
 

 

DEPARTMENT OF ECONOMICS 
UNIVERSITY OF CYPRUS 
 

 

 

 

 

 

 

 

 

 

VOLATILITY FORECAST COMBINATIONS USING 

ASYMMETRIC LOSS FUNCTIONS 

 
 
 
 
Elena Andreou, Constantinos Kourouyiannis and Andros Kourtellos 

 

 

 

 
 
 
Discussion Paper 07-2012 
 
 
 
 
 
 
 
 

 
 
 

P.O. Box 20537, 1678 Nicosia, CYPRUS Tel.: +357-22893700, Fax: +357-22895028 

Web site: http://www.econ.ucy.ac.cy 



Volatility Forecast Combinations using Asymmetric

Loss Functions∗

Elena Andreou†. Constantinos Kourouyiannis† Andros Kourtellos†

University of Cyprus

May 18, 2012

ROUGH AND INCOMPLETE DRAFT:

PLEASE DO NOT CIRCULATE WITHOUT PERMISSION

Abstract

The paper deals with the problem of model uncertainty in forecasting volatility
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1 Introduction

Forecasting volatility is an important area of research in financial markets due to its role for
pricing derivatives, asset allocations decisions, and risk management. This need for volatility
forecasts has generated a vast literature on model and methods starting from the seminal
work of Engle (1982) and Bollerslev (1986) on (G)ARCH volatility models. Andersen,
Bollerslev, Christoffersen, and Diebold (2006) and more recently Hansen and Lunde (2011)
provide excellent surveys on the most important developments on volatility forecasting.
Despite the vast amount of empirical research on forecasting volatility, there is remarkably
little consensus on which models are most salient in providing accurate predictions. As a
result forecasters are faced with volatility model uncertainty about the choice of the family
models (e.g. GARCH-type, (H)AR-RV, etc.) as well as model uncertainty about lags,
leverage effects, functional forms, structural breaks, etc.

This problem of volatility model uncertainty has been highlighted by the recent financial
crisis, especially in risk management where the volatility forecast is a key input to models
such as the Value at Risk (VaR) and the Expected Shortfall (ES).1 In particular, many
financial institutions suffered large losses in the wake of the recent financial crisis. The
Internationally Monetary Fund (IMF) in 2009 estimated that the total losses on US assets
due to the financial crisis to be around 4.2 billion dollars. To us this uncertainty with respect
to the appropriate volatility model suggests that forecast combinations can provide more a
accurate forecast of volatility and thereby more robust and precise VaR and ES forecasts.
This argument is consistent with Timmermann (2006) who emphasizes the benefits of forecast
combinations since forecast combinations use evidence from all the models rather than relying
on an individual model. More importantly, under certain conditions, forecast combinations
can be robust to structural breaks as argued by Aiolfi and Timmermann (2006).

In this paper we deal with two objectives. First, we explicitly deal with model
uncertainty with respect to the volatility specification. Specifically, we provide robust
volatility forecasts based on volatility forecast combinations using a comprehensive model
space rather than conditioning on a specific volatility model. We consider three different
families of volatility models: (G)ARCH type models, high frequency realized volatility
models and non-parametric rolling volatility models. Second, we study forecast combinations
based on asymmetric loss functions as they are more appropriate than symmetric loss
functions such as the Mean Square Error. For instance, in risk management an asymmetric
loss function is more appropriate since under-prediction of volatility is more important
and costly compared to over-prediction. This argument is especially relevant during high
volatility periods and the recent financial crisis. Therefore, we investigate whether a
framework that addresses model uncertainty and combines forecasts based on asymmetry
in the loss function can improve our volatility predictions. Our empirical analysis uses daily

1Jorion (2009) argues that uncertainty associated with model specification is one possible reason for the
failure of the existing risk management techniques.
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and 5 minute data for S&P 500 and NASDAQ as well as for four other major international
stock market indices including FTSE 100, DAX 30, CAC 40, and NIKKEI 225.

Combining volatility forecasts raises two challenges. First, note that the true conditional
volatility is a latent variable, which needs to be estimated and as a result volatility is only
observed with measurement error. This problem was recently revisited by Patton (2011) who
shows that the effect of the measurement error can be large and it can vary substantially
with the choice of loss function. This implies that the performance of the volatility forecast
combination will generally depend on the effects of the error and the choice of loss function
on the combination weights. Second, given that in risk management under-prediction of
volatility is by far more important than over-prediction, asymmetric loss functions are more
relevant than symmetric ones such as the Square Error.

Following Patton and Sheppard (2009), we address the above challenges using forecast
combinations of volatility based on the Homogeneous Robust (HR) loss function, which has
been found by Patton (2011) to enjoy several desirable properties. First, the measurement
error due to the volatility estimation does not affect the rankings of the competing volatility
forecasts. Second, it is a very flexible loss function that can take infinite shapes using a
single parameter that determines its shape. For example, it nests the popular loss functions
of the Square Error and QLIKE. For robustness we also consider the LINEX as an alternative
asymmetric loss function. In general, our proposed forecast combination method is also in
the spirit of Elliot and Timmermann (2004) who investigate forecast combinations under
asymmetric loss functions. Elliot and Timmermann show that these asymmetries in the loss
function have an important effect in optimal weights and improve the performance of the
underlying forecasts.

As our ex-post estimator for the true conditional volatility we use the Realized Volatility
(RV) proposed by Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev,
Diebold, and Labys (2003), Bardorff-Nielsen and Shephard (2002b), and Bardorff-Nielsen
and Shephard (2002a) based on intra-daily returns. According to Patton (2011) the use of
unbiased and less noisy estimators such as RV may alleviate the measurement error problem
partly.

Our paper is closely related to Patton and Sheppard (2009) who also study forecast
combinations using the HR loss function. The main difference is that while they focus on
forecasts based on high frequency realized estimators of volatility we have a richer model
space that includes in addition to high frequency volatility specifications (G)ARCH and
(H)AR-RV type models. Another difference is that while their analysis is limited to the
volatility of IBM returns we study the volatility of returns on S&P 500, NASDAQ, and
other major international stock market indices. In terms of the broader literature our paper
is related to Fuertesa, Izzeldinb, and Kalotychoua (2009) who employ forecast combination
of GARCH models and Liu and Maheu (2009) who employ Bayesian Model Averaging
(BMA) to forecast realized volatility. However, these papers do not consider the effect
of the estimation noise on the weights and do not consider forecast combinations using the
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Homogeneous Robust loss function.

Our findings emphasize the importance of volatility forecast combinations and the use of
asymmetric loss functions for obtaining the combined forecasts as well as for out-of-sample
evaluation. The evidence is strongest for the loss functions that correspond to the parameters
of the loss functions that penalize under-prediction more heavily than over-prediction and
as expected they are especially useful in risk management given the importance of downside
risk. In particular, we find that forecast combinations based on the Homogeneous Robust
Loss function, and in particular with a shape similar to QLIKE, provide the smallest
significant forecast losses in forecasting volatility. Among the individual models the best
performing model is the LHAR-RV that captures the leverage effect of returns at daily,
weekly and monthly frequencies during the most recent period up to 2010. Overall, we
find that our methods are especially useful during the period of the recent financial crisis
according to which our forecast combination methods using the asymmetric loss function
provide substantial improvements in forecasting volatility.

