine additional robustness checks. We use transaction price

instead of store prices to compute the normalized prices in order to exactly match KM methodology.

We filter out good-market-quarters with few purchases and panelist-quarters with few purchases

or with few unique store visits. Finally, we conduct the decomposition separately for our five

product categories. The ratios of the store-good to store components are robust to these additional

robustness checks.

All of the variances decompositions presented in Tables 7, 8, 9 and 12 are calculated from

the simplified version of the KM decomposition (equations 3 and 4) that excludes the transaction

component defined in equation (1). This is without loss of generality because all variance decom-

positions are normalized and what interests us is the relative magnitude of the KM store-good

components and the CCM pure store-good component. Whether we include or not the transaction

component does not change this relative magnitude. For the sake of completeness, we have also

attempted to replicate in the IRI dataset the KM decomposition including the transaction compo-

nent (equation (1)). Tables 13 and 14 in the Online Appendix report the results. The transaction

component in our data is substantially larger in our IRI data than in KM’s Nielsen data, and this is

true independently of whether one follows the KM or CCM decomposition. The Online Appendix
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rules out several candidate explanations for this difference. A proper evaluation of these explana-

tions requires access to the Nielsen data, which we do not have. The difference in the magnitudes

of the transaction components remains a puzzle for future exploration. We emphasize that this

does not affect our primary result about the relative magnitudes of the store and store-basket com-

ponents. The result holds regardless of whether or not we include the temporal component in the

decomposition and is robust to many alternative computational and methodological assumptions

as demonstrated by Tables 9 and 12.

6 Concluding remarks

Price dispersion provides price-conscious consumers with the opportunity to save by shopping

around for the best deals. Recent work has documented substantial price dispersion in grocery

stores. Combined with the fact that many households spend a significant fraction of their income

in grocery stores, this suggests that the scope for savings from grocery shopping is considerable.

Consumers can save by searching for the lowest price both across stores and over time. They can

also save by buying in bulk of choosing generic brands.

In order to understand the different ways in which consumers save, we adopt and modify the

variance decomposition methodology of Aguiar and Hurst (2007) and Kaplan and Menzio (2015).

Our modification incorporates the insight that store expensiveness is consumer-specific: one store

may be the cheapest place to buy a specific basket of goods, but another store may be the cheapest

for a different basket. In practical terms, it amounts to a refinement of the KM decomposition that

breaks down their store-good component into two parts that we call pure store-good component and

store-basket component. This allows us to ask the following question: do (many) consumers really

choose the right store for the right product, as KM conclude? Or are they actually just choosing

the right store for their basket? The results from our decomposition suggest that the latter is the

case. A large fraction of the variance in consumer saving is due to variation in consumers’ ability to

choose the best store for their basket, and a smaller part is due to variation in ability to choose the

right product from the right store. We conclude that the definition of store expensiveness, whether

it is consumer specific or common to all consumers, has a significant impact in understanding

consumer savings.

Our analysis also finds an important role for the temporal component, which is consistent with

the recent literature on promotions (Pesendorfer, 2002; Hendel and Nevo, 2006a,b) but comes in

contrast with KM, who find a small transaction component. The difference is not due to the

methodology, but to our use of a different data set. We discuss several reasons why differences in

the two data sets can account for the divergent estimates of the transaction component but leave

a proper evaluation of these explanations as a question for future exploration.
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A Additional results

Columns 3 and 5 in Table 10 are copied from KM and correspond to Table 2 Column 3 (p.9) and

Table 6 Column 3 (p.22) respectively.

Table 10: Average statistics of price and pi,t

Price pi,t

IRI Nielsen IRI Nielsen

Standard Deviation 0.16 0.21 0.07 0.09
90-10 ratio 1.54 1.79 1.19 1.22
90-50 ratio 1.21 1.29 1.08 1.09
50-10 ratio 1.29 1.38 1.10 1.12

The fourth columns in Table 11 correspond to Table 3 Column 3 in KM (p.14). Columns 3 and

5 renormalize the variances and covariance after ignoring the transaction component.

Table 11: Decomposition at transaction level

IRI Nielsen

With tran Without tran With tran Without tran

Transaction 80% − 62% −
Store-good 28% 88% 30% 81%
Store 3% 9% 7% 19%
2cov(tran,sg) -12% − 0% −
2cov(tran,s) 0% − 0% −
2cov(sg,s) 1% 3% 0% 0%

In Table 12, line A replicates the analysis using transaction prices instead of store prices to

compute the normalized prices. Line B replicates line A after filtering out goods-market-quarters

with fewer than 25 purchases. Line C replicates line B after filtering out panelist-quarters with

fewer than 50 purchases. Line D replicates line C after filtering out panelist-quarters with only one

store visited. The last five lines replicates line B for our five product categories, that is, carbonated

soft drinks, cold cereal, milk, salty snacks and yogurt.

