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Abstract

Financial time series often undergo periods of structural change that yield biased estimates
or forecasts of volatility and thereby risk management measures. We show that in the context of
GARCH diffussion models ignoring structural breaks in the leverage coefficient and the constant
can lead to biased and inefficient AR-RV and GARCH-type volatility estimates. Similarly, we
find that volatility forecasts based on AR-RV and GARCH-type models that take into account
structural breaks by estimating the parameters only in the post-break period, significantly
outperform those that ignore them. Hence, we propose a Flexible Forecast Combination
method that takes into account not only information from different volatility models, but from
different subsamples as well. This methods consists of two main steps: First, it splits the
estimation period in subsamples based on estimated structural breaks detected by a change-point
test. Second, it forecasts volatility weighting information from all subsamples by minimizing a
particular loss function, such as the Square Error and QLIKE. An empirical application using
the S&P 500 Index shows that our approach performs better, especially in periods of high
volatility, compared to a large set of individual volatility models and simple averaging methods

as well as Forecast Combinations under Regime Switching.
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1 Indroduction

Empirical evidence of the existence of structural breaks in financial time series made this area
of research very active in the recent years. A lot of attention in the literature has been given to
structural breaks in volatility, which imply change in the risk behavior of investors due to important
financial events, such as the 1987 stock market crash, the dot-com bubble in 1995-2000 and the
subprime mortgage crisis. The implications of ignoring structural breaks in the accuracy of volatility
estimators and forecasts make the use of flexible methods that take into account structural change
very appealing.

Structural breaks in simple Autoregressive (AR) models are investigated by Pesaran and
Timmermann (2004) who deal with the choice of the estimation window in forecasting in the
presence of breaks using AR models. Andreou and Ghysels (2009) provide a review of the literature
of structural breaks, examine the implications of structural breaks and discuss change-point tests
of a single or multiple breaks. One of the most popular change-point tests is the CUSUM test,
which has been used in the context of ARCH models by Kokoszka and Leipus (2000). Andreou and
Ghysels (2004) have also used the CUSUM test to estimate structural breaks in volatility and they
found that using high frequency volatility estimators, such as Realized Volatility, can improve the
power properties of the test. In this paper, we split our estimation period in subsamples based on
structural breaks detected using the CUSUM type test, and we weight predictions based on these
subsamples to forecast volatility.

According to Timmermann (2006), given the difficulty of detecting structural breaks in “real”
time and the different response of individual models to breaks, forecast combinations that take into
account information from different models, can provide more accurate forecasts than individual
models. When structural change is present, Aiolfi and Timmermann (2004) found that simple
weighting schemes can outperform the best performing individual models. Hansen (2009) proposed
a method of averaging estimators of a linear regression with a possible structural break by
minimizing the Mallows criterion. In the forecasting literature, methods that consider structural
breaks have been proposed by Guidolin and Timmermann (2009) and Elliot and Timmermann
(2005). Both papers consider structural breaks as being generated by a Markov switching model.
The main differences of our approach are that (1) we do not specify the process that generates the
regime changes but instead test for them using a change-point test and (2) we do not restrict our
framework to Square Error but we also use asymmetric loss functions, such as QLIKE.

The main contributions of this paper are two. First, we investigate in a simulation study the
effect of structural breaks in the constant and the leverage coefficients of a GARCH diffusion model
to the performance of alternative volatility estimators. In this paper we consider Realized Volatility
(RV), AR-RV, HAR-RV, LHAR-RV, a number of GARCH-type models and Rolling volatility. We



use two approaches, the full sample, which uses all information in the sample to estimate the
parameters of the volatility model and ignores the break, and the split sample, which estimates
the parameters in the pre- and post-break samples. Breaks affect all volatility models except
those that use information of a particular day to estimate volatility (Realized Volatility) or do not
involve parameter estimation (rolling window). The HAR-RV type models are also less sensitive
to structural breaks compared to other models. We also investigate the effect of these breaks in
forecasting volatility, and we find that we have significant gains in the accuracy of the predictions
when we use the split sample method, which takes into account structural breaks. Second, we
propose a Flexible Forecast Combination method, which involves two main steps: In the first
step, we use a CUSUM-type test to detect structural breaks and we split the estimation period in
smaller subsamples based on these breaks. In the second step, we forecast volatility taking into
account information from different individual models and different subsamples by minimizing a
particular loss function, such as the Square Error and QLIKE. Using a simulation design with a
GARCH diffusion process with or without breaks in the constant parameter as well as an empirical
application based on the S&P 500 Index, we find that this Flexible Forecast Combination approach
outperforms a large number of individual models and simple averaging methods as well as Forecast
Combinations under regime switching. This is especially evident in the subsample that includes
the subprime mortgage crisis, where our method significantly outperforms all other methods based
on the QLIKE loss function.

The paper is organized as follows: In Section 2 we estimate structural breaks in the volatility of
the S&P 500 using a CUSUM type test. In Section 3 we describe the Flexible Forecast Combination
proposed in this thesis. In Section 4 we investigate the effect of structural breaks in volatility
estimates and forecasts in a simulation study. Additionally, we compare the predictive performance
of individual models and forecast combination methods based on a GARCH diffusion DGP with and
without breaks in the constant parameter. In Section 5 we illustrate our approach in an empirical
application based on the S&P 500 index. Finally, in Section 6 we summarize our results and we

conclude.

2 Structural Breaks in Realized Volatility

In this section we test for structural breaks in Realized Volatility of the S&P 500 Index daily returns
using the CUSUM type test of Kokoszka and Leipus (1999, 2000). We split the sample in smaller
subsamples based on these breaks and we estimate the parameters of the TARCH and EGARCH
models in each subsample. The most significant parameter estimates are those of the EGARCH
model and in particular, the constant, the GARCH and leverage effect coefficient estimates.

However, the most important changes in the parameter estimates of consequent subsamples are



observed in the constant and the leverage coefficient parameters.

For the estimation of structural breaks in the volatility of the S&P 500 returns, we use the
CUSUM type test (Kokoszka and Leipus, 1999, 2000). The use of Realized Volatility instead of
square or absolute returns is based on the findings of Andreou and Ghysels (2004), who show that
the use of high frequency volatility estimators improves the power of the CUSUM-type statistics.
Using the following process and the corresponding distribution under the null hypothesis of no

breaks, we can test for structural breaks in Realized Volatility.

B 1 K k T H,
Ur (k) = ﬁ;RVj—m;RVj = 0B (k) (1)

where 7' is the sample size, RV} is Realized Volatility based on 5 minute returns, B (k) a

o0
Brownian bridge and 02 = Y Cov (RVj, RVy). We estimate o2 using the Heteroskedasticity and

oo
Autocorrelation Consistent (HAC) Covariance estimator of Andrews (1991). The change-point of
the break is given by the following CUSUM-type estimator:

E:mm{k; Ur (k)] = max |Ur (k)|} (2)

First, we use the full sample of the S&P 500 Index that covers the period from February 3,
1986 to June 30, 2010 and we estimate a structural break in volatility on June 21, 1998 with a
test statistic equal to 3.87, which indicates that the break is significant for 1% confidence level.
This break is associated with the rapid increase of stock prices due to the substantial growth in
the Internet sector, the well-known “dot-com bubble”, which covers the period roughly from 1995
to 2000. Then we proceed by splitting the sample is smaller subsamples based on new estimated
structural breaks!.

Figure 1.1 shows the structural breaks of Realized Volatility based on the aforementioned
procedure. Based on these breaks the initial sample is divided in smaller subsamples, which are
characterized by low, high and extremely high volatility (the latter corresponds to a crisis period).
The most interesting subsamples are the crisis subsamples that are characterized by very high
volatility and extreme events. The first crisis subsample covers the period from February 3, 1986
to April 25, 1988, when the 1987 stock market crash took place and the second from January 4,
2008 to June 30, 2010, a subsample that is associated with the subprime mortgage crisis, which
started with the drop in the housing prices in the US and peaked with the bankruptcy of a number
of financial institutions (e.g. Lehman Brothers). Another interesting period which is characterized

by high volatility is the subsample from July 21, 1998 to April 10, 2003, which covers a number of

We stop when either the CUSUM test does not detect any other breaks or when the subsample becomes small
(with less than 500 observations).



financial events, such as the rapid growth of the Internet sector, the accounting scandal of Enron
and the terrorist attacks on September 11, 2001, which caused the destruction of the World Trade
Center in New York.

Table 1 shows the procedure with the successive tests and the corresponding test statistics
and break dates. All the breaks are significant at 1% confidence level. Tables 2 and 3 show the
parameter estimates of the Normal TARCH(1,1) and Normal EGARCH(1,1) models, respectively,
for each subsample and the full sample with the corresponding Bollerslev - Wooldridge standard
errors. The parameters of the EGARCH model are more significant compared to the TARCH model
given the logarithmic structure and the ability of the first to provide positive volatility predictions
without any constraints in the parameters. For both models the most significant is the GARCH
parameter that controls the persistence, followed by the leverage parameter and the constant.
The ARCH parameters of the TARCH model are insignificant for all subsamples and the full
sample. Even though the GARCH parameters are the most significant, there are not large changes
in these parameters in the various subsamples. On the other hand, the changes in the leverage
effect parameter and the constant are more noticeable. For example the constant parameter of the
TARCH model becomes more than 5 times smaller from the high volatility subsample that includes
the “dot-com bubble” and the LTCM crisis (July 21, 1998 - April 10, 2003) to the low volatility
subsample before the subprime mortgage crisis (April 11, 2003 to January 3, 2008). Another
example is the break in the leverage effect parameter, which becomes around 3 times smaller from
the Stock market crash of 1987 subsample (February 3, 1986 - April 25, 1988) to the high volatility
subsample which covers the period from April 26, 1988 to February 6, 1992. Motivated by the
breaks in the volatility of the S&P 500 Index returns, we consider breaks in the constant and the

leverage effect parameters of sizes 2 and 3 for the simulation design of this paper.

3 Methodology

In this section we describe a novel method of predicting volatility, the Flexible Forecast Combination
(FFC). This method uses information from different models and subsamples and provides volatility
predictions that are robust to the model uncertainty of the volatility model. The model space of
the FFC approach includes ex-ante forecasts given by Autoregressive models of Realized Volatility,

GARCH-type models as well as Rolling Volatility models.

3.1 Realized Volatility

1

We assume each daily interval is divided into m periods of length A = ~-. Therefore, A period

returns are given by ry; = logSiija —1ogSi_14(j—1a, J = 1,...,m and the daily returns by



m
re = ». 1;. Quadratic Variation (QV) is given by the sum of Integrated Volatility and a jump
j=1

factor that is equal to the sum of square jumps.

i= [T Y R 3)

t<s<t+1,dg(s)=1
where dq (t) is a counting process which takes the value of 1 when there is a break at time ¢ and
0 otherwise and & (t) is the size of the realized jump. Given that there are no jumps in the price
process of this simulation design, Quadratic Variation coincides with Integrated Volatility.