The paper is organized as follows. Section 2 describes our methodology on forecast
combinations using asymmetric loss functions. Section 3 describes our data. Section 4
describes the results on volatility forecast combinations for S&P 500. Section 5 presents
a robustness analysis by extending our analysis to international stock market indices and
LINEX and finally Section 6 concludes.

2 Robust Volatility Forecast Combinations

Our forecast combination strategy follows Patton and Sheppard (2009) who employ volatility
forecast combinations based on the HR loss function of Patton (2011). They show that
it is possible to consistently estimate the optimal combination weights from the data, by
employing a robust loss function.

We proceed in stages. First, we construct a good estimator of the true conditional
volatility. Using intra-daily 5 minute data we follow Andersen, Bollerslev, Diebold, and
Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2003), Bardorff-Nielsen and
Shephard (2002b), and Bardorff-Nielsen and Shephard (2002a) to estimate the ex-post

Realized Volatility (RV).2 RV is defined as the sum of squared intra-daily log returns

Y (t) = RVt =
m∑
j=1

r2t,j and enjoys attractive properties. It is a consistent estimator of

Quadratic Variation and exhibits a superior performance of the RV against the daily squared
returns as documented in several papers (e.g.Andersen, Bollerslev, Diebold, and Labys
(2001), Hansen and Lunde (2006), and Hansen and Lunde (2005)).

2The choice of 5 minute data is justified on the grounds of past empirical findings that show that at this
frequency there is no evidence of microstructure noise; see for example Andersen, Bollerslev, Diebold, and
Labys (2001).
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Second, we consider combinations of individual forecasts over a large number of low
and high-frequency volatility models. Table 1 defines the model space, M, which includes
four broad families of volatility models: (i) We consider the simple Autoregressive models
of Realized Volatility (AR-RV) using 1, 5, 10 and 22 lags, which correspond to the trading
periods of one day, one week, two weeks, and one month, respectively. (ii) We use the
Heterogeneous Autoregressive model of Realized Volatility (HAR-RV) (Corsi (2009)) and
the Leverage HAR-RV (LHAR-RV)(Corsi and Reno (2009)). These models have been found
to be successful in modeling the long memory behavior of volatility in a very simple and
parsimonious way. HAR-RV is a simple AR-type model in the RV with the feature of
considering volatilities realized over different interval sizes such as days, weeks, and months.
LHAR-RV includes leverage effects that influence each market component separately, and
appear aggregated at different horizons in the realized volatility dynamics. (iii) We use four
GARCH-type volatility models: the GARCH of Bollerslev (1986), the TARCH or GJR-
GARCH ofGlosten, Jagannathan, and Runkle (1993), which has an additional parameter to
capture the leverage effect, the APARCH of Ding, Granger, and Engle (1993), which nests
the two aforementioned models and does not restrict the power of returns to be equal to 2,
and the EGARCH of Nelson (1991), which has logarithmic structure and therefore, provides
positive volatility forecasts without imposing any restrictions to its parameters.3 In this
family we also include the RiskMetrics of J.P.Morgan, which can be viewed a special case of
the IGARCH volatility model. (iv) Finally, we consider nonparametric models of volatility
using Rolling Volatility estimators based on rolling windows of 30 and 60 daily observations.

Let ŵm,t be a weight of the m’th forecast based on an individual volatility model from

M in period t . Let also define the vectors wt = (wt,1, ..., wt,M) and ĥt = (ĥ1,t, ĥ2,t, ..., ĥM,t)
′.

Then given M approximating volatility models, forecast combinations are weighted averages
of the individual forecasts,

ĥt(wt) = ĥ′
twt =

M∑

m=1

wm,tĥm,t, (2.1)

Then we obtain the HR forecast combination (HRFC) by choosing weights that minimize

3The Matlab codes and formulas of the GARCH-type models of this paper are based on the MFE toolbox
(October 2009) written by Kevin Sheppard.
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the HR loss function given in equation (2.2).

LHR(Yt, ĥt(wt); b) =





1
(b+1)(b+2)

(Y b+2
t − (ĥt(wt))

b+2)− 1
b+1

hb+1
t (Yt − (ĥt(wt)), if b /∈ {−1,−2}

ĥt(wt)− Yt + Yt log
Yt

ĥt(wt)
, if b = −1

Yt

ĥt(wt)
− log Yt

ĥt(wt)
− 1, if b = −2

(2.2)

The HR loss function is in fact a family of loss functions controlled by a scalar parameter,
b , that controls the shape of the function. It is robust to the “noise” caused by the estimation
the true conditional volatility in the sense that it does not distort the relative rankings of
competing volatility forecasts. The HR loss function is also homogeneous of degree b.4 This
class of loss functions nests two of the most popular loss functions, namely the Mean Square
Error (MSE) (b = 0) and the QLIKE (b = −2). Another advantage of HR is that is in
addition to the forecast error, it also depends on RV. This allows extra flexibility in periods
of low or high volatility. We concentrate on Homogeneous Robust loss functions with non
positive shape parameter (b ≤ 0) that penalize under-prediction of volatility more heavily
than over-prediction. Figure 1(a) shows the Homogeneous Robust loss function for various
values of the shape parameter.

Following Timmermann (2006) we impose the convexity constraints 0 ≤ ŵm,t ≤ 1 and

additivity constraint
∑M

m=1 ŵm,t = 1. These constraints also enable the interpretability of
the weights as a measure of the importance of each individual model. Specifically, we choose
the HR weights as follows

ŵt = argmin

0≤wt,m≤1,
M∑

m=1
wt,m=1

LHR(Yt, ĥt(wt); b) (2.3)

Note that in the case of the Mean Square Error, that is b = 0, HR forecast coincides
with the constrained version of Granger and Ramanathan (1984) method. 5

4According to Patton (2011) a loss function is homogeneous of degree k if it satisfies the property
L(αRVt, αht) = αkL(RVt, ht) ∀α > 0.

5Unbiasedness of the constrained forecast combination requires unbiasedness of all the individual forecasts.
This assumption is not necessary when we ignore the restriction and obtain an unconstrained volatility
forecast combination. For robustness we also studied unconstrained forecast combination without finding
substantial differences.
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3 Data

Our database involves daily and 5 minute data of two major US and four international stock
market indices from the US. Specifically we use the S&P 500 Index, NASDAQ Composite
for the US stock markets, the German DAX 30, the UK FTSE 100, the French CAC 40 and
the Japanese NIKKEI 225. The S&P 500 index covers the period February 1, 1983 to June
30, 2010 and it is the relatively longer historical time series available in our database. The
other stock market indices are available from July 1, 2003 to June 30, 2010.