B Proof of proposition 1

Proposition 1. The KM and CCM decompositions are identical if any of the following four con-

ditions hold:

(a) Consumers select stores independently of the product purchased: For all i,
wj,s,t

wj′,s,t
=

wj,s′,t
wj′,s′,t

for
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Table 12: Comparison of the variances of key components using transaction price data

CCM pure KM
store-good store-good

Baseline 27% 57%
A: transaction price data 24% 55%
B: A and filter goods-market-quarters with fewer than 25 purchases 24% 55%
C: B and filter panelist-quarters with fewer than 50 purchases 21% 47%
D: C and filter panelist-quarters with only one store visited 27% 46%
B for carbonated soft drinks 11% 48%
B for cereal 15% 62%
B for milk 15% 67%
B for salty snacks 13% 54%
B for yogurt 8% 71%

any (j, j′, s, s′).

(b) There is a single store (S = 1) or single product (J = 1).

(c) Uniform store prices: µj,s,t = µs,t, j = 1 . . . J ; a sufficient pair of conditions for this to hold

is:

(c1) Stores sell the same relative quantity of products,
∑

w Qj,s,w∑
w Qj′,s,w

=
∑

w Qj,s′,w∑
w Qj′,s′,w

for any (j, j′, s, s′);

and

(c2) The same holds for sales,
Rj,s,t

Rj′,s,t
=

Rj,s′,t
Rj′,s′,t

for any (j, j′, s, s′).

(d) Uniform store-basket prices: µi,s,t = µs,t, i = 1 . . . I; both (c2) and condition (d1) below must

hold:

(d1) Consumers spend the same share of total expenditure on each good, wi,j,·,t = wi′,j,·,t for

any (i, i′, j).

Proof. We prove claim (a) by showing that condition
wj,s,t

wj,s′,t
=

wj′,s,t
wj′,s′,t

for any (j, j′, s, s′) implies

psgi,t = psbi,t. Combining the definition of psbi,t in Table 2 with equation KM14, we obtain

psgi,t − p
sb
i,t =

∑
j,s∈i∩t

µj,s,t (wi,j,s,t − wi,·,s,twi,j,·,t) .

Note that condition
wj,s,t

wj,s′,t
=

wj′,s,t
wj′,s′,t

for any (j, j′, s, s′) implies wi,j,s,t = wi,·,s,twi,j,·,t. Thus, the

expression wi,j,s,t − wi,·,s,twi,j,·,t on the right hand side of the above equation equals zero and we

conclude that psgi,t = psbi,t.

(b) From KM14 and Table 2: psi,t − psbi,t =
∑

s∈i∩t
µs,twi,.,s,t −

∑
s∈i∩t

µi,s,twi,.,s,t =
∑

s∈i∩t
(µs,t −

µi,s,t)wi,.,s,t. Thus µi,s,t = µs,t for all s implies psbi,t = psi,t. It is thus sufficient to show that
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µi,s,t = µs,t. We distinguish the two cases. (S = 1) When there is a single store, we have µj,m,t =

µj,s,t = 1. But µi,s,t =
∑

j∈i∩t
µj,s,twi,j,·,t = 1. Moreover µj,s,t = 1 for all j implies µs,t = 1. We

conclude µi,s,t = µs,t = 1. (J = 1) When there is a single product, we have µj,s,t = µs,t and

µi,s,t =
∑

j∈i∩t
µj,s,twi,j,·,t = µs,t.

The proof of claims (c-d) are derived by showing that the conditions stated in these claims

imply psi,t = psbi,t. To evaluate psi,t − psbi,t, put together the definition of psbi,t in Table 2, psbi,t =∑
j,s∈i∩t

µj,s,twi,j,·,twi,·,s,t, and KM5 and KM14, psi,t =
∑

s∈i∩t
wi,.,s,t

( ∑
j∈s∩t

µj,s,t
Rj,s,t∑

j∈s∩t
Rj,s,t

)
, to obtain

psi,t − psbi,t =
∑
s∈i∩t

wi,.,s,t


∑

j∈s∩t
µj,s,t

Rj,s,t∑
j∈s∩t

Rj,s,t

− ∑
j∈i∩t

µj,s,twi,j,·,t


or,

psi,t − psbi,t =
∑

j,s∈i∩t
µj,s,twi,·,s,t

 Rj,s,t∑
j∈s∩t

Rj,s,t
− wi,j,·,t

 . (8)

(c) From KM1 and KM2, the normalized price is:

pj,s,w =
Pj,s,w∑

s′,w′∈m∩t
Pj,s′,w′

Qj,s′,w′∑
s′′,w′′∈m∩t

Qj,s′′,w′′

.

In turn, the store-good average price is obtained from KM4

µj,s,t =
∑
w∈t

pj,s,w
Qj,s,w∑

w∈t
Qj,s,w

=

∑
w∈t

Pj,s,w
Qj,s,w∑

w∈t
Qj,s,w∑

s′,w′∈m∩t
Pj,s′,w′

Qj,s′,w′∑
s′′,w′′∈m∩t

Qj,s′′,w′′

=

∑
w∈t

Pj,s,wQj,s,w∑
w∈t

Qj,s,w∑
s′,w′∈m∩t

Pj,s′,w′Qj,s′,w′∑
s′,w′∈m∩t

Qj,s′,w′

=

∑
s′,w′∈m∩t

Qj,s′,w′∑
w∈t

Qj,s,w

Rj,s,t∑
s∈m∩t

Rj,s,t
.