Given that Quadratic Variation is a latent variable, we use an ex-post estimator, namely Realized
Volatility (RV) as a proxy, which is discussed extensively in Andersen, Bollerslev, Diebold and Ebens
(2001), Andersen, Bollerslev, Diebold and Labys (2001), Bardorff-Nielsen and Shephard (2002) and
Meddahi (2002). RV is given by the sum of square intra-daily returns and uses information only

from a particular day:
m
RV, =) _ri, (4
j=1

As we increase the number of daily intervals (m) by using finer intervals we get more accurate
volatility estimates, since volatility occurs in continuous time. However, we use 5 minute returns
to avoid microstructure noise which exists when we use data at higher frequencies (see Andersen,

Bollerslev, Diebold and Labys, 2001).

3.2 Model space

First, we create the model space which includes forecasts from 17 different volatility models
that are classified in four broad categories: (1) Autoregressive models of Realized Volatility
(AR-RV), (2) Heterogeneous Autoregressive models of Realized Volatility (HAR-RV), (3)
Parametric GARCH-type models and (4) Rolling Volatility models. The volatility forecasts
hyy1 are obtained using a rolling window of intra-daily returns included in n trading days,
Le.  Ting1, 1 Ttent1,25 s Tmntlmy - Tt 15 -, Tt.m, Where the first index of intra-daily returns
corresponds to the day and the second to the time within the day and takes values in the
interval [1,m]. Based on these intra-daily returns we obtain the daily returns ry_,41,...,7¢
and Realized Volatilities RV;_,11,..., RV; that are used for the GARCH-type and AR-RV
forecasts, respectively. Then we move the rolling window one day and use intra-daily returns
Tt—nt2,15 Tt—n+2,2 ooy Tt—n+2,ms ---, Tt+1,15 ---, Tt+1,m t0 obtain the volatility prediction hsy2. The next
section describes the method used by the FFC approach to combine these volatility forecasts.

The first category of models includes Autoregressive models of Realized volatility (AR(p)-RV)
with 1, 5, 10 and 15 lags.

RV =w+ B1RVi—1 + foRVi_a + ... + BpRVi—p + &4



These models take into account intra-daily information for the estimation of RV. They use a simple
autoregressive model to capture the dependence in RV and provide predictions that quickly adapt
to changes in volatility.

The second category of models consists of Heterogeneous Autoregressive models of Realized
Volatility. The HAR-RV model proposed by Corsi (2009), instead of estimating the coefficient
estimates of each lag of the AR process, it uses lags of Realized Volatility at daily, weekly and
monthly aggregated periods and captures some well known features of financial returns such as

long memory and fat tails.
RV; = w+ B4RV, + B, RV + B RV 1 ¢, (5)

where RV = RV,.y, RV!) = L(RV.i+RVio+..+RVi5) and RV =
i (RVi—1 4+ RV;—2 + ... + RV;_92). This model can be extended to the Leverage Heterogeneous
Autoregressive (LHAR-RV) model (Corsi and Reno, 2009) that takes into account the leverage

effect of daily, weekly and monthly returns.

RV = w + BBV, Y + BuRV™) + B RV 4 4art® 4 7url®) ™ ™)™ 4 gy (6)

where rt(d_)l_ =r1I{r—1 <0}, rtﬂ_ = % (re—i4+re—o+ oo +res) I{rie1 + 2 + ... + 15 < 0}

and 73@1)7 = i (re—1 +re—o+ oo Fre—02) I{re—1 + re—o + ... + re—02 < 0}.

The third class of volatility models includes the GARCH (1,1)(Bollerslev,1986) and other
extensions of the GARCH model that can capture the leverage effect, namely the TARCH (1,1)
or GJR-GARCH (1,1) (Glosten, Jagannathan and Runkle, 1993), EGARCH (1,1,1) (Nelson, 1991)
and APARCH(1,1,1) (Ding, Granger and Engle, 1993). The APARCH model does not restrict
the power of returns and volatility to be equal to 2 and nests the GARCH and TARCH models.
The EGARCH model has a logarithmic structure and therefore, gives positive values of volatility
without imposing any restrictions to its parameters. We use two distributions for the innovations
of the GARCH-type models, the normal and the ¢. In this class we also include the RiskMetrics
(J.P. Morgan, 1996), which is a special case of the IGARCH(1,1) model with the constant restricted
to be equal to zero. A more detailed description of these models as well as a comparison of their
forecasting performance can be found in Hansen and Lunde (2005)2.

The last class includes non-parametric volatility models using rolling windows of 30 and 60
daily observations. The advantage of these models is their non-parametric structure since they
avoid imposing restrictive assumptions to daily returns. However, they fail to capture the rapid
changes in volatility, especially in periods with numerous events that increase the volatility in the

stock markets (e.g. during the subprime mortgage crisis in 2007-2010). The choice of the number

2We obtain the volatility forecasts of GARCH-type models using the Matlab codes developed by Kevin Sheppard
and are described in the MFE MATLAB Function Reference (October 2009)



of daily observations in the rolling window is based on Patton (2011), Andreou and Ghysels (2002)

and on the findings of Foster and Nelson (1996) who estimated the optimal window size.?

3.3 The Flexible Forecast Combination approach

The Flexible Forecast Combination (FFC) approach consists of two main steps: In the first
step, structural breaks in Realized Volatility are estimated and the sample is divided in smaller
subsamples using the estimated breaks detected by the change-point test as described in the
previous section. In the second step, information from different models and subsamples is weighted
to provide robust volatility forecasts.

First, the FFC approach splits the sample in smaller subsamples based on the estimated breaks
in Realized Volatility using the CUSUM-type test and following the procedure discussed in Section
2. In each subsample the FFC approach makes inference form different models and thus, overcomes
the misspecification of model uncertainty in the volatility model. The FFC approach also weights
the information from different subsamples and therefore, can provide accurate volatility forecasts
irrespective of the characteristics of the out-of-sample period, i.e. whether it is a low volatility or
high volatility or crisis period.

In each subsample the combination weights are estimated by minimizing the distance of RV
and the combined forecast. The model space includes volatility forecasts given by the 17 individual
models using a rolling window approach as described in Section 3.2.

w; = arg minl Z L (RV;, hyw;) (7)

wieH i [

where W/, = [w;1, ..., Wiy,| is the vector of combination weights of subsample i, h} = [h41, ..., ht] 1S
the vector of individual volatility forecasts, m the number of individual forecasts in the model space,
T; is the size of the subsample i, A; is the set with the indices of daily observations that belong to
subsample i, RV; is Realized Volatility based on 5 minutes returns, L (.) is the loss function and
the set H = {wij 0 < w; <1, 25”:1 wij = 1} corresponds to the weights that are restricted in
the interior of the unit interval and to add up to 1. Thus, the FFC approach instead of relying
to an individual model, it makes inference from various models with different characteristics and
properties. Except from the diversification gains, the FFC approach has also the advantage of
choosing the combination weights by minimizing the distance of RV and the combined forecast,
which improves its performance compared to other simple averaging methods.

We consider the Square Error (SE) and the QLIKE loss functions, which according to Patton
(2011) are robust to the noise of the volatility proxy in the sense that the rankings of competing

3Using data of the S&P 500 from January, 1928 to December, 1990, they found that the optimal rolling window

size is 53 observations.



volatility forecasts are not distorted from the use of a conditionally unbiased estimator instead of
the true conditional volatility. The first is symmetric whereas the latter gives more penalty to
positive forecast errors which are essentially more important in risk management, since they are

associated with under-estimation of risk.

SE: L(RV,h) = (RV —h)? (8)
QLIKE : L (RV,h) = RTI/ — log (R}I/) ~1 (9)

Patton (2011) proposed a class of loss functions that are robust to the noise of the volatility proxy

and they are homogeneous of degree b + 2:

BTOGTD +1>1a, sy (RVPHZ — pb+2) — Lo pbHE (RV — W) (RV — h)  for b ¢ {—1,-2}
L (RV,h;b) = h— RV + RV log (£V) forb=—1

%—log(%)—l forb=-2

SE and QLIKE loss functions belong to this class for b = 0 and b = —2, respectively. In this
paper we also consider the Homogeneous Robust loss function for b = —1, which also penalizes
under-prediction of volatility more heavily but the degree of asymmetry is smaller compared to the
QLIKE.
Once we obtain the weights of each subsample we construct n series of combined volatility
forecasts.
ti= hiw;, t=1,..T (10)

where h{; is the volatility forecast at time ¢ using the weights estimated in the subsample ¢ and T
the sample size of the estimation period, n is the number of subsamples included in the estimation
period. Each series of combined volatility forecasts h§ ; uses the weights from a particular subsample,
which can be either a low volatility or high volatility or crisis subsample to predict volatility. So
instead of using the weights of one subsample with some specific characteristics to predict volatility,
we create n series of combined volatility predictions with weights that correspond to n different
subsamples.

Next, we estimate some new combination weights which we denote by w; and are used to weight
the volatility forecasts obtained by using information from different subsamples. Therefore, in this
stage we combine forecasts that use information from different subsamples, whereas in the previous

stage we combined forecasts based on different models in a particular subsample:

T
~ 1 ~
w=arg minf Z L (RV;, h{'w) (11)
w t=1
where W = [Wy,..., W,,] is the vector of weights of each subsample and h{ = [ 15 ...,hf?n} the

vector of volatility predictions based on the estimated weights of each subsample.



To forecast volatility at time t+1 we first obtain n predictions based on the different subsamples:

1= Dy W (12)

where h{ ; is the volatility forecast based on the weights of subsample ¢ and w; the weights defined
in equation 7. Therefore, at this stage we use information from alternative volatility models and
we obtain n volatility forecasts (one for each subsample). Next, we combine these predictions using
the weights w in equation 11 to obtain a volatility forecast that uses information from different
subsamples as well:

FFC _ yc I3
hify” =hi,'w

In order to capture new structural breaks that may occur in the out-of-sample period, we revise
the above steps for every 252 daily observations, which correspond to one trading year. Table 19
shows the dates of the breaks detected by the FFC method for every time that we update the data

including an additional trading year in the sample.

3.4 Other Forecast Combination Methods

In this paper we also consider Forecast Combinations under Regime Switching? (FC-RS) with two
states proposed by Elliot and Timmermann (2005) and simple averaging methods, namely the
Mean, Median and Geometric Mean °. The FC-RS method assumes that the combination weights
are time varying and driven by regime switching and the states are generated by a first order Markov
chain. This approach is very appealing when there are structural breaks in the data. Elliot and
Timmermann (2005) show that FC-RS with two states outperform other forecast combination
methods in predicting a number of macroeconomic variables, namely the unemployment rate,
inflation and GDP growth. They also find that the FC-RS approach performs well for a number
of DGPs, such as those with persistence regimes, a single structural break and a time varying
parameter process. Simple averaging methods have also been found to perform well in forecasting
macroeconomic variables (e.g. Stock and Watson, 2004) since these forecasts are not subject to

estimation error.