For the S&P 500 we consider the evaluation period from January 2, 2004 to June 30,
2010 as well as two subsamples that allow us to study the differential effect of the financial
crisis. In particular, we split the S&P 500 Index sample in two subsamples using the event of
the downgrade by Standard and Poor’s as well as Moody’s of 100 bonds backed by subprime
mortgages that occurred on June 1, 2007. The first subsample covers the period from January
2, 2004 to May 31, 2007 and it is characterized by low volatility. During this period there
is an increase in the number of subprime mortgages due to the drop of interest rates. The
second subsample covers the period from June 1, 2007 to June 30, 2010. The most important
event during this period is the drop in house prices, which caused the stock market crash
and drove a number of financial institutions to bankruptcy (e.g. Lehman Brothers). This
period is especially interesting in risk management since it consists of a lot of extreme events
and it is characterized by rapid changes in volatility.

In terms of the other indices we only consider a high volatility subsample due to their
shorter availability. The out of sample period for DAX 30 spans June 1, 2007 to June 30,
2010, for NASDAQ Composite, FTSE 100 and CAC 40, July 2, 2007 to June 30, 2010 and for
NIKKEI 225, August 1, 2007 to June 30, 2010. Figures 2 and 3 show the annualized Realized
Volatility based on 5 minute data of all the stock market indices for the corresponding out
of sample evaluation period.

4 S&P 500 Volatility Forecasts

We provide rolling one-step ahead out-of-sample forecasts to evaluate the predictive ability
of our methods. We choose to use a rolling estimation to ensure that our evaluation will
be robust to the instability we observe in the financial series, especially due to the recent
financial crisis. Specifically, we divide the sample of size T into an in-sample rolling window
of size m = 1000 and an out-of-sample window of size n = T −m. At time t = m we obtain
the first one-step ahead forecast at time m using data 1, ..., m and compare it with Ym+1.
At time t = m + 1 we obtain the second one-step ahead forecast and compare it with the
observed Ym+2. This procedure is iterated to produce n = T −m out-of-sample forecasts.

We assess the out-of-sample forecast accuracy of each volatility forecast combination
method using the HR loss function given in equation (2.2). Given that the out-of-sample
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loss corresponding to the forecast at time t is given by LHR(Yt+1, ĥt(wt); b), we can then
define the out-of-sample mean losses as follows.

Lm,n =
1

n

T−1∑

t=m

LHR(Yt+1, ĥt(wt); b) (4.4)

We should point out that in the case of HRFC both the forecast combination weights
and the out-of-sample evaluation are based on exactly the same loss function and hence
better performance is expected. 6

4.1 Out-of-sample Evaluation

The out-of-sample evaluation of the volatility forecasts of the S&P500 using two approaches:
the combination methods which are presented in Table 2 and the best performing individual
models within each volatility family in Table 3.

In particular Table 2 shows the out-of-sample losses of volatility forecasts of the S&P500
using the Homogeneous Robust Loss Function for a range of values of the parameter b ranging
from the MSE (b = 0) to the QLIKE loss (b = −2) and other values of b that yield less or
more asymmetry than the QLIKE. The results are organized following the four combination
methods: Mean, Median, Geometric Mean (GMean), and Homogeneous Robust Forecast
Combinations (HRFC). We compare these combination methods for value of b in the full
sample 1/2/2004 - 6/30/2010 and in the two subsamples before and after the wake of the
recent financial crisis marked in 6/2007.

An important additional aspect of volatility forecast evaluation, which provides
additional insights on the performance of combination methods is the performance of the
combination weights for the four volatility families over different loss functions and sub-
periods (marked by low and high volatility). These results are presented graphically in
Figure 4.

In synthesizing the results of Table 2 and Figure 4 regarding the performance of the
combination methods for the S&P500 we obtain the following main results.

First, in all three samples HRFC method always has smaller losses compared to the rest
of the forecast combinations (Mean, Median, Geometric Mean) for a given value of b and
across the range of b values considered. An explanation for the better performance of the
HRFC method vis-à-vis the mean type methods is the fact that it allows varying forecasting
weights. Therefore, turning to Figure 4, which presents the HR combinations weights

6A similar argument was made by Christoffersen and Jacobs (2004) who emphasized the consistency of
the loss function in parameter estimation and evaluation of option valuation models. Instead, we emphasize
the consistency of the forecast combination method and evaluation.
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that correspond to the four families of volatility models (AR-RV, HAR-RV, GARCH and
Nonparametric) we obtain the following results: The HAR-RV and LHAR-RV models obtain
the highest weights compared to the other families of models in both the first subsample
which is tranquil period (before June 2007) and in the beginning of the second subsample
before 2008, for all the loss functions considered here (both symmetric and asymmetric).
However, in the second sub-period and after 2008, in the presence of asymmetries in the
loss function (QLIKE b = −2 and HR with b = −3,−4), the forecasting weights of the
AR-RV models steadily increase compared to those before 2008 and to the HAR family
of models. One explanation is that the AR-RV could be more robust to misspecification.
Another interesting aspect of the combination weights obtained in Figure 4, using the MSE
loss function in the second subsample relates to the fact that the GARCH family of models
obtains the highest weights relative to the other models. This is due to the result that the
EGARCH model is the best performing model given that it is a model which allows for
leverage, captures asymmetry of news and does not impose parameter restrictions.

Second, in the full sample and second subsample characterized by the financial crisis,
if an investor or policy maker has MSE preferences or a symmetric loss function (b = 0 in
HR loss function), then her losses of the S&P500 volatility forecasting are higher vis-à-vis
those of asymmetric preferences and HR loss functions with (b < 0). In fact the MSE loss
functions performs 43 times worse than the QLIKE in the most recent financially turmoil
period and vis-à-vis the other subsamples. The QLIKE (b = −2) provides the smallest
losses in forecasting volatility in this most recent period. It is only during the tranquil
period of 1/2/2004-5/31/2007, that MSE preferences yield low losses and even 4 times lower
than those of the QLIKE method. Hence our findings suggest that during highly volatile
periods the asymmetric loss (especially the QLIKE) functions provide considerably improved
volatility forecasts compared to the tranquil periods. Similarly, in periods characterized by
both high and low volatility the asymmetric loss functions and in particular the QLIKE
performs around 3 times better than the MSE loss function.

Last but not least, we turn to Table 3 to get a deeper insight of the out-of-sample
forecasting performance of individual models within the four families of volatility models.
For the QLIKE and b < −1, the LHAR-RV and AR-RV (with 10 and 22 lags) perform better
than the rest of the RV type models and among the GARCH models the Normal-EGARCH
is the best performing model especially in the full- and high-volatility sample. However,
comparing the out-of-sample losses of volatility forecasts of the combination methods in
Table 2 and in particular HRFC we find that this combination method outperforms even
the best performing individual forecasting models in Table 3 in all subsamples, for a given b
value.
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4.2 Conditional Predictive Ability

In this section we provide formal testing procedures to compare the out-of-sample
performance of our forecast combination methods. In particular, we employ the CPA test
of Giacomini and White (2006), which accounts for estimation uncertainty and is also valid
for both nested and non-nested hypotheses. The null hypothesis of this test is given by
H0 : E((L(Yt, ĥ

A
t (wt); b) − L(Yt, ĥ

B
t (wt); b))|=t) ≡ E(∆Lm,t+1|=t) = 0, where =t is some

information set. ĥA
t (wt) and ĥB

t (wt) refer to two different volatility forecasts based on either
combinations or individual models. The CPA test statistic is a Wald-type statistic of the
following form

CPAm,n = nZ
′

m,nΩ̂
−1
n Z

′

m,n (4.5)

where Zm,n ≡ n−1
∑T−1

t=m Zm,t+1, Zm,t+1 ≡ ηt∆Lm,t+1. Ω̂n is the Newey and West (1987) HAC
estimator of the asymptotic variance of Zm,t+1. ηt is a q dimensional vector of test functions,
which is chosen to embed elements of the information set that are expected to have potential
explanatory power for the future difference in predictive ability. Here, we follow Giacomini
and White (2006) and use ηt = (1,∆Lt)

′, which corresponds to the difference of squared
residuals in the last period. Under the null of equal conditional predictive ability CPAm,n

asymptotically follows a χ2
q distribution.