Assumptions (c1) and (c2) imply that

∑
w∈m∩t

Qj,s,w∑
s,w∈m∩t

Qj,s,w
and

Rj,s,t∑
s∈m∩t

Rj,s,t
are independent of j and

this in turn implies that µj,s,t is constant across j because the two terms in the last product in the
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above equation are independent of j. To conclude, rewrite

psi,t − psbi,t =
∑
s∈i∩t

wi,·,s,tµj,s,t

∑
j∈s∩t

Rj,s,t∑
j∈s∩t

Rj,s,t
−
∑
j∈i∩t

wi,j,·,t


 = 0,

where the last equality follows from
∑

j∈s∩t

Rj,s,t∑
j∈s∩t

Rj,s,t
=
∑

j∈i∩t
wi,j,·,t = 1.

(d) A sufficient condition for psbi,t = psi,t is wi,j,·,t =
Rj,s,t∑

j∈s∩t
Rj,s,t

for all (i, j, s). Assumption (d1)

says that wi,j,·,t is constant across i and assumption (c2) implies that
Rj,s,t∑

j∈s∩t
Rj,s,t

is constant across

s. Thus, we only need to show that the two terms are equal. This is indeed the case because the

overall expenditure share of good j purchased by consumers,
∑

i X̄i,twi,j,·,t∑
i,j X̄i,twi,j,·,t

, has to equal to the

overall share of good j sold by stores,
∑

s Rj,s,t∑
s,j Rj,s,t

and we obtain

wi,j,·,t =

∑
i X̄i,twi,j,·,t∑
i,j X̄i,twi,j,·,t

=

∑
sRj,s,t∑
s,j Rj,s,t

=
Rj,s,t∑

j∈s∩t
Rj,s,t

for all i and s.

and this holds for all j. We conclude that wi,j,·,t =
Rj,s,t∑

j∈s∩t
Rj,s,t

for all (i, j, s) and psbi,t = psi,t for all i.

A final comment is in order. The proof of claim (c) does not hold when one only assumes that

the price ratios are constant across stores
Pj,s,w

Pj′,s,w
=

Pj,s′,w
Pj′,s′,w

for any (j, j′, s, s′). One needs to add

assumption (c1) saying that the ratio of quantity sold is also constant across stores
Qj,s,w

Qj′,s,w
=

Qj,s′,w
Qj′,s′,w

for any (j, j′, s, s′). These two assumption, which taken together imply assumption (c2), hold for

example, when all goods are proportionally more expensive, and sold in proportionally smaller

quantity, in more expensive stores.
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C Online Appendix

Table 13 replicates in the IRI dataset the KM decomposition including the transaction component.

Column 2 presents the result for the full decomposition (equation 1). Column 4 present the results

for the KM decompostion applied to IRI. Column 5 presents the results of the KM decomposition

applied to Nielsen reported in KM, Table 7, Column 3 (p.25).

Table 13: Full decomposition

Full decom KM-IRI KM-Nielsen

var(∆a,sg
i,t ) 70% Transaction 70% 16%

var(∆sg,sb
i,t ) 8%

Store-good 18% 53%
var(∆sb,s

i,t ) 15%

var(∆s,m
i,t ) 13% Store 13% 39%

2cov(∆a,sg
i,t ,∆sg,sb

i,t ) 3%
2cov(tran,sg) 1% 5%

2cov(∆a,sg
i,t ,∆sb,s

i,t ) -3%

2cov(∆a,sg
i,t ,∆s,m

i,t ) -3% 2cov(tran,s) -3% 1%

2cov(∆sb,s
i,t ,∆

sg,sb
i,t ) -6%

2cov(∆s,m
i,t ,∆

sg,sb
i,t ) 1%

2cov(s,sg) 1% -13%
2cov(∆s,m

i,t ,∆
sb,s
i,t ) 0%

Sum=var(psgi,t − pmi,t) 100% 100% 100%

In Table 14, column A replicates the analysis using transaction prices instead of store prices to

compute the normalized prices. Column B replicates column A after filtering out goods-market-

quarters with fewer than 25 purchases. Column C replicates column B after filtering out panelist-

quarters with fewer than 50 purchases. Column D replicates column C after filtering out panelist-

quarters with only one store visited. Column 1 to 5 replicate column B for our five product

categories, that is, carbonated soft drinks, cold cereal, milk, salty snacks and yogurt.

Table 14: Replication of the full KM decomposition using transaction data

A B C D cate1 cate2 cate3 cate4 cate5 Nielsen

Transaction 50% 51% 47% 48% 52% 54% 60% 57% 63% 16%
Store-good 23% 23% 20% 19% 22% 24% 26% 22% 22% 53%
Store 20% 20% 24% 22% 25% 16% 13% 19% 10% 39%
2cov(tran,sg) 10% 9% 11% 12% 3% 7% 2% 3% 6% 5%
2cov(tran,s) -1% 0% -1% -1% 0% 0% 0% 0% 0% 1%
2cov(sg,s) -1% -1% -1% 0% -1% -1% 0% -1% -1% -13%
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