4 Simulation study

The purpose of the simulation study is two-fold. First, we investigate the effect of structural

breaks in the constant and the leverage coefficient of the GARCH diffusion model in the estimation

We implement Forecast Combinations under Regime Switching using the Matlab code that was compiled by

Perlin (2010).
5We use the same model space of 17 individual models described in section 3.2 for all forecast combination methods,

the FFC, FC-RS, Mean, Median and Geometric Mean.
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and forecasting of volatility based on alternative parametric and non-parametric models. For the
estimation of volatility we use two different approaches, the full and the split sample. The full
sample approach uses all information in the sample to estimate the parameters of the models and
ignores structural breaks. The split sample approach estimates the parameters in the pre- and
post- break samples. We also evaluate the forecasting performance of alternative volatility models
based on the full and the split sample approaches and test whether there are significant gains
in the accuracy of the volatility forecasts when we take into account structural breaks. Second,
we investigate the predictive performance of alternative volatility forecasts given by individual
models, simple averaging methods, the FFC and FC-RS methods. The DGP is a GARCH diffusion
model with or without breaks in the constant. For both cases we find that the FFC approach
outperforms other volatility forecasts irrespective of whether the out-of-sample evaluation period

is a low volatility or a crisis period.

4.1 Effect of structural breaks in volatility estimates

The simulated DGP for this simulation exercise is a GARCH (1,1) diffusion model (Andersen and
Bollerslev, 1998, Andersen, Bollerslev and Meddahi, 2005). We use 1000 replications and a sample
size of 3000 daily observations. We assume that the market is open for 6 hours and 30 minutes,
which is equal to the time that the New York Stock Exchange (NYSE) and NASDAQ operate every
day®. The pre-sample period is 1000 daily observations.

The price process of the GARCH diffusion model is given by:

dlog S; = oy [plqu + de%] (13)

where dW1; and dWo; are independent Brownian motions.

The dynamics of the volatility process of the GARCH(1,1) diffusion are described by

dth =a (a2 — 0152) dt + ago—tdeu (14)

Under the null there is no break in the parameters of the GARCH(1,1) diffusion model. We use
the same parameter values as in Andersen and Bollerslev (1998), Andersen, Bollerslev and Meddahi
(2005):

Hy : No break, p1 = —.576, a1 = 0.035, as = 0.636 and a3 = 0.35 (15)

Under the alternative there is a change-point in the middle of the sample in the constant or the

leverage coefficient of the GARCH diffusion model. We consider two different break sizes equal to

5The NYSE and the NASDAQ Stock Exchanges are open from 9.30a.m. to 4.00p.m.
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an increase twice and three times the aforementioned parameters under the null (with the other

parameters being constant) as listed below:

] . 0.4 ift<0.5T
Hy, : Break in the constant of size 2, as = (16)
0.8 otherwise
) ) 0.3 ift<0.5T
Hyy, : Break in the constant of size 3, as = (17)
0.9 otherwise
. .. ) —04 ift<0.5T
Hi.: Break in the leverage coef ficient of size 2, p1 = (18)
—0.8 otherwise
] o ) —-0.3 if t<0.5T
Hy4: Break in the leverage coef ficient of size 3, p1 = (19)
—0.9 otherwise

First, we evaluate the performance of alternative volatility models under the null hypothesis
of no break and the four alternatives of breaks of sizes 2 and 3 in the leverage coeflicient and
the constant of a GARCH(1,1) diffusion volatility model. We compare the performance of these
volatility estimates based on the full sample approach that ignores structural breaks and the split
sample approach that takes into account the break.

We simulate T' = 3000 “daily” returns based on a GARCH diffusion volatility model with a
break (alternative hypothesis) in the middle of the sample (at time 0.57° = 1500) or without a
break (null hypothesis). For the full sample approach we estimate the parameters of the volatility

model using all the information available in the sample:

il
h{u = f (7”1’1, ceey Tl,m, 7“271, ceey 7“27m, ceey T'T71, ceey TT,ma 0) (20)

where T is the total number of daily observations, m the number of intra-daily observations in one
trading day and 6 the parameters of each volatility model estimated using intra-daily returns from
the full sample, i.e. 74_pn41,1,...,7t,m- For the split sample approach we estimate the parameters in

the pre- and post- break periods:
P = F (P11 s T, Oy Bss) (21)

where s, are the parameters of the volatility models estimated using the intra-daily returns of
the pre-break subsample (s1), i.e. 711,...,7057—1,m and s, the parameters estimated using the
corresponding returns of the post-break subsample (s2), i.e. To.57.1, .., TT.m-

Tables 4 - 8 show the performance of alternative volatility models, based on the full and split
sample approaches, in terms of Bias, Square Bias and MSE. Table 4 consists of the estimation
results under the null hypothesis of no break and Tables 5 - 8 under the alternatives with breaks

of sizes 2 and 3 in the leverage coefficient and the constant of the volatility process.
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Under the null hypothesis, the best performing method in terms of MSE is the HAR-RV, followed
by the LHAR-RV and the RV models. Next, we have the AR(p)-RV models with improvement
in their performance as we increase the number of lags from 1 to 15. This indicates that there is
useful information in the lags of the volatility, which is captured in a more parsimonious way by the
HAR-RV and LHAR-RV models. The GARCH-type perform worse than the AR-RV type models,
and finally the worst performing models are the RiskMetrics and the Rolling window models of 30
and 60 daily observations. Across GARCH-type models, those that take into account the leverage
effect perform better, which is reasonable given the existence of the leverage coefficient in the DGP.
However, the HAR-RV model performs better than the LHAR-RV despite the fact that only the
latter captures the leverage effect. Given the GARCH-type structure of the DGP, the volatility
models in the GARCH family gain more from the inclusion of parameters that control the leverage
effect. Finally, the poor performance of the RiskMetrics and Rolling Volatility is expected given
that they are inefficient estimates.

In terms of Bias, GARCH-type models perform better than the Autoregressive RV models
(AR(p) and HAR). This is again due to the fact that the GARCH structure of the DGP yields an
advantage to models in the GARCH family. RiskMetrics and rolling window models also perform
well in terms of Bias, since they do not have any parameters to be estimated. Positive bias is
observed in the Autoregressive-RV models as well as the EGARCH model, and negative bias is
observed in the other GARCH-type models, RiskMetrics and rolling window. The opposite sign in
the bias of the EGARCH and the other models in the GARCH family is due to the logarithmic
structure of the EGARCH model, which is not nested (in contrast to the GARCH and TARCH)
to the more general APARCH model.

Since there is no break in the DGP, there are small changes in the performance of the volatility
models between the full and the split sample approaches in terms of MSE. In terms of Bias, the
GARCH, TARCH and APARCH models perform better based on the full sample approach and
the EGARCH performs better based on the split sample approach. This can be explained by the
logarithmic structure of the EGARCH model, since it gives positive volatility estimates without any
restriction in its parameters and hence, can give accurate estimates even in smaller samples. The
other GARCH models require larger samples, since they impose restrictions in their parameters,
which are necessary for positive variance.

Under the alternative hypotheses, there are no significant changes in the best performing
methods in terms of MSE, since the HAR-RV outperforms all other volatility models. In terms of
Bias, important changes in the rankings of volatility models based on the full and the split sample
approaches are observed under the alternative hypothesis of a break in the constant. For example,
when there is a break in the constant of the DGP of size 2, the rankings of the RiskMetrics,
Rolling Volatility of 30 and 60 daily observations based on the full sample approach are 4, 5 and
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3, respectively. Based on the split sample approach these rankings become 5, 9 and 8. When we
increase the size of the break to 3, then these rankings for the full sample approach are 2, 3 and
1 and for the split sample approach 3, 9 and 6. The reason of these changes in the rankings of
these models between the full and the split sample approaches is that they are not affected by the
structural break in the constant, since there is no parameter estimation involved in these models
and therefore, they outperform the GARCH-type models based on the full sample approach. For
the split sample approach, the GARCH-type models take into account the break in the constant
and consequently outperform the RiskMetrics and rolling window models.

Table 9 shows the ratios of the split and the full sample approaches for the null hypothesis of no
break and the alternatives of break in the constant and the leverage coefficient. Realized Volatility
is not affected by structural breaks since the volatility estimation is based on intra-daily data of a
particular day. Similarly, the rolling window models are also robust to structural changes given the
small sizes of their windows (30 and 60 daily observations). The RiskMetrics is also not affected
by structural breaks in terms of MSE, since there are no parameters to be estimated. The only
difference between the full and the split sample approaches for this model is the estimation of the
initial value of volatility, which for the full sample approach is given by the sample variance of the
first 100 observations used as estimation window (are not included in the 3000 observations of the
full sample). On the other hand, the initial value of the variance of RiskMetrics for the split sample
approach is updated for the post-break period and therefore, the split sample approach gives more
accurate estimates when there is a break in the constant.

In terms of MSE, the benefits of taking into account structural breaks by using the split sample
instead of the full sample approach are larger in the models of the GARCH-family compared to the
AR-RV type models. When there is a break in the constant, there is improvement in the accuracy
of the volatility estimates of all GARCH-type models of the split sample approach (compared to the
full sample approach) and the gains are larger as we increase the size of the break. We have similar
results for the AR-RV type models, except from the HAR-RV model, which is less sensitive to the
break in the constant. The break in the leverage coefficient only affects the GARCH-type models
with a leverage parameter, namely the TARCH, EGARCH and APARCH volatility models. As we
increase the size of the break in the leverage coefficient there are more benefits in the accuracy of

the volatility estimates of the split sample compared to the full sample approach.

4.2 Effect of structural breaks in volatility forecasts

In this section of the simulation study, we investigate the forecasting performance of alternative
volatility models in the presence of structural breaks based on the full and the split sample
approaches. We use the same DGP, i.e. GARCH diffusion with or without breaks in the constant

and the leverage coefficient and the same model space (except from the Realized Volatility, which
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can be used only for estimation). We compare the predictive performance of the volatility models
based on the full and the split sample approaches and test whether we have significant gains in the
accuracy of our forecasts when we take into account structural breaks based on the Conditional
Predictive Ability (CPA) test of Giacomini and White (2006).

As in the estimation exercise, we simulate a GARCH(1,1) diffusion process of sample T' = 3000
with breaks in the constant of the volatility process and the leverage coeflicient of the price process.
We also use a period of 1000 observations for out-of-sample evaluation. The parameters of the
GARCH(1,1) diffusion model in the out-of-sample period are the same with the post-break period.
For the full sample approach we ignore the presence of a structural break in the sample and we

estimate the parameters using all the observations of the full sample:

WL = i, e TLms ooy T oo Tems 0) (22)

where t > T and 0 are the parameters of each volatility model estimated using intra-daily
observations in the full sample, i.e. 711, ...,77m,. For the split sample approach, we ignore the pre-
break period and we use only the post-break period to estimate the parameters of the GARCH(1,1)
diffusion model:

split
Ry = f(P0.5T,1, oy TO5T,ms ooy Tt 15 o5 Ttms Osy ) (23)

where ¢t > T and g, the parameters of each volatility model estimated using only returns form the
post-break period, i.e. 70571, ..., "T,m-

For the comparison of the performance of volatility forecasts based on the full and the split
sample approaches we use the Conditional Predictive Ability test proposed by Giacomini and

White (2006). The null hypothesis of this test is given by:
Hy: E [LtJrl <1Vt+1, h{}:lll) — Ly (IVZH, hfﬁlft) /m} =0 (24)

where IV, is Integrated Volatility (which coincides with Quadratic Variation when there in no
jump in the price process), h{}:lll and hf_’ﬁlit are the volatility forecasts given by the full and the
split sample approaches, Li41(.) is the loss function (in this paper we use Square Error) and ¢, the
o-algebra that consists of all the information from 7 = 1,...t. When the null hypothesis is rejected
we use the two step decision rule described in Giacomini and White (2006) to determine which
approach gives the most accurate forecasts of volatility.