To determine which method performs best we use the two-stage decision rule described
in Giacomini and White (2006). Step 1: regress ∆Lm,t+1 = L(Yt, ĥ

A
t+1)− L(Yt, ĥ

B
t+1) on the

test function ηt over the out-of-sample period t = m, ..., T − 1 and obtain the regression
coefficients δ̂. Apply the one-step ahead CPA test described above using 10% for size of the
test. In case of rejection, proceed to Step 2. Step 2: Define the following decision rule based
on the approximation E(∆Lm,t+1) ≈ δ̂′ηT : use ĥA

t+1 if δ̂′ηT > 0 and use ĥB
t+1 if δ̂′ηT < 0.

Table 4 presents the CPA tests that correspond to Table 2. As before we present
the results for the full sample and the two subsamples of the S&P 500 and the various
values of b that correspond to different preferences defined by the HR loss function. Each
panel provides CPA tests for the four combination methods of Mean, Median, GMean, and
Homogeneous Robust Forecast Combinations (HRFC). In general the HRFC significantly
outperform the other three forecast combination methods with a few notable exception in
the second subsample. In the cases of MSE preferences (b = 0) and extreme asymmetries
(b < −3.5) GMean appears to have a superior performance. This finding is consistent with
the fact that QLIKE preferences (b = −2) provide the smallest losses in forecasting volatility
in this most recent period.

Next we provide evidence from an alternative asymmetric loss function as well as from
other stock market indices.

10



5 Robustness

5.1 LINEX

For robustness we consider LINEX as an alternative class of asymmetric loss functions, which
was introduced by Varian (1975) and later employed by Zellner (1986). LINEX can be solely

expressed in term of forecast errors, êt = Yt − ĥt(wt).

LLINEX((Yt, ĥt(wt); a) = exp(aêt)− aêt − 1, (5.6)

where a is a scalar parameter that controls the degree of asymmetry. As it is implied by
its name, when a > 0 LINEX is approximately linear for negative errors and approximately
exponential for positive errors, which implies that the loss for underprediction is larger than
for overprediction. The converse is true for a < 0. As in the case of the HR loss function
we focus on a > 0 because underprediction is more devastating than overprediction in the
context of risk management. Figure 1(b) shows the LINEX loss function for different values
of the shape parameter.

We present the LINEX results in Tables 5 and 6 that correspond to Tables 2 and 3,
respectively. There are two differences. First, we obtain forecast combinations, which are
based on LINEX (LFC) rather than on HRFC. And second, the out-of-sample evaluation
of the volatility forecasts of the S&P500 for all combination methods is now based on the
LINEX loss function.

First, our results show that in all three samples the LFC method provides the smallest
losses compared to the other methods for almost all values of the shape parameter a. As
the degree of asymmetry, a, increases we see that the losses become larger. Interestingly,
the greater the value of a, the greater is the relative difference in losses between LFC and
the rest of the methods, especially in the second subsample. For example, while the relative
gains for LFC against GMean for a = 0.005 are about 15%, these gains grow up to 98% for
a = 0.5.

In terms of the individual volatility models, Table 6 shows that best models are GARCH
and HAR-RV. In the case of the first subsample HAR-RV models appear to be best
performers for all values of a. In contrast, the high volatility subsample as well as the
full sample HAR-RV are the best for rather asymmetric shapes of LINEX, a ≥ 0.1. For
a ≤ 0.1 we find that GARCH type models exhibit superior performance.

Overall, the results show that forecast combinations based on an asymmetric loss
functions, either LINEX or HR are preferable than simple combinations. Furthermore,
different loss functions that correspond to different preferences may provide the investor
with a lot of information depending on the degree of volatility.
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5.2 Further Evidence from Other Indices

In this subsection we provide further evidence from other stock market indicators. We
consider NASDAQ, which generally exhibits a higher volatility than S&P500 as well as
four international stock market indicators, the German DAX 30, the UK FTSE 100, the
French CAC 40 and the Japanese NIKKEI 225. Due to data availability, the out-of-sample
evaluation focuses on the second subsample using a rolling window of 500 observations. A
summary of our results is presented in Table 7, which includes results for both HR and
LINEX loss functions. For conciseness we only present results for the HR loss function with
b = 0,−2,−4 and for LINEX with a = 0.005, 0.05, 0.5. 7

Starting from the HR loss function we find that HRFC provide the smallest losses against
the competing forecast combination methods with a few notable exceptions. In the case, of
b = 0 or MSE preferences we find that HRFC fails to give the smallest losses for FTSE 100,
DAX 30, and NIKKEI 225. One reason for this difference is the fact these 3 international
indices do not exhibit as much volatility as the stock market indicators of the US and Japan
and therefore simple forecast combinations may as well work well for MSE preferences.
Another reason is, as we argued earlier, MSE preferences may not be the appropriate loss
function in periods of financial turmoil. Instead, asymmetric preferences may be more
relevant since under-prediction of volatility is more important and costly compared to over-
prediction. In support of this argument we find that QLIKE preferences provide the smallest
losses for all of these indicators as it was the case for S&P500. The results for LINEX are
similar, albeit weaker, which may be due to the fact that the estimated combination weights
are distorted due to the measurement error since LINEX is not a robust loss of functions.

6 Conclusion

The paper addresses the problem of model uncertainty in forecasting volatility using a flexible
family of asymmetric loss functions that allow for the possibility that an investor or a policy
maker would attach different preferences to high vis-à-vis low volatility periods. In particular,
we employ the Homogeneous Robust Loss function, which is a flexible function that takes a
wide variety of shapes ranging from symmetric (Square Error) to asymmetric with a heavy
penalty on under prediction (e.g. QLIKE). We show that forecast combinations with weights
that are estimated by minimizing the Homogeneous Robust Loss function of the Realized
Volatility and the combined forecast from a large model space, significantly outperform the
majority of individual models and simple forecast combination methods.

Specifically, using US and major international stock market indices we show that
forecast combinations based on Homogeneous Robust Loss function significantly outperform
the majority of individual models and other simple forecast combination methods. More

7Full results are available upon request.
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importantly, forecast combinations based on a loss function such as the QLIKE provides the
smallest significant forecast losses in volatility forecasting during period of the financial crisis.
Furthermore, our findings suggest that asymmetric loss functions such as QLIKE experience
smaller losses than the MSE. Among the individual models the best performing model is
the LHAR-RV that captures the leverage effect of returns at daily, weekly and monthly
frequencies during the most recent period up to 2010. In sum, our findings emphasize the
importance of volatility forecast combinations and the use of asymmetric loss functions for
both obtaining the combination weights and out-of-sample evaluation.