Tables 10 - 14 show the Bias and MSE of alternative volatility forecasts based on the full and
the split sample approaches and the results of the CPA test under the null hypothesis of no break
and the alternatives of breaks in the constant and the leverage coefficient. In terms of MSE, the
AR-RV type models have the best rankings, followed by the GARCH-type models and the worst

performing models are the rolling window models. In terms of Bias, we have similar results with
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the estimation exercise, since the GARCH-type models and rolling window have the best rankings.
The first have an advantage compared to the other models because of the GARCH-type structure
of the DGP.

Table 15 summarizes the results of the CPA test based on the Square Error loss function. The
CPA test rejects the null hypothesis of equal predictive ability of the full and split sample approaches
for the TARCH, EGARCH and APARCH when there is a break in the leverage coefficient of size
3. Based on the decision rule of Giacomini and White, volatility forecasts using the split sample
approach perform better compared to those given by the full sample approach. When there is a
break in the constant, the CPA test shows that the AR(p)-RV models based on the split sample
approach significantly outperform the corresponding models based on the full sample approach.
Furthermore, the two stage decision rule confirms the superior performance of the split sample
compared to the full sample approach for all volatility models (except the HAR-RV type models)
when there is a break in the constant of size 3. The way that the HAR-RV type models use
information from different aggregation horizons is likely the reason that they give volatility forecasts

that are less sensitive to structural breaks.

4.3 Comparison of the predictive performance of volatility forecasts

In this section we evaluate the performance of the FFC approach, as well as other forecast
combination methods and individual models in predicting volatility in the presence of structural
breaks. We have two simulation exercises: (1) In the first simulation exercise we consider the case
that there is no break in the GARCH diffusion DGP and (2) in the second exercise the case with
multiple breaks in the constant of the DGP based on the empirical findings of Section 2. Given
that the effect of structural breaks in the performance of the individual volatility forecasts has
already been investigated in the previous section, we give more emphasis to the performance of the
FFC approach in various cases and we compare this approach with individual forecasts and other
forecast combination methods. For the individual forecasts we take the most ideal case that the
parameters are estimated in a period, where the GARCH diffusion DGP has the same parameters
as in the out-of-sample evaluation period. Even under these circumstances, we find that the FFC
approach has very good performance compared to individual forecasts.

The first simulation exercise is based on the GARCH diffusion DGP under the null hypothesis
of no break (equations 13 and 14) of a total sample size of 4350 daily observations. This sample
is divided as follows: (1)100 days used as pre-sample period, (2)750 days for the estimation of the
parameters of the individual models, (3)3000 days as estimation period for the FFC and FC-RC
and (4) 500 days for out-of-sample evaluation. Concerning the parameters of the GARCH diffusion
DGP we consider two cases. In the first case we use the same parameters as in equation 15, which

are the parameters also used by Andersen and Bollerslev (1998), Andersen, Bollerslev and Meddahi
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(2005) and resemble a low volatility process. In the second case we give three times larger value
to the constant (compared to the low volatility case), i.e. ag = 1.908 and simulate a process with
increased volatility that resembles a crisis period. The intra-daily returns that correspond to the
first 100 days, 71,1, ...,71y,m, 1o = 100 are used as pre-sample period to avoid any possible bias
in the initial observations of the GARCH diffusion DGP. The next 750 simulated daily returns
and Realized Volatilities are used to estimate the parameters of the 17 individual models, i.e.
0 = g(rro+1, -1, RVys1, ..., RVpy) or 0 = g(roys11, - rim), Tt = 850 and t = T + 1,..., T
given that both daily returns and Realized Volatilities are functions of intra-daily returns. Based
on these parameter estimates we obtain forecasts of all individual models of size 3000 days, i.e.
he = f(rry41.1, s TT,m, 0), where T = 3850 that will be used by the FFC and FC-RS approaches
for estimating the combination weights. We also obtain volatility forecasts that correspond to
another 500 observations, hy = f(rry41,1s .-, T'1y,m, ), where T3 = 4350 that will be used for out-
of-sample evaluation of the individual models as well as to construct the simple averaging methods
(Mean, Median and Geometric Mean). Given that these simulation exercises are computationally
very intensive we use 250 simulations 7. Table 16 shows the constant parameter of the GARCH
diffusion process used in this simulation design.

In order to examine the performance of the FFC approach more thoroughly, we consider two
different cases under the null hypothesis that there is no break in the DGP. In particular, we examine
the cases where: (1) No breaks are detected by the FFC approach, (2) There is a misspecification in
the first stage of the FFC approach and it detects a break in the middle of the sample that does not
exist. As shown in Table 17, under the null hypothesis of no break in the GARCH diffusion DGP,
the FFC approach outperforms all individual forecasts, simple averaging methods and Forecast
Combinations under Regime Switching (FC-RS) for both cases, when the DGP resembles a low
volatility and a crisis period. The success of the FFC approach is not only due to the diversification
gains of taking into account information from different models, but also because of the way that
estimates the combination weights by minimizing the distance between Realized Volatility and the
combined forecast. Also the use of the Homogeneous Robust loss function is very appealing given
that it is robust to the noise of the volatility proxy. Across individual forecasts, the LHAR-RV gives
the most accurate predictions followed by the HAR-RV and the other AR-RV models. Additionally
to all the advantages of the AR-RV models, the LHAR-RV is more parsimonious and also takes
into account the leverage effect of returns at daily, weekly and monthly horizons. Regarding the
other forecast combination methods the FC-RS outperforms the other simple averaging methods,
but it is outperformed for all loss functions used in this paper (SE, HR b=-1 and QLIKE) and for
both periods (low volatility and crisis) by the FFC approach and the best performing individual

"We examined the sensitivity of the simulation results to the number of simulations and we found that they are

robust even for smaller number of simulations.
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forecasts, LHAR-RV and HAR-RV.

The misspecification of detecting a break in the first stage of the FFC approach does not affect
the performance of this approach since the difference in the loss is negligible. We can better
understand this result by looking in Figures 1.2 and 1.3 which show the weights given to individual
forecasts for the full sample when the FFC approach detects no break, and for the pre- and post-
break samples when the FFC approach detects one break. The figures show that the weights are
allocated with almost the same way across individual models in the full sample, pre- and post-break
samples, which is expected since there is no break in the DGP. The LHAR-RV model that performs
best across all individual forecasts has the largest weight for the three loss functions, followed by
the HAR-RV and AR(1)-RV. Figure 1.8 also shows that the weights of the combination forecasts
for the pre- and post-break samples are almost the same, which also can be explained by the fact
that there is no break in the GARCH diffusion process.

In the second simulation exercise, we also simulate a GARCH diffusion DGP of a total number
of daily observations 4350, but we split the estimation period in smaller subsamples based on
breaks in the constant of the DGP. These subsamples resemble three different regimes, namely low
volatility, high volatility and crisis periods. The low volatility and crisis subsmaples occur twice
in the estimation period, whereas the high volatility subsample occurs only once. The simulation
design is motivated by the structural breaks detected in the S&P 500 in Section 2. In particular, the
high volatility subsample corresponds to the subsmaple of the S&P 500 that includes the dot-com
bubble. The two simulated crisis subsamples correspond to the Stock Market Crash of 1987 and
the subprime mortgage crisis. The constant parameter takes different values in the five subsamples
so that the simulated process does not resemble a three state Markov Switching process. Table 16
shows the values of the constant parameter for each subsample.

We consider two different cases when the out-of-sample period resembles: (1) A low volatility
period and (2) a crisis period. As in the previous simulation exercise with the GARCH diffusion
without a break, the parameters of the DGP for the estimation period (the subsample used for the
estimation of the parameters of the volatility models) is the same as the out-of-sample evaluation
period. For the FFC approach we consider 5 different cases: (1) When the FFC approach ignores
the presence of any level shifts in volatility and therefore, estimates the combination weights over
the full sample of 3000 observations, denoted by FFC 1, (2) when the FFC approach estimates the
breaks in the estimation period, denoted by FFC 2, (3) when the FFC approach ignores the low
volatility subsamples and estimates the breaks and combination weights in the remaining estimation
period, denoted by FFC 3, (4) when the FFC approach ignores the high volatility subsample and
estimates the breaks and combination weights in the remaining estimation period, denoted by FFC
4 and (5) when the FFC approach ignores the crisis subsamples and estimates the breaks and

combination weights in the remaining estimation period, denoted by FFC 5.
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Table 18 shows the rankings of alternative volatility predictions given by individual models
and forecast combinations for the GARCH diffusion DGP with multiple breaks. When the out-
of-sample evaluation period is a low volatility regime, the best performing method is the FFC 5
that ignores the crisis subsamples for the three loss functions considered in this paper (Square
Error, Homogeneous Robust for b = —1 and QLIKE). Similarly, when the out-of-sample evaluation
period resembles a crisis period the best performing method based on the Homogeneous Robust
for b = —1 and the QLIKE loss function is the FFC 3 approach that ignores the low volatility
subsample (under the Square Error it ranks second). In both cases the FFC approach performs
better when we ignore the subsamples that have different characteristics compared to the out-of-
sample evaluation period. On the contrary, the FFC approach performs worse when subsamples
with the same characteristics as the out-of-sample evaluation period are ignored. However, the
differences in the performance of the FFC approach in the various cases is not significant and the
FFC approach performs better than the other forecast combination methods and individual models
almost for all cases. This shows an enormous robustness for the FFC approach.

Concerning the rankings of the other forecast combinations, the FC-RS outperforms all simple
averaging methods, namely the Mean, Median and Geometric Mean for the case that the out-of-
sample evaluation period is a low volatility period. On the contrary, when the out-of-sample period
resembles a crisis period the FC-RS is outperformed by the three simple averaging methods. The
FC-RS makes some restrictive assumptions that the states are generated by a first-order Markov
chain and therefore, does not perform well when the out-of-sample period is characterized by high
volatility, since it is outperformed even by simple averaging methods. On the contrary, the FFC
approach is more flexible and thus performs well for both low volatility and crisis evaluation periods.
Across individual models, LHAR-RV is the best performing model, followed by the HAR-RV and
the other AR-RV models. The good performance of these models can be explained by the fact
that they take into account the additional information in intra-daily returns and respond very fast
to changes in volatility, with the LHAR-RV and HAR-RV being the most parsimonious models.
The GARCH-type models make more restrictive assumptions and therefore, perform worse, and
the rolling volatility models are the worst performing models given their slow respond to changes
in volatility.

Figures 1.4 - 1.5 and 1.6 - 1.7 show the weights given to individual models by the FFC approach
when the out-of-sample evaluation period resembles a low volatility and crisis period, respectively®.
The LHAR-RV, which is the best performing model across the 17 individual models used in this
paper has the highest weight. This result is more evident for the low volatility subsamples. When

8The FFC approach does not estimate the same breaks for all simulations. Thus, when we want to examine the
weights given to the individual models and subsamples we split the estimation period in smaller subsamples based

on the simulated breaks in the GARCH diffusion DGP without estimating them using a CUSUM-type test.
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the subsamples are characterized by increased volatility and therefore predicting volatility is more
challenging, the FFC approach gives more weight to other models such as the HAR-RV and the
AR-RV models. The GARCH-type models do not provide any additional information to the FFC
approach from the HAR-RV and AR-RV models and thus, receive very small weight. This result
does not hold in the empirical application with the S&P 500 Index, where the DGP is more
complicated and the FFC approach gives large weights to some GARCH-type models as well (e.g.
EGARCH). The non-parametric models, namely the Rolling Volatility models of 30 and 60 daily
observations receive some weight, although they are the worst performing models. This result
indicates that the weights given to each model do not depend only on the performance of the models
but on their structure as well which may enables them to provide some additional information to
the FFC approach.

The characteristics of the out-of-sample evaluation period, namely whether it is a low volatility
or crisis period, are not known to the FFC approach. Therefore, this approach does not necessarily
gives the largest weight to the subsample with the same or similar characteristics with the out-of-
sample evaluation period. For example, as shown in Table 1.9, FFC based on the Square Error loss
function gives the most of the weight to the first subsample, which is a crisis subsample although
the out-of-sample evaluation period is a low volatility subsample. Similarly, the FFC approach
based on the QLIKE loss function gives the highest weight to the second subsample, which is a low
volatility subsample, although the out-of-sample period corresponds to a crisis period. However,
the combination weights of the FFC approach are allocated almost in all subsamples and therefore
can provide accurate predictions of volatility irrespective of the characteristics of the out-of-sample
period. This result is also evident by the rankings of the FFC approach as shown in Table 18.
In Figures 1.4 - 1.7, we observe that the weights of individual models do not change significantly
across the three loss functions used in this paper. This result does not hold for the combination
weights of different subsamples since these weights behave differently according to the loss function

which is used to minimize the distance between the volatility proxy and the combined forecast.

5 Empirical Application

The simulation results show that there are significant losses in the accuracy of volatility forecasts
when we ignore structural breaks. These results also show that the FFC approach outperforms
individual models, simple averaging methods and Forecast Combination under Regime Switching
for various cases, e.g. based on a GARCH diffusion DGP with or without breaks in the constant
parameter and for low volatility and crisis out-of-sample evaluation periods. In this section we
use an empirical application based on the S&P 500 Index and we find that this method performs

well, especially during the period of the subprime mortgage crisis, when other volatility models and

20



forecast combination methods fail to predict volatility accurately.

5.1 Data

The data used in this paper is obtained from the Tick Data database. We use 5 minute returns of
the S&P 500 Index for the estimation of Realized Volatility (RV) and the construction of volatility
forecasts based on RV, namely AR-RV, HAR-RV and LHAR-RV. We also use daily returns to
forecast volatility based on low frequency volatility estimators (GARCH-type and rolling window
models). The sample covers the period from February 1, 1983 to June 30, 2010. Given that we
use a rolling window of 750 observations for individual volatility models, we lose 3 years of daily

returns and therefore, the initial date of the sample is February 3, 1986.

5.2 Combination weights of the FFC approach

Figures 1.10 - 1.12 show the weights (w) given by the FFC approach to alternative volatility
forecasts for different subsamples based on the SE, Robust (b=-1) and QLIKE loss functions.
These figures correspond to the last time that the estimation period is updated with new data. In
this case the estimation period spans February 3, 1986 to January 4, 2010 and the out-of-sample
period spans January 5, 2010 to June 30, 2010. The weights behave differently across different
subsamples and using alternative loss functions. In most of the cases the HAR-RV type models
have the largest weight across all individual models. Normal EGARCH has the largest weight
based on the SE loss function for the last subsample, something which is expected given the good
performance of this model during the period of the subprime mortgage crisis.

Figures 1.13 - 1.15 show the weights (w) given to forecast combinations that make inference
from different subsamples for the last 3 times that the estimation period of the FFC method is
updated by one trading year. The out-of-sample period in Figures 1.13, 1.14 and 1.15 covers a big
part of the subprime mortgage crisis period and spans January 4, 2008 - January 2, 2009, January
3, 2009 - January 4, 2010 and January 5, 2010 - June 30, 2010, respectively. The weights show the
importance of the period that covers the 1987 stock market crisis (February 1986 to April 1991)
in predicting volatility during the subprime mortgage crisis (January 2008 to June 2010). This is
an important advantage for the FFC method, since it can make inference and predict volatility in

high volatility subsamples using information from other subsamples with similar characteristics.

5.3 Performance of the FFC approach and comparison with other methods

For the evaluation of volatility predictions given by forecast combinations and individual models
we use three alternative loss functions, which are three special cases of the Homogeneous Robust

loss function, for b = 0 (Square Error), b = —1 and b = —2 (QLIKE). Based on these loss
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functions we estimate the losses by finding the distance between RV and the volatility forecast
and report the corresponding rankings. We also compare the predictive performance of forecast
combinations and individual models using the CPA test (Giacomini and White, 2006) based on
the three aforementioned loss functions. The out-of-sample period of the S&P 500 is divided in
two subsamples based on the structural break found in Section 2 on January 4, 2008. So the first
subsample covers the period from January 2, 2004 to January 3, 2008 and is characterized by low
volatility and the second subsample from January 4, 2008 to June 30, 2010 and it is a high volatility
subsample, since it includes the events during the subprime mortgage crisis.

Tables 20 and 21 show the rankings of alternative volatility predictions given by individual
models and forecast combinations for the two subsamples (low and high volatility) and the full
sample, respectively. In the low volatility subsample the FFC SE method ranks second in terms of
MSE. The group of the three best performing methods also includes the LHAR-RV model, which
ranks first and the HAR-RV, which ranks third. Both HAR-RV and LHAR-RV forecast volatility
by using information from the lags of RV in a parsimonious way, with the latter taking into account
the leverage effect of daily, weekly and monthly returns as well. AR-RV type models perform better
than GARCH-type models, since they use additional information from high frequency returns and
make less restrictive assumptions. The RiskMetrics and rolling window models are the worst
performing models. The simple averaging methods perform adequately well, and particularly the
Geometric Mean ranks fourth followed by the FC-RS method, which ranks fifth. When we include
asymmetries in the loss functions using the Robust loss function for b=-1 the group of the three
best performing methods does not change. However, when we increase the asymmetry in the loss
function by using the QLIKE loss function, the FFC QLIKE ranks first given the logarithmic
structure and the good power properties of this loss function, which makes it very appealing in
combining volatility forecasts. When there is asymmetry in the loss function, there is also a small
improvement in the ranking of the FC-RS method since it outperforms the Geometric Mean and
ranks fourth instead of fifth. However, there are no significance changes in the rankings of the other
volatility forecasts as we increase the degree of asymmetry in the loss function.

This does not hold for the high volatility subsample, since the change in the value of the shape
parameter (b) of the Homogeneous Robust loss function affects the rankings of the competing
volatility forecasts. In particular, for b = 0 the three best performing methods are Normal
EGARCH, FFC SE and Geometric Mean, for b = —1 the FFC Robust b=-1, LHAR-RV and
HAR-RV and for b = —2 the FFC QLIKE, LHAR-RV and HAR-RV. For both subsamples, low and
high volatility, the FFC approach is always in the two best performing methods for the three loss
functions used in this paper. In particular, for the QLIKE loss function the FFC approach ranks
first for both subsamples. This indicates that the asymmetries in the loss function improves the

volatility prediction given by the FFC method compared to the other methods. This is consistent
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with the findings of Elliot and Timmermann(2003), who underline the importance of asymmetric
loss functions in forecast combinations. The LHAR-RV and HAR-RV outperform all individual
models for the high volatility subsample as well with only exception the Normal EGARCH under the
SE loss function which ranks first. The Normal EGARCH has an advantage compared to the other
GARCH-type models since given its logarithmic structure, it provides positive volatility forecasts
without any restrictions in its parameters, something which is especially useful when volatility
changes rapidly as in the high volatility subsample of our dataset. The FC-RS does not have the
success in predicting volatility in the high volatility subsample as in forecasting macroeconomic
variables (Elliot and Timmermann, 2005). In particular, the FC-RS is outperformed by a number
of other methods such as the FFC, LHAR-RV, HAR-RV and simple averaging methods. Given
the increased losses of all volatility forecasts in the high volatility subsample compared to the low
volatility, the rankings of the full sample are similar to the high volatility subsample.

In Tables 22 - 30 there is a comparison of the forecast combination methods with the individual
models that are included in their model space using the Conditional Predictive Ability (CPA) test
(Giacomini and White, 2006) based on the Homogeneous Robust loss function for b = 0, b = —1 and
b = —2. For the low volatility subsample of the S&P 500 (Tables 22 - 24) all forecast combination
methods, namely the Mean, Median, Geometric Mean, FC-RS and FFC SE significantly outperform
all GARCH-type, rolling window and the RiskMetrics models. Under the SE loss function, the
FFC SE is the only approach that is not significantly outperformed by any individual model (it is
outperformed only by LHAR-RV but not significantly). As we increase the degree of asymmetry of
the Homogeneous Robust loss function for b = —1 and b = —2 the performance of the FFC improves
even more since it outperforms significantly all individual models, including the AR-RV, HAR-RV
and LHAR-RV models. The outstanding performance of the HAR-RV and LHAR-RV models is also
shown in this table since both models significantly outperform all forecast combination methods
except the FFC.

For the high volatility subsample (Tables 25 - 27) and the full sample (Tables 28 - 30) of the
S&P 500, the FFC QLIKE also significantly outperforms all individual models based on the QLIKE
loss function. The HAR-RV, LHAR-RV, AR(5)-RV, AR(10)-RV and AR(15)-RV significantly
outperform all forecast combination methods except from the FFC QLIKE.

Tables 31 - 33 show how each forecast combination method is compared with the other forecast
combination methods based on the CPA test. For the low volatility subsample the FFC method
significantly outperforms all other methods under all three loss functions, SE, Homogeneous
Robust for b = —1 and QLIKE. The FC-RS approach outperforms all simple averaging methods.
Across the simple averaging methods, the Geometric Mean is the best performing method since it
outperforms the Mean and the Median. For the high volatility subsample, the FFC SE significantly

outperforms the Mean and FC-RS under the Square Error loss function. When we incorporate
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asymmetries in the loss function and use the Homogeneous Robust loss function for b = —1 and
b = —2, the performance of the FFC improves since it significantly outperforms all other methods.
The performance of the FC-RS for the high volatility subsample is worse, since it significantly
outperforms only the Median, whereas in the low volatility subsample it outperforms all simple
averaging methods. As in the low volatility subsample, the best performing method across the
three simple averaging methods is the Geometric Mean.

In a nutshell, the FFC is the best performing method across all individual models and forecast
combination methods when there are asymmetries in the loss function, i.e. based on the QLIKE
loss function for both subsamples of the S&P 500. The FC-RS approach performs well only for
the low volatility subsample and across simple averaging methods the best performing method is
the Geometric Mean. The LHAR-RV and HAR-RV provide the most accurate volatility forecasts
across a wide range of individual models. Furthermore, the aforementioned models outperform

some forecast combination methods, such as the FC-RS, Mean, Median and Geometric Mean.