13



Figure 1: We show various shapes of the Homogeneous Robust and LINEX loss functions. The horizontal axis corresponds
to the values volatility forecast and the vertical axis to the losses using alternative loss functions. The true conditional
variance is assumed to be equal to σ2

t = 10.

(a) Homogeneous Robust Loss Function (b)LINEX Loss Function
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Figure 2: This figure shows the annualized Realized Volatility based on 5-min calendar-time trade prices for S&P 500
stock market index using the formula σt =

√
252RVt.

(a) S&P 500: 1/2/2004 - 5/31/2007 (b) S&P 500: 6/1/2007 - 6/30/2010
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Figure 3: This figure shows the annualized Realized Volatility based on 5-min calendar-time trade prices for NASDAQ,
FTSE 100, DAX 30, CAC 40, and NIKKEI 225 using the formula σt =

√
252RVt.

(a) NASDAQ: 7/2/2004 - 6/30/2010 (b) FTSE 100: 7/2/2007 - 6/30/2010
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(c) DAX 30: 7/1/2007 - 6/30/2010 (d) CAC 40: 7/2/2007 - 6/30/2010
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(e) NIKKEI 225: 8/1/2007 6/30/2010
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Figure 4: These figures present the HR combination weights that correspond to the four families of volatility models:
AR-RV, HAR-RV, GARCH, and Nonparametric for the whole out-of-sample period. The weights are presented for the
two subsamples of 1/2/2004 - 5/31/2007 (1st subsample) and 6/1/2007 - 6/30/2010 (2nd subsample) for b = 0 (MSE)
and b = 2 (QLIKE), and b = 4.

(i) b = 0:(MSE) 1/2/2004 - 5/31/2007 (ii) b = 0: (MSE) 6/1/2007 - 6/30/2010
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(iii) b = −2 : (QLIKE) 1/2/2004 - 5/31/2007 (iv) b = −2: (QLIKE) 6/1/2007 - 6/30/2010
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(v) b = 3 : 1/2/2004 - 5/31/2007 (vi) b = −3: 6/1/2007 - 6/30/2010
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(vii) b = 4 : 1/2/2004 - 5/31/2007 (viii) b = −4: 6/1/2007 - 6/30/2010
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Table 1: Model Space - Individual Volatility Models

This table shows the individual volatility models included in the model space. For the HAR-RV and LHAR-RV models RV
(d)
t = RVt,

RV
(w)
t = 1

5 (RVt +RVt−1 + ...+RVt−4) and RV
(m)
t = 1

22 (RVt +RVt−1 + ...+RVt−21). For the LHAR-RV model r
(d)−
t = rtI {rt < 0},

r
(w)−
t = 1

5 (rt + rt−1 + ...+ rt−4) I {rt + rt−1 + ...+ rt−4 < 0} and r
(m)−
t = 1

22 (rt + rt−1 + ...+ rt−21) I {rt + rt−1 + ...+ rt−21 < 0}. For the
RiskMetrics model λ = 0.94.

Model Number Model Formula

1 AR(1)-RV ht+1 = α̂+ β̂1RVt

2 AR(5)-RV ht+1 = α̂+ β̂1RVt + ...+ β̂5RVt−4

3 AR(10)-RV ht+1 = α̂+ β̂1RVt + ...+ β̂10RVt−9

4 AR(22)-RV ht+1 = α̂+ β̂1RVt + ...+ β̂22RVt−21

5 HAR-RV log ht+1 = α̂+ β̂d logRV
(d)
t + β̂wRV

(w)
t + β̂m logRVt

(m)

6 LHAR-RV log ht+1 = α̂+ β̂d logRV
(d)
t + β̂wRV

(w)
t + β̂m logRVt

(m) + γdr
(d)−
t−1 + γwr

(w)−
t−1 + γmr

(m)−
t−1

7 Normal GARCH(1,1) ht+1 = ω + αr2t + βht, rt = εt
√
ht, εt ∼ N(0, 1)

8 Normal TARCH(1,1,1) ht+1 = ω + αr2t + βht + θr2t 1{rt<0}, rt = εt
√
ht, εt ∼ N(0, 1)

9 Normal EGARCH(1,1,1) log ht+1 = ω + α
[

|rt|√
ht

− E
(

|rt|√
ht

)]
+ β log ht + θ rt√

ht

, rt = εt
√
ht, εt ∼ N(0, 1)

10 Normal APARCH(1,1,1)
(√

ht+1

)δ
= ω + α (|rt| − θrt)

δ
+ β

(√
ht

)δ
, rt = εt

√
ht, εt ∼ N(0, 1)

11 t GARCH(1,1) ht+1 = ω + αr2t + βht, rt = εt
√
ht, εt ∼ tν

12 t TARCH(1,1,1) ht+1 = ω + αr2t + βht + θr2t 1{rt<0}, rt = εt
√
ht, εt ∼ tν

13 t EGARCH(1,1,1) log ht+1 = ω + α
[

|rt|√
ht

− E
(

|rt|√
ht

)]
+ β log ht + θ rt√

ht

, rt = εt
√
ht, εt ∼ tν

14 t APARCH(1,1,1)
(√

ht+1

)δ
= ω + α (|rt| − θrt)

δ
+ β

(√
ht

)δ
, rt = εt

√
ht, εt ∼ tν

15 RiskMetrics ht+1 = λht + (1− λ)r2t

16 Rolling 30 days ht+1 = 1
30

∑t
j=t−30 r

2
j

17 Rolling 60 days ht+1 = 1
60

∑t
j=t−60 r

2
j
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Table 2: Volatility Robust Forecast Combinations for the S&P 500 based on the Homogeneous Robust

Loss Function
This table shows out-of-sample losses of volatility forecasts of the S&P 500 using the Homogeneous Robust Loss Function for a range of values
of the scalar parameter b, which includes the MSE loss function (b = 0) and the QLIKE loss function (b = -2). We present results for four
volatility forecast combination methods: Mean, Median, Geometric Mean (GMean), and Homogeneous Robust Forecast Combination (HRFC).
We report results for three out-of-sample evaluation periods: 1/2/2004 - 6/30/2010 (full sample), 1/2/2004 - 5/31/2007 (1st subsample), and
6/1/2007 - 6/30/2010 (2nd subsample).