6 Conclusions

In this paper we investigate the effect of structural breaks in the constant and the leverage
effect of a GARCH diffusion model in volatility estimates and forecasts given by a large set of
individual models. Our model space includes AR-RV, HAR-RV, LHAR-RV, GARCH-type as well
as rolling window models. We use two alternative approaches of estimating the parameters of the
aforementioned models, the full sample that ignores structural breaks and the split sample which
estimates the parameters in the pre- and post-break samples. We find significant gains in the
accuracy of volatility estimates and forecasts of AR-RV and GARCH-type models when we take
into account structural breaks in the parameters.

We propose a Flexible Forecast Combination (FFC) approach that predicts volatility using
information from forecasts given by alternative models as well as different subsamples. The
combination weights are estimated by minimizing the distance between RV and the combination
forecasts, which is measured using the Homogeneous Robust loss function proposed by Patton
(2011). Except from the property of giving rankings of competing volatility forecasts that are
robust to the noise of the volatility proxy (e.g. RV), the Homogeneous Robust loss function is also
appealing for combining volatility forecasts, especially when we incorporate asymmetries in the loss
function. In particular, we find that the FFC approach based on the QLIKE loss function (a special
case of the Homogeneous Robust loss function for b = —2) outperforms a large set of individual
models as well as Forecast Combinations under Regime Switching and simple averaging methods.
The structure of the FFC method captures structural breaks in volatility and therefore, it performs

extremely well in the high volatility subsample of the S&P 500, which includes a number of events
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that are related to the subprime mortgage crisis, such as the Lehman Brothers bankruptcy. Another

important advantage of this approach is that it can use information from previous subsamples to

predict volatility in a period with similar characteristics. For example it can use information from

the period of the 1987 stock market crash to predict volatility during the subprime mortgage crisis.

References

1]

Aiolfi, M., Timmermann, A., 2004, Structural Breaks and the Performance of Forecast

Combinations, Working Paper.

Andersen, T.G., T. Bollerslev, 1998, Answering the Sceptics: Yes, Standard Volatility Models

Do Provide Accurate Forecasts, International Economic Review, 39(4), 885-905.

Andersen, T.G., T. Bollerslev, F.X. Diebold, P. Labys, 2001, The distribution of exchange rate
volatility, Journal of the American Statistical Association, 96, 42-55.

Andersen, T.G., T. Bollerslev, F.X. Diebold, P. Labys, 2003, Modeling and forecasting realized
volatility, Fconometrica, 71(2), 579-625.

Andersen, T.G., T. Bollerslev, N. Meddahi, 2005, Correcting the errors: Volatility Forecast
Evaluation Using High-Frequency Data and Realized Volatilities, Econometrica, 73, 279-296.

Andreou, E. and E. Ghysels, 2002, Rollling-Sample Volatility Estimators: Some New
Theoretical, Simulation, and Empirical Results, Journal of Business and Economic Statistics,

20(3), 363-377.

Andreou, E. and E. Ghysels, 2004, The Impact of Sampling Frequency and Volatility
Estimators on Change-Point Tests, Journal of Financial Econometrics, 2(2), 290-318.

Andreou, E. and E. Ghysels, 2009, Structural Breaks in Financial Time Series, In:
T.G.Anderson et.al. (Eds.), Handbook of Financial Time Series, Springer-Berlag Berlin
Heidelberg, 839-870.

Andrews, D. W. K., 1991, Heteroskedasticity and Autocorrelation Consistent Covariance

Matrix Estimation, Econometrica, 59(3), 817-858.

Bardorff - Nielsen, O.E., Hansen, P.R., Lunde, A. and N. Shephard, 2008, Designing realized
kernels to measure the ex-post variation of equity prices in the presence of noise, Econometrica,
76(6), 1481-1536.

25



[11]

[12]

[13]

[14]

[21]

22]

Bardorff - Nielsen, O.E., N. Shephard, 2002, Estimating quadratic variation using realized
variance, Journal of Applied Econometrics, 17: 457-477.

Bollerslev, T., 1986, Generalized Autoregressive Conditional Heteroskedasticity, Journal of
FEconometrics, 31, 307-327.

Corsi, F., 2009, A simple Approximate Long-Memory Model of Realized Volatility, Journal of

Financial Econometrics, 1-23.

Corsi, F., R. Reno, 2009, HAR volatility modelling with heterogeneous leverage and jumps,
Working Paper.

Ding, Z., W.J. Granger, R.F. Engle, 1993, A Long Memory Property of Stock Market Returns
and a New Model, Journal of Empirical Finance, 1, 83-106.

Elliot, G., A. Timmermann, 2004, Optimal forecast combination under general loss functions

and forecast error distributions, Journal of Econometrics, 122, 47-79.

Elliot, G., A. Timmermann, 2005, Optimal Forecast Combination under Regime Switching,
International Economic Review, 46(4), 1081-1102.

Foster, D.P. and D.B. Nelson, 1996, Continuous Record Asymptotics for Rolling Sample
Variance Estimators, FEconometrica, 64(1), 139-174.

Giacomini, R. and H. White, 2006, Tests of Conditional Predictive Ability, Fconometrica,
74(6), 1545-1578.

Glosten, R., R. Jagannathan, D. Runkle, 1993, On the Relation Between Expected Value and
the Volatility of the Nominal Excess Return on Stocks, Journal of Finance, 48, 1779-1801.

Goncalves, S. and N. Meddahi, 2009, Bootstrapping Realized Volatility, Econometrica, 77(1),
283-306.

Guidolin, M., A. Timmermann, 2009, Forecasts of US short-term interest rates: A flexible

forecast combination approach, Journal of Econometrics, 150, 297-311.

Hansen, B., 2009, Averaging Estimators for Regressions with a Possible Structural Break,
Econometric Theory, 25, 1498 - 1514.

J. P. Morgan,1996, RiskMetrics Technical Documents (Fourth Edition), New York, J. P.
Morgan Co.

Kokoszka, P., R. Leipus, 1999, Testing for Parameter Changes in ARCH Models, Lithuanian
Mathematical Journal, 39, 231-247.

26



[26]

[27]

Kokoszka, P., R. Leipus, 2000, Change-Point estimation in ARCH models, Bernoulli, 6(3),
513-539.

Meddahi, N., 2002, A theoretical comparison between integrated and realized variances,

FEconometrics Journal, 6, 334-355.

Nelson, D.B., 1991, Conditional Heteroskedasticity in Asset Returns: A New Approach,
FEconometrica, 59, 347-370.

Patton, A. J., 2011, Volatility forecast comparison using imperfect volatility proxies, Journal
of Econometrics, 160(1), 246-256.

Pesaran, M. H., A. Timmermann, 2005, Small sample properties of forecasts from

autoregressive models under structural breaks, Journal of Econometrics, 129, 183-217.

Stock, J.H., M.W. Watson, 2004, Combination Forecasts of Output Growth in a Seven-Country
Data Set, Journal of Forecasting, 23, 405-430.

Timmermann, A., 2006, Forecast Combinations, In: Elliot, G., Granger, C.W.J.,

Timmermann, A. (Eds.), Handbook of Economic Forecasting, Elsevier, Amsterdam in press.

27



(1661 ‘smoIpuy) Iojeumil)se aoueLies HYH oY) U0 paseq 1591 (000 ‘6661) sndior] pue eqzsoso3] Jo 1503 odAy
INNSND 2y} Suisn pajewyse ‘010g ‘0¢ dUnf 0} 986T ‘¢ AIeniqa wodj Xopul 00G J23S oY)} JO AN[IYR[OA POZI[ea} UL SyBaI( [BINIONIS oY) SMOYS 2InSy SIyJ,

STuer otTuer souer oouer seuer osuer

Xopul 00G J29S Y} JO AIIR[OA POZI[Rd}] UL SYRII( [RINONI}S :T'T 9INJI

sguer

Sc-

Oc-

ST-

OT-

oT

ST

xipuoaddy v

28



Figure 1.2: Weights of individual volatility forecasts of the FFC approach when the DGP is a
GARCH diffusion process without breaks that resembles a low volatility period
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This figure shows the weights of individual forecasts for the full sample when the FFC detects no break in the DGP,
for the pre- and post- breaks subsamples when there is a misspecification and the FFC detects a break in the middle
of the sample. The DGP is a GARCH diffusion process without a break that resembles a low volatility period. The

sample size is 3000 observations and the weights are based on 250 simulations.
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Figure 1.3: Weights of individual volatility forecasts of the FFC approach when the DGP is a

GARCH diffusion process without a break that resembles a crisis period

FFC detects no break - Full sample
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This figure shows the weights of individual forecasts for the full sample when the FFC detects no break in the DGP,
for the pre- and post- breaks subsamples when there is a misspecification and the FFC detects a break in the middle
of the sample. The DGP is a GARCH diffusion process without a break that resembles a crisis period. The sample

size is 3000 observations and the weights are based on 250 simulations.
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Figure 1.4: Weights of individual volatility forecasts of the FFC approach when the DGP is a
GARCH diffusion process with multiple breaks and the out-of-sample evaluation period resembles

a low volatility period (1)

Subsample 1: Crisis period

0.600
0.400
0.200 = SE
0.000 ————————— = an,  @HRM=-1
(%] 1d wv
z z z z 22 &5 5 55555 T L& % % QLIKE
L L L LY L E E EE o &£ & 2 &5 3 3
= v o n < < << < < <C <C < < < 2] o o
r & 2 42 r O F O 0 = O o > 5§ &
< < £ 0 5 ® ¥ < - o+ w5 0
< < £ £ ® ® o2 o c
£ £ £ € e = =
o o = = o (e}
Z Z o © x o<
=2 =2
Subsample 2: Low volatility period
0.800
0.600
0.400
0.200 mSE
0.000 T T T T T T T T T T T 1 .HRm=_1
(%] wv wv
z z &z =z 2 =2 55 &5 &5 & &8 L& & % QLIKE
L L L Ly 4 E x E X £ & X X S5 T O
O m @@ nm £ £ <« < <« < <« <« < < & S 3
E & & 2 r O O o 0 - @0 o 3 & 3
< < £ = T - 5 @ < & +» o < 2 T %
< < E E ® ® T 2 £ £
£ £ £
S 5 E E 3 o
=2 =2 o [=} o o
=2 =2
Subsample 3: High volatility period
0.600
0.400
0.200 W SE
0.000 -——————+—=a,  ®HRm=1
wv wv wv
T z zz2z2z & 555555 T L& & % QLIKE
L L L Ly 4 x & E £ £ £ £ 5 T O
9 nm o n £ £ < < < < < < < < 8 3 3
r & 2 2 T T O F O a2 0 = O o S g 3
< < & 05 ® 2 I - o+ ow < 5 L %
<< < £ E ® © Rt a7 | = =
S £ g & e = =
o o o o o (e}
=z =2 o o o o
= =2