Full Sample 1st Subsample 2nd Subsample
Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC

b

0 3.969 4.819 3.565 3.129 0.050 0.054 0.045 0.029 8.277 10.057 7.433 6.535

-0.5 0.638 0.753 0.563 0.426 0.038 0.041 0.035 0.022 1.297 1.536 1.143 0.869

-1 0.280 0.315 0.246 0.172 0.061 0.066 0.056 0.035 0.520 0.589 0.455 0.321

-1.5 0.191 0.206 0.171 0.119 0.104 0.110 0.097 0.062 0.286 0.311 0.252 0.182

-2 0.202 0.212 0.185 0.133 0.186 0.195 0.174 0.117 0.219 0.231 0.197 0.150

-2.5 0.289 0.300 0.271 0.203 0.352 0.365 0.333 0.237 0.220 0.229 0.202 0.165

-3 0.499 0.513 0.475 0.374 0.705 0.724 0.674 0.511 0.273 0.282 0.256 0.222

-3.5 0.978 0.998 0.944 0.782 1.507 1.535 1.457 1.178 0.398 0.409 0.380 0.347

-4 2.131 2.160 2.078 1.814 3.468 3.509 3.385 2.904 0.662 0.677 0.641 0.617
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Table 3: Volatility Forecast of Individual Volatility Models for the S&P 500 based on the Homogeneous

Robust Loss Function
This table shows out-of-sample losses of volatility forecasts of the S&P 500 using the Homogeneous Robust Loss Function for a range of values
of the scalar parameter b, which includes the MSE loss function (b = 0) and the QLIKE loss function (b = -2). We present results for four
families of volatility models and report the best: AR-RV (1-4), HAR-RV (5-6), GARCH (7-15), Nonparametric (N-P) (16-17) - the reference
number in the parenthesis corresponds to the model in Table 1. We report results for three out-of-sample evaluation periods: 1/2/2004 -
6/30/2010 (full sample), 1/2/2004 - 5/31/2007 (1st subsample), and 6/1/2007 - 6/30/2010 (2nd subsample).

Full Sample 1st Sample 2nd Sample
AR-RV HAR-RV GARCH N-P AR-RV HAR-RV GARCH N-P AR-RV HAR-RV GARCH N-P

b

0 4.901(3) 3.758(5) 3.124(9) 8.869(16) 0.034(4) 0.028(6) 0.063(15) 0.071(17) 10.249(3) 7.854(5) 6.468(9) 18.535(16)

-0.5 0.653(3) 0.564(5) 0.528(9) 1.383(16) 0.025(4) 0.022(6) 0.047(15) 0.053(16) 1.342(3) 1.159(5) 1.046(9) 2.844(16)

-1 0.239(3) 0.223(6) 0.259(9) 0.553(16) 0.041(4) 0.035(6) 0.074(15) 0.081(16) 0.457(3) 0.429(6) 0.450(9) 1.072(16)

-1.5 0.145(3) 0.133(6) 0.198(9) 0.325(16) 0.071(4) 0.063(6) 0.122(15) 0.130(16) 0.226(3) 0.210(6) 0.267(9) 0.539(16)

-2 0.149(3) 0.143(6) 0.222(9) 0.292(16) 0.131(4) 0.119(6) 0.212(15) 0.221(16) 0.168(3) 0.170(6) 0.215(9) 0.370(16)

-2.5 0.218(3) 0.216(6) 0.320(9) 0.367(16) 0.260(4) 0.242(6) 0.392(15) 0.397(16) 0.172(3) 0.188(6) 0.221(9) 0.333(16)

-3 0.393(3) 0.395(6) 0.542(9) 0.577(16) 0.549(3) 0.524(6) 0.770(15) 0.766(16) 0.221(3) 0.254(6) 0.278(9) 0.370(16)

-3.5 0.809(3) 0.822(6) 1.040(9) 1.065(16) 1.239(3) 1.210(6) 1.615(9) 1.589(16) 0.336(4) 0.395(5) 0.405(10) 0.489(16)

-4 1.853(3) 1.897(6) 2.221(9) 2.233(16) 3.010(3) 2.989(6) 3.616(9) 3.578(16) 0.582(4) 0.697(5) 0.672(10) 0.754(16)
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Table 4: Comparison of Forecast Combinations based on the Homogeneous Robust Loss Function for the

S&P 500
This table compares the performance of the simple Forecast Combinations Mean, Median, Geometric Mean as well as the Homogeneous Robust Forecast Combination (HRFC) for a range of
values of the scalar parameter b using the Conditional Predictive Ability (CPA) test (Giacomini and White, 2006). We report results for three out-of-sample evaluation periods: 1/2/2004 -
6/30/2010 (full sample), 1/2/2004 - 5/31/2007 (1st subsample), and 6/1/2007 - 6/30/2010 (2nd subsample). The entries are the p-values of the CPA test using the Newey and West (1987)
variance estimator and the number in parenthesis the proportion of times that the method in the column outperforms the method in the row based on the rule described inGiacomini and White
(2006). A plus (minus) sign indicates that method in the column (row) significantly outperforms the method in the row (column). Bold entries correspond to the cases that unconstrained
forecast combinations based on the Homogeneous Robust loss function significantly outperform the other methods of forecasting volatility for a confidence level of 10%.

Full Sample 1st Subsample 2nd Subsample

Homogeneous Robust Loss for b = 0

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.120 0.074+ 0.162 0.000- 0.000+ 0.000+ 0.095- 0.068+ 0.150

(0.017) (0.965) (0.940) (0.165) (0.970) (0.986) (0.026) (0.942) (0.920)
Median 0.120 0.014+ 0.116 0.000+ 0.000+ 0.000+ 0.095+ 0.009+ 0.100

(0.983) (0.985) (0.964) (0.835) (0.918) (0.974) (0.974) (0.979) (0.936)
GMean 0.074- 0.014- 0.373 0.000- 0.000- 0.000+ 0.068- 0.009- 0.370

(0.035) (0.015) (0.930) (0.030) (0.082) (0.998) (0.058) (0.021) (0.903)
HRFC 0.162 0.116 0.373 0.000- 0.000- 0.000- 0.150 0.100 0.370

(0.060) (0.036) (0.070) (0.014) (0.026) (0.002) (0.080) (0.064) (0.097)

Homogeneous Robust Loss for b = −0.5

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.091- 0.021+ 0.038+ 0.000- 0.000+ 0.000+ 0.074- 0.019+ 0.038+

(0.012) (0.975) (0.945) (0.196) (0.964) (0.984) (0.017) (0.974) (0.929)
Median 0.091+ 0.001+ 0.036+ 0.000+ 0.000+ 0.000+ 0.074+ 0.001+ 0.031+

(0.988) (0.974) (0.961) (0.804) (0.900) (0.962) (0.983) (0.970) (0.941)
GMean 0.021- 0.001- 0.143 0.000- 0.000- 0.000+ 0.019- 0.001- 0.161

(0.025) (0.026) (0.932) (0.036) (0.100) (0.993) (0.026) (0.030) (0.909)
HRFC 0.038- 0.036- 0.143 0.000- 0.000- 0.000- 0.038- 0.031- 0.161

(0.055) (0.039) (0.068) (0.016) (0.038) (0.007) (0.071) (0.059) (0.091)
Homogeneous Robust Loss for b = −1

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.091- 0.021+ 0.038+ 0.000- 0.000+ 0.000+ 0.039- 0.001+ 0.003+

(0.012) (0.975) (0.945) (0.227) (0.952) (0.979) (0.000) (0.990) (0.997)
Median 0.091+ 0.001+ 0.036+ 0.000+ 0.000+ 0.000+ 0.039+ 0.000+ 0.002+