This figure shows the weights of individual forecasts of the FFC approach for the various subsamples of the GARCH
diffusion DGP with multiple breaks. The sample size is 3000 observations and the weights are based on 250

simulations. The out-of-sample evaluation period resembles a low volatility period.
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Figure 1.5: Weights of individual volatility forecasts of the FFC approach when the DGP is a
GARCH diffusion process with multiple breaks and the out-of-sample evaluation period resembles

a low volatility period (2)
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This figure shows the weights of individual forecasts of the FFC approach for the various subsamples of the GARCH
diffusion DGP with multiple breaks. The sample size is 3000 observations and the weights are based on 250

simulations. The out-of-sample evaluation period resembles a low volatility period.
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Figure 1.6: Weights of individual volatility forecasts of the FFC approach when the DGP is a
GARCH diffusion process with multiple breaks and the out-of-sample evaluation period resembles

a crisis period (1)
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This figure shows the weights of individual forecasts of the FFC approach for the various subsamples of the GARCH
diffusion DGP with multiple breaks. The sample size is 3000 observations and the weights are based on 250

simulations. The out-of-sample evaluation period resembles a crisis period.
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Figure 1.7: Weights of individual volatility forecasts of the FFC approach when the DGP is a
GARCH diffusion process with multiple breaks and the out-of-sample evaluation period resembles

a crisis period (2)
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This figure shows the weights of individual forecasts of the FFC approach for the various subsamples of the GARCH
diffusion DGP with multiple breaks. The sample size is 3000 observations and the weights are based on 250

simulations. The out-of-sample evaluation period resembles a crisis period.
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Figure 1.8: Weights of combination volatility forecasts when the DGP is a GARCH diffusion process
without a break but the FFC approach detects a break
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This figure shows the weights of combination weights of the FFC approach for the pre- and post-break samples. The
DGP is a GARCH diffusion model without a break. We assume that there is a misspecification and the FFC approach
detects a break in the middle of the sample. There are two cases, in the top panel the DGP resembles a low volatility
period whereas in the bottom panel the DGP resembles a crisis period. The sample size is 3000 observations and the

weights are based on 250 simulations.
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Figure 1.9: Weights of combination volatility forecasts when the DGP is GARCH diffusion process
with multiple breaks

Out-of-sample period: Low volatility period
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This figure shows the weights of the combination forecasts of the FFC approach for the five subsamples. The DGP
is a GARCH diffusion model with multiple breaks. There are two cases, in the top panel the out-of-sample period
resembles a low volatility period whereas in the bottom panel the out-of-sample period resembles a crisis period.
Subsamples 1 and 5 resemble crisis periods, subsamples 2 and 4 low volatility periods and subsample 2 a high

volatility period. The sample size is 3000 observations and the weights are based on 250 simulations.
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Figure 1.10: Weights of individual volatility models for the S%P 500 Index based on the Square

Error loss function
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This figure shows the weights of each individual model for each subsample of the Flexible Forecast Combination
method based on the Square Error loss function. The estimation period of the S&P 500 Index covers the period from
February 3, 1986 to January 4, 2010.
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Figure 1.11:

Weights of individual volatility

Homogeneous Robust loss function for b=-1
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This figure shows the weights of each individual model for each subsample of the Flexible Forecast Combination

method based on the Homogeneous Robust loss function for b=-1. The estimation period of the S&P 500 Index

covers the period from February 3, 1986 to January 4, 2010.
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Figure 1.12: Weights of individual volatility models for the S%P 500 Index based on the QLIKE

loss function
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This figure shows the weights of each individual model for each subsample of the Flexible Forecast Combination
method based on the QLIKE loss function. The estimation period of the S&P 500 Index covers the period from
February 3, 1986 to January 4, 2010.
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Figure 1.13: Weights of forecast combinations when the out-of-sample period of the S&P 500 Index
spans January 4, 2008 to January 2, 2009

SE loss function Homogeneous Robust for b=-1 loss function

2 3 4 2 3 4
QLIKE loss function Subsamples
1 February 3, 1986 to April 12, 1991
1
08 1 2 April 15, 1991 to June 23, 1997
0.8 B
07 3 June 24, 1997 to April 10, 2003

4 April 11, 2003 to January 3, 2008

This figure shows the weights of forecast combinations for each subsample of the S&P 500 Index when the out-of-
sample period spans January 4, 2008 to January 2, 2009. The estimation period spans February 3, 1986 to January

3, 2008. Each forecast combination uses information from a particular subsample.
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Figure 1.14: Weights of forecast combinations when the out-of-sample period of the S&P 500 spans
January 3, 2009 to January 4, 2010

SE loss function Homogeneous Robust for b=-1 loss function

1 1
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ol | 3 February 7, 1992 to February 7, 1996
0.6 ] 4 February 8, 1996 to July 20, 1998

5 July 21, 1998 to April 10, 2003

6 April 11, 2003 to January 2, 2009

This figure shows the weights of forecast combinations for each subsample of the S&P 500 Index when the out-of-
sample period spans January 3, 2009 to January 4, 2010. The estimation period spans February 3, 1986 to January

2, 2009. Each forecast combination uses information from a particular subsample.
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Figure 1.15: Weights of forecast combinations when the out-of-sample period of the S&P 500 spans
January 5, 2010 to June 30, 2010

SE loss function Homogeneous Robust for b=-1 loss function
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09} 1 2 April 26, 1988 to February 6, 1992
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0.6 ] 4 February 8, 1996 to July 20, 1998

5 July 21, 1998 to April 10, 2003
6 April 11, 2003 to January 3, 2008

7 January 4, 2008 to January 4, 2010

This figure shows the weights of forecast combinations for each subsample of the S&P 500 Index when the out-of-
sample period spans January 5, 2010 to June 30, 2010. The estimation period spans February 3, 1986 to January 4,

2010. Each forecast combination uses information from a particular subsample.
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Table 15: Comparison of alternative volatility forecasts based on the full and the split sample

approaches using the CPA test

No break Break Break Break Break
leverage leverage constant constant

Size=2 Size =3 Size =2 Size =3

AR(1) - RV 0.7170 0.6890 0.6840 0.8530 0.8250
(0.4677) (0.4658) (0.4653) (0.6151) (0.6599)

AR(5) - RV 0.3990 0.3770 0.3990 0.7280 0.7280
(0.4153) (0.4170) (0.4237) (0.5666) (0.5616)

AR(10) - RV 0.3840 0.3980 0.4010 0.7120 0.7220
(0.4112) (0.4094) (0.4150) (0.5658) (0.5617)

AR(15) - RV 0.3940 0.4060 0.4030 0.7060 0.7220
(0.4110) (0.4126) (0.4182) (0.5645) (0.5619)

HAR - RV 0.4730 0.4520 0.4590 0.6390 0.5220
(0.4561) (0.4589) (0.4589) (0.5434) (0.4969)

LHAR - RV 0.3650 0.2150 0.1930 0.5320 0.4390
(0.4172) (0.2947) (0.3430) (0.6529) (0.6500)

Normal GARCH 0.4450 0.4110 0.4230 0.4690 0.3230
(0.4616) (0.4634) (0.4624) (0.4966) (0.5330)

Normal TARCH 0.4300 0.4670 0.5150 0.4840 0.3590
(0.4517)  (0.5354) (0.5848) (0.5151) (0.5590)

Normal EGARCH 0.4300 0.4810 0.6050 0.5810 0.4330
(0.4488) (0.5424) (0.6240) (0.4737) (0.5099)

Normal APARCH 0.4220 0.4550 0.5660 0.4790 0.3680
(0.4391) (0.5485) (0.6263) (0.4931) (0.5349)

t GARCH 0.4490 0.4140 0.4300 0.4630 0.3180
(0.4608) (0.4639) (0.4628) (0.4962) (0.5320)

t TARCH 0.4350 0.4730 0.5060 0.4810 0.3520
(0.4524) (0.5347) (0.5820) (0.5149) (0.5587)

t EGARCH 0.4320 0.4750 0.6040 0.5680 0.4350
(0.4497) (0.5406) (0.6202) (0.4729) (0.5092)

t APARCH 0.4250 0.4480 0.5580 0.4820 0.3690
(0.4393) (0.5481) (0.6245) (0.4930) (0.5353)

RiskMetrics 0.0030 0.0040 0.0050 0.0030 0.0030
(0.4751) (0.4820) (0.4777) (0.5168) (0.5195)

This table shows the percentage of rejections of the CPA test based on the Square Error (SE) loss function of the null
hypothesis of equal predictive ability between the volatility forecasts based on the full and the split sample approaches
for 5% confidence level. The entries in parenthesis are the percentage of cases that the split sample outperforms the
full sample approach. Entries in bold are the cases that the percentage of rejections is higher than 50% and the cases

that the split sample outperforms on average the full sample.
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Table 22: Comparison of forecast combination methods with individual forecasts using the CPA

test based on the Square Error loss function for the low volatility subsample of the S&P 500 Index

A. Square Error loss function

Method Mean Median Geometric FC-RS FFC SE
Mean
AR(1) - RV 0.183 0.225 0.087* 0.003* 0.000*
(0.896) (0.880) (0.948) (0.989) (0.984)
AR(5) - RV 0.199 0.166 0.239 0.742 0.134
(0.407) (0.235) (0.627) (0.867) (0.942)
AR(10) - RV 0.075 0.068 0.240 0.670 0.312
(0.313) (0.213) (0.508) (0.741) (0.929)
AR(15) - RV 0.062 0.055 0.205 0.663 0.339
(0.297) (0.204) (0.473) (0.697) (0.928)
HAR - RV 0.016 0.031 0.037 0.042 0.057*
(0.181) (0.146) (0.234) (0.076) (0.894)
LHAR - RV 0.012 0.005 0.034 0.070° 0.184
(0.000) (0.013) (0.020) (0.006) (0.014)
Normal GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.966) (0.957) (0.959) (0.871) (0.894)
Normal TARCH 0.001" 0.003" 0.001" 0.003" 0.002"
(0.925) (0.930) (0.937) (0.857) (0.907)
Normal EGARCH 0.004" 0.005" 0.001"* 0.006" 0.002*
(0.849) (0.835) (0.890) (0.894) (0.938)
Normal APARCH 0.000* 0.001* 0.000* 0.005* 0.005*
(0.970) (0.966) (0.967) (0.879) (0.939)
t GARCH 0.000" 0.000" 0.000" 0.003* 0.000"
(0.921) (0.938) (0.924) (0.867) (0.889)
t TARCH 0.004" 0.005" 0.003" 0.009" 0.007"*
(0.956) (0.950) (0.956) (0.905) (0.933)
t EGARCH 0.002* 0.002" 0.001" 0.007* 0.004"
(0.868) (0.862) (0.911) (0.901) (0.938)
t APARCH 0.005* 0.008* 0.004" 0.009* 0.008*
(0.952) (0.958) (0.958) (0.904) (0.932)
RiskMetrics 0.000" 0.000" 0.000" 0.008" 0.005"
(0.867) (0.850) (0.893) (0.880) (0.901)
Rolling 30 days 0.000" 0.000" 0.000" 0.001"* 0.000"
(0.899) (0.889) (0.924) (0.891) (0.905)
Rolling 60 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.932) (0.924) (0.940) (0.904) (0.917)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the low volatility subsample of
the S&P 500 Index (January 2, 2004 to January 3, 2008). We consider three different loss functions for the CPA
test, namely the Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the
percentage of cases that the column method outperforms the row method in forecasting volatility. Entries in bold
correspond to the cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column

method significantly outperforms (is outperformed) by the row method in forecasting volatility.
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Table 23: Comparison of forecast combination methods with individual forecasts using the CPA
test based on the Homogeneous Robust loss function for b = —1 for the low volatility subsample of
the S&P 500 Index

B. Homogeneous Robust loss function for b=-1

Method Mean Median Geometric FC-RS FFC Robust
Mean b=-1
AR(1) - RV 0.192 0.224 0.075" 0.000* 0.000*
(0.672) (0.628) (0.842) (0.909) (1.000)
AR(5) - RV 0.026 0.011 0.148 0.743 0.001*
(0.249) (0.208) (0.357) (0.935) (0.985)
AR(10) - RV 0.001 0.001 0.009 0.849 0.007*
(0.225) (0.189) (0.282) (0.673) (0.970)
AR(15) - RV 0.001 0.001 0.008" 0.816 0.010"
(0.236) (0.196) (0.287) (0.621) (0.964)
HAR - RV 0.000° 0.000° 0.001 0.030° 0.000"
(0.182) (0.173) (0.200) (0.022) (0.992)
LHAR - RV 0.000° 0.000° 0.000° 0.002 0.096"
(0.024) (0.046) (0.000) (0.006) (0.100)
Normal GARCH 0.000" 0.000" 0.000" 0.000* 0.000"
(0.955) (0.947) (0.954) (0.861) (0.905)
Normal TARCH 0.000" 0.000" 0.000" 0.000* 0.000"
(0.880) (0.909) (0.905) (0.831) (0.865)
Normal EGARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.759) (0.764) (0.804) (0.827) (0.850)
Normal APARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.899) (0.927) (0.932) (0.852) (0.904)
t GARCH 0.000* 0.000* 0.000" 0.000" 0.000*
(0.922) (0.937) (0.923) (0.853) (0.889)
t TARCH 0.000" 0.000" 0.000" 0.000" 0.000*
(0.908) (0.920) (0.919) (0.852) (0.879)
t EGARCH 0.000" 0.000" 0.000" 0.000" 0.000*
(0.728) (0.737) (0.785) (0.828) (0.861)
t APARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.903) (0.929) (0.929) (0.854) (0.894)
RiskMetrics 0.000" 0.000" 0.000" 0.000" 0.000"
(0.787) (0.758) (0.836) (0.842) (0.875)
Rolling 30 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.771) (0.785) (0.835) (0.859) (0.881)
Rolling 60 days 0.000" 0.000" 0.000" 0.000* 0.000*
(0.877) (0.874) (0.906) (0.873) (0.908)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the low volatility subsample of
the S&P 500 Index (January 2, 2004 to January 3, 2008). We consider three different loss functions for the CPA
test, namely the Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the
percentage of cases that the column method outperforms the row method in forecasting volatility. Entries in bold
correspond to the cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column

method significantly outperforms (is outperformed) by the row method in forecasting volatility.
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Table 24: Comparison of forecast combination methods with individual forecasts using the CPA

test based on the QLIKE loss function for the low volatility subsample of the S&P 500 Index

C. QLIKE loss function

Method Mean Median Geometric FC-RS FFC QLIKE
Mean
AR(1) - RV 0.304 0.258 0.184 0.000* 0.000*
(0.507) (0.487) (0.653) (0.840) (0.990)
AR(5) - RV 0.000° 0.000° 0.002 0.344 0.000"
(0.233) (0.206) (0.296) (0.638) (0.980)
AR(10) - RV 0.000° 0.000° 0.000° 0.695 0.000"
(0.211) (0.190) (0.254) (0.507) (0.871)
AR(15) - RV 0.000° 0.000° 0.000° 0.730 0.000"
(0.223) (0.197) (0.259) (0.530) (0.934)
HAR - RV 0.000° 0.000° 0.000° 0.028 0.000"
(0.167) (0.160) (0.186) (0.064) (0.991)
LHAR - RV 0.000° 0.000° 0.000° 0.000° 0.004"
(0.076) (0.085) (0.058) (0.000) (0.996)
Normal GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.952) (0.946) (0.954) (0.880) (0.952)
Normal TARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.866) (0.909) (0.899) (0.827) (0.904)
Normal EGARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.733) (0.744) (0.797) (0.838) (0.899)
Normal APARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.857) (0.921) (0.895) (0.849) (0.930)
t GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.950) (0.943) (0.942) (0.874) (0.939)
t TARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.875) (0.914) (0.904) (0.837) (0.906)
t EGARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.707) (0.724) (0.758) (0.832) (0.899)
t APARCH 0.000* 0.000* 0.000" 0.000" 0.000*
(0.861) (0.920) (0.898) (0.841) (0.923)
RiskMetrics 0.000" 0.000" 0.000" 0.000" 0.000"
(0.841) (0.789) (0.866) (0.816) (0.897)
Rolling 30 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.727) (0.725) (0.768) (0.834) (0.897)
Rolling 60 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.811) (0.802) (0.843) (0.860) (0.930)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the low volatility subsample of
the S&P 500 Index (January 2, 2004 to January 3, 2008). We consider three different loss functions for the CPA
test, namely the Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the
percentage of cases that the column method outperforms the row method in forecasting volatility. Entries in bold
correspond to the cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column

method significantly outperforms (is outperformed) by the row method in forecasting volatility.
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Table 25: Comparison of forecast combination methods with individual forecasts using the CPA

test based on the Square Error loss function for the high volatility subsample of the S&P 500 Index

A. Square loss function

Method Mean Median Geometric FC-RS FFC SE
Mean
AR(1) - RV 0.111 0.067 0.153 0.916 0.123
(0.733) (0.088) (0.845) (0.062) (0.976)
AR(5) - RV 0.117 0.126 0.359 0.957 0.098"
(0.682) (0.094) (0.898) (0.050) (0.987)
AR(10) - RV 0.118 0.092 0.282 0.827 0.029"
(0.762) (0.155) (0.848) (0.944) (0.984)
AR(15) - RV 0.149 0.102 0.335 0.887 0.032"*
(0.768) (0.147) (0.856) (0.957) (0.986)
HAR - RV 0.114 0.114 0.253 0.230 0.441
(0.061) (0.051) (0.524) (0.026) (0.978)
LHAR - RV 0.620 0.536 0.544 0.519 0.315
(0.976) (0.976) (0.978) (0.981) (0.979)
Normal GARCH 0.003" 0.001"* 0.000" 0.072" 0.001"*
(0.984) (0.982) (0.974) (0.949) (0.966)
Normal TARCH 0.007" 0.088" 0.042* 0.053" 0.112
(0.957) (0.952) (0.957) (0.931) (0.952)
Normal EGARCH 0.063" 0.057 0.074 0.186 0.575
(0.133) (0.081) (0.091) (0.099) (0.208)
Normal APARCH 0.068" 0.204 0.074" 0.100 0.120
(0.942) (0.970) (0.968) (0.936) (0.960)
t GARCH 0.002* 0.000" 0.000" 0.075" 0.001*
(0.986) (0.979) (0.970) (0.947) (0.965)
t TARCH 0.008" 0.025"* 0.013" 0.108 0.068"
(0.965) (0.968) (0.970) (0.946) (0.962)
t EGARCH 0.060 0.097 0.579 0.120 0.175
(0.236) (0.075) (0.867) (0.155) (0.930)
t APARCH 0.013* 0.027* 0.014" 0.149 0.061"
(0.962) (0.976) (0.971) (0.954) (0.965)
RiskMetrics 0.002* 0.001* 0.000" 0.045" 0.001*
(0.990) (0.986) (0.978) (0.946) (0.971)
Rolling 30 days 0.003" 0.002* 0.001"* 0.042* 0.002*
(0.987) (0.968) (0.973) (0.954) (0.978)
Rolling 60 days 0.006" 0.007" 0.001" 0.025" 0.001"
(0.978) (0.973) (0.973) (0.955) (0.986)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the high volatility subsample of
the S&P 500 Index (January 4, 2008 to June 30, 2010). We consider three different loss functions for the CPA test,
namely the Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage
of cases that the column method outperforms the row method in forecasting volatility. Entries in bold correspond
to the cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method

significantly outperforms (is outperformed) by the row method in forecasting volatility.
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Table 26: Comparison of forecast combination methods with individual forecasts using the CPA
test based on the Homogeneous Robust loss function for b = —1 for the high volatility subsample
of the S&P 500 Index

B. Homogeneous Robust loss function for b=-1

Method Mean Median Geometric FC-RS FFC Robust
Mean b=-1
AR(1) - RV 0.061" 0.034 0.140 0.687 0.000*
(0.581) (0.487) (0.744) (0.104) (0.965)
AR(5) - RV 0.021 0.035 0.065 0.134 0.000"
(0.187) (0.152) (0.471) (0.062) (0.971)
AR(10) - RV 0.006 0.015 0.016 0.257 0.001"*
(0.225) (0.190) (0.449) (0.062) (0.978)
AR(15) - RV 0.007 0.015 0.025 0.267 0.001"
(0.220) (0.184) (0.457) (0.061) (0.979)
HAR - RV 0.075 0.057 0.169 0.008 0.115
(0.093) (0.096) (0.131) (0.022) (0.971)
LHAR - RV 0.021 0.008" 0.076 0.003" 0.460
(0.157) (0.139) (0.366) (0.129) (0.898)
Normal GARCH 0.000" 0.000" 0.000" 0.006" 0.000"
(0.986) (0.981) (0.962) (0.877) (0.955)
Normal TARCH 0.000" 0.006" 0.000" 0.017* 0.000*
(0.890) (0.930) (0.915) (0.786) (0.920)
Normal EGARCH 0.013" 0.045 0.004 0.130 0.027*
(0.390) (0.265) (0.497) (0.286) (0.939)
Normal APARCH 0.014" 0.046" 0.002* 0.031" 0.001"*
(0.819) (0.917) (0.922) (0.770) (0.925)
t GARCH 0.000* 0.000* 0.000" 0.005* 0.000*
(0.984) (0.973) (0.954) (0.879) (0.952)
t TARCH 0.000" 0.001* 0.000" 0.020" 0.000"
(0.922) (0.950) (0.942) (0.872) (0.927)
t EGARCH 0.008" 0.025 0.025" 0.087 0.003"
(0.538) (0.337) (0.821) (0.404) (0.931)
t APARCH 0.000" 0.001"* 0.000" 0.039" 0.000"
(0.907) (0.946) (0.941) (0.885) (0.927)
RiskMetrics 0.000" 0.000" 0.000" 0.005" 0.000"
(0.987) (0.974) (0.966) (0.871) (0.958)
Rolling 30 days 0.000" 0.000" 0.000" 0.013" 0.000"
(0.971) (0.954) (0.958) (0.890) (0.971)
Rolling 60 days 0.000" 0.000" 0.000" 0.006" 0.000*
(0.973) (0.947) (0.966) (0.904) (0.982)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the high volatility subsample of
the S&P 500 Index (January 4, 2008 to June 30, 2010). We consider three different loss functions for the CPA test,
namely the Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage
of cases that the column method outperforms the row method in forecasting volatility. Entries in bold correspond
to the cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method

significantly outperforms (is outperformed) by the row method in forecasting volatility.
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Table 27: Comparison of forecast combination methods with individual forecasts using the CPA

test based on the QLIKE loss function for the high volatility subsample of the S&P 500 Index

C. QLIKE loss function

Method Mean Median Geometric FC-RS FFC QLIKE
Mean
AR(1) - RV