(0.988) (0.974) (0.961) (0.773) (0.878) (0.954) (1.000) (0.948) (0.972)
GMean 0.021- 0.001- 0.143 0.000- 0.000- 0.000+ 0.001- 0.000- 0.020+

(0.025) (0.026) (0.932) (0.048) (0.122) (0.992) (0.010) (0.052) (0.920)
HRFC 0.038- 0.036- 0.143 0.000- 0.000- 0.000- 0.003- 0.002- 0.020-

(0.055) (0.039) (0.068) (0.021) (0.046) (0.008) (0.003) (0.028) (0.080)
Homogeneous Robust Loss for b = −1.5

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.001- 0.000+ 0.000+ 0.000- 0.000+ 0.000+ 0.008- 0.000+ 0.000+

(0.013) (0.973) (0.965) (0.254) (0.944) (0.975) (0.009) (0.968) (0.960)
Median 0.001+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.008+ 0.000+ 0.000+

(0.987) (0.916) (0.987) (0.746) (0.872) (0.959) (0.991) (0.920) (0.983)
GMean 0.000- 0.000- 0.000+ 0.000- 0.000- 0.000+ 0.000- 0.000- 0.000+

(0.027) (0.084) (0.999) (0.056) (0.128) (0.987) (0.032) (0.080) (0.999)
HRFC 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000-

(0.035) (0.013) (0.001) (0.025) (0.041) (0.013) (0.040) (0.017) (0.001)
Table continued on next page ...
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Table 4 continued

Homogeneous Robust Loss for b = −2

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.000- 0.000+ 0.000+ 0.000- 0.000+ 0.000+ 0.000- 0.000+ 0.000+

(0.112) (0.945) (0.971) (0.268) (0.933) (0.978) (0.091) (0.939) (0.959)
Median 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+

(0.888) (0.918) (0.964) (0.732) (0.868) (0.967) (0.909) (0.939) (0.955)
GMean 0.000- 0.000- 0.000+ 0.000- 0.000- 0.000+ 0.000- 0.000- 0.001+

(0.055) (0.082) (0.982) (0.067) (0.132) (0.985) (0.061) (0.061) (0.974)
HRFC 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.001-

(0.029) (0.036) (0.018) (0.022) (0.033) (0.015) (0.041) (0.045) (0.026)

Homogeneous Robust Loss for b = −2.5

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.000- 0.000+ 0.000+ 0.000- 0.000+ 0.000+ 0.007- 0.000+ 0.002+

(0.078) (0.964) (0.976) (0.273) (0.941) (0.984) (0.010) (0.966) (0.979)
Median 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.007+ 0.000+ 0.000+

(0.922) (0.940) (0.961) (0.727) (0.878) (0.974) (0.990) (0.978) (0.963)
GMean 0.000- 0.000- 0.000+ 0.000- 0.000- 0.000+ 0.000- 0.000- 0.041+

(0.036) (0.060) (0.978) (0.059) (0.122) (0.988) (0.034) (0.022) (0.991)
HRFC 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.002- 0.000- 0.041-

(0.024) (0.039) (0.022) (0.016) (0.026) (0.012) (0.021) (0.037) (0.009)

Homogeneous Robust Loss for b = −3

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.000- 0.000+ 0.000+ 0.000- 0.000+ 0.000+ 0.128 0.000+ 0.041+

(0.044) (0.973) (0.976) (0.265) (0.947) (0.987) (0.003) (0.981) (0.995)
Median 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.128 0.000+ 0.043+

(0.956) (0.958) (0.964) (0.735) (0.892) (0.984) (0.997) (0.991) (0.968)
GMean 0.000- 0.000- 0.000+ 0.000- 0.000- 0.000+ 0.000- 0.000- 0.244

(0.027) (0.042) (0.977) (0.053) (0.108) (0.988) (0.019) (0.009) (0.999)
HRFC 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.041- 0.043- 0.244

(0.024) (0.036) (0.023) (0.013) (0.016) (0.012) (0.005) (0.032) (0.001)

Homogeneous Robust Loss for b = −3.5

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.000- 0.000+ 0.000+ 0.000- 0.000+ 0.000+ 0.438 0.000+ 0.156

(0.020) (0.977) (0.981) (0.247) (0.962) (0.988) (0.015) (0.985) (0.970)
Median 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.000+ 0.438 0.001+ 0.339

(0.980) (0.970) (0.972) (0.753) (0.907) (0.986) (0.985) (1.000) (0.985)
GMean 0.000- 0.000- 0.000+ 0.000- 0.000- 0.000+ 0.000- 0.001- 0.421

(0.023) (0.030) (0.982) (0.038) (0.093) (0.989) (0.015) (0.000) (0.228)
HRFC 0.000- 0.000- 0.000- 0.000- 0.000- 0.000- 0.156 0.339 0.421

(0.019) (0.028) (0.018) (0.012) (0.014) (0.011) (0.030) (0.015) (0.772)

Homogeneous Robust Loss for b = −4

Mean Median GMean HRFC Mean Median GMean HRFC Mean Median GMean HRFC
Mean 0.002- 0.000+ 0.002+ 0.000- 0.000+ 0.001+ 0.659 0.000+ 0.249

(0.010) (0.980) (0.984) (0.231) (0.974) (0.995) (0.021) (0.992) (0.120)
Median 0.002+ 0.000+ 0.001+ 0.000+ 0.000+ 0.000+ 0.659 0.010+ 0.641

(0.990) (0.975) (0.980) (0.769) (0.933) (0.992) (0.979) (0.999) (0.947)
GMean 0.000- 0.000- 0.010+ 0.000- 0.000- 0.003+ 0.000- 0.010- 0.423

(0.020) (0.025) (0.985) (0.026) (0.067) (0.995) (0.008) (0.001) (0.044)
HRFC 0.002- 0.001- 0.010- 0.001- 0.000- 0.003- 0.249 0.641 0.423

(0.016) (0.020) (0.015) (0.005) (0.008) (0.005) (0.880) (0.053) (0.956)
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Table 5: Volatility Forecast Combinations for the S&P 500 based on the LINEX Loss Function
This table shows out-of-sample losses of volatility forecasts of the S&P 500 using the LINEX loss function for a range of values of the scalar
parameter a. We present results for four volatility forecast combination methods: Mean, Median, Geometric Mean (GMean), and LINEX
loss function (LFC). We report results for three out-of-sample evaluation periods: 1/2/2004 - 6/30/2010 (full sample), 1/2/2004 - 5/31/2007
(1st subsample), and 6/1/2007 - 6/30/2010 (2nd subsample). E stands for times 10 to the power of.

Full Sample 1st Subsample 2nd Subsample
Mean Median GMean LFC Mean Median GMean LFC Mean Median GMean LFC

a

0.001 1.99E-06 2.41E-06 1.79E-06 1.57E-06 2.50E-08 2.70E-08 2.27E-08 1.72E-08 4.15E-06 5.04E-06 3.73E-06 3.28E-06

0.005 5.02E-05 6.10E-05 4.56E-05 3.88E-05 6.25E-07 6.76E-07 5.68E-07 3.69E-07 1.05E-04 1.27E-04 9.50E-05 8.11E-05

0.01 2.03E-04 2.47E-04 1.87E-04 1.54E-04 2.50E-06 2.70E-06 2.27E-06 1.48E-06 4.24E-04 5.16E-04 3.89E-04 3.23E-04

0.05 6.08E-03 7.71E-03 6.25E-03 3.86E-03 6.25E-05 6.75E-05 5.68E-05 3.72E-05 1.27E-02 1.61E-02 1.31E-02 8.05E-03

0.1 4.04E-02 6.08E-02 5.07E-02 1.76E-02 2.50E-04 2.70E-04 2.28E-04 1.50E-04 8.45E-02 1.27E-01 1.06E-01 3.68E-02

0.5 1.35E+05 1.73E+06 7.64E+05 1.37E+04 6.30E-03 6.78E-03 5.78E-03 4.74E-03 2.84E+05 3.64E+06 1.60E+06 2.88E+04

1 2.99E+13 4.90E+15 9.51E+14 4.46E+12 2.60E-02 2.78E-02 2.41E-02 2.83E-02 6.28E+13 1.03E+16 2.00E+15 9.36E+12
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Table 6: Volatility Forecast of Individual Volatility Models for the S&P 500 based on the LINEX Loss

Function
This table shows out-of-sample losses of volatility forecasts of the S&P 500 using the LINEX Loss Function for a range of values of the scalar parameter a. We present results for four families
of volatility models and report the best: AR-RV (1-4), HAR-RV (5-6), GARCH (7-15), Nonparametric (N-P) (16-17) - the reference number in the parenthesis corresponds to the model in
Table 1. We report results for three out-of-sample evaluation periods: 1/2/2004 - 6/30/2010 (full sample), 1/2/2004 - 5/31/2007 (1st subsample), and 6/1/2007 - 6/30/2010 (2nd subsample).

Full Sample 1st Sample 2nd Sample
AR-RV HAR-RV GARCH N-P AR-RV HAR-RV GARCH N-P AR-RV HAR-RV GARCH N-P

a

0.001 2.45E-06(3) 1.89E-06(5) 1.57E-06(9) 3.76E-06(16) 1.69E-08(4) 1.42E-08(6) 3.15E-08(15) 3.54E-08(17) 5.13E-06(3) 3.96E-06(5) 3.25E-06(9) 9.27E-06(16)

0.005 6.16E-05(3) 4.89E-05(5) 4.00E-05(9) 1.11E-04(16) 4.22E-07(4) 3.56E-07(6) 7.87E-07(15) 8.84E-07(17) 1.29E-04(3) 1.02E-04(5) 8.29E-05(9) 2.32E-04(16)

0.01 2.49E-04(3) 2.04E-04(5) 1.64E-04(9) 4.45E-04(16) 1.69E-06(4) 1.43E-06(6) 3.15E-06(15) 3.54E-06(17) 5.20E-04(3) 4.26E-04(5) 3.41E-04(9) 9.29E-04(16)

0.05 7.55E-03(2) 6.33E-03(6) 5.52E-03(9) 1.27E-02(16) 4.23E-05(4) 3.59E-05(6) 7.86E-05(15) 8.84E-05(17) 1.58E-02(2) 1.32E-02(6) 1.15E-02(9) 2.67E-02(16)

0.1 5.15E-02(2) 2.10E-02(6) 4.01E-02(13) 9.93E-02(16) 1.70E-04(4) 1.45E-04(6) 3.14E-04(15) 3.54E-04(17) 1.08E-01(2) 4.40E-02(6) 8.37E-02(13) 2.08E-01(16)

0.5 2.69E+05(2) 6.07E+00(6) 4.72E+04(14) 1.47E+07(16) 4.45E-03(4) 3.87E-03(6) 7.81E-03(15) 8.89E-03(17) 5.66E+05(2) 1.27E+01(6) 9.90E+04(14) 3.09E+07(16)

1 1.18E+14(2) 1.75E+04(6) 3.63E+12(14) 3.53E+17(16) 1.93E-02(4) 1.73E-02(6) 3.16E-02(15) 3.63E-02(16) 2.48E+14(2) 3.66E+04(6) 7.62E+12(14) 7.42E+17(16)
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Table 7: Volatility Forecast Combinations for Other Stock Markets
This table shows out-of-sample losses of volatility forecasts of NASDAQ, FTSE 100, DAX 30, CAC 40, and NIKKEI 225 using the homogeneous
robust loss function for b = 0,−2,−4 and the LINEX loss function for a = 0.005, 0.05, 0.5. We present results for four volatility forecast
combination methods: Mean, Median, Geometric Mean (GMean), and Homogeneous Robust Forecast Combination (HRFC). We report
results for the evaluation periods as follows: for DAX 30 6/1/2007 - 6/30/2010, for NASDAQ Composite, FTSE 100 and CAC 40, 7/2/2007
- 6/30/2010, and for NIKKEI 225, 8/1/2007 - 6/30/2010.

Homogeneous Robust LINEX

Mean Median GMean HRFC Mean Median GMean LFC

b = 0 (MSE) a = 0.005
NASDAQ 6.994 8.346 5.896 4.324 8.77E-05 1.04E-04 7.43E-05 5.44E-05
FTSE 100 18.816 17.079 16.813 24.010 2.61E-04 2.41E-04 2.38E-04 3.39E-04
DAX 30 8.588 7.996 7.780 9.485 1.10E-04 1.03E-04 1.00E-04 1.21E-04
CAC 40 7.993 7.608 6.985 7.677 1.01E-04 9.71E-05 8.95E-05 9.84E-05
NIKKEI 225 10.648 11.282 7.288 4.206 1.31E-04 1.38E-04 8.99E-05 5.34E-05

b = −2 (QLIKE) a = 0.05
NASDAQ 0.259 0.276 0.231 0.155 9.28E-03 1.07E-02 8.26E-03 5.89E-03
FTSE 100 0.181 0.176 0.166 0.127 1.52E-01 1.53E-01 1.57E-01 1.37E-01
DAX 30 0.175 0.170 0.161 0.130 1.48E-02 1.47E-02 1.45E-02 1.54E-02
CAC 40 0.170 0.169 0.157 0.132 1.28E-02 1.27E-02 1.21E-02 1.36E-02
NIKKEI 225 0.323 0.335 0.268 0.138 1.14E-02 1.20E-02 8.24E-03 5.99E-03

b = −4 a = 0.5
NASDAQ 0.681 0.691 0.663 0.577 1.22E+02 1.94E+02 1.54E+02 7.74E+01
FTSE 100 0.385 0.379 0.376 0.345 4.95E+17 5.73E+17 7.65E+17 7.45E+16
DAX 30 0.300 0.293 0.291 0.271 6.90E+04 1.12E+05 1.00E+05 5.41E+04
CAC 40 0.461 0.457 0.454 0.445 4.46E+04 6.47E+04 5.73E+04 1.91E+05
NIKKEI 225 0.434 0.437 0.412 0.296 1.83E+01 3.66E+01 2.94E+01 1.68E+01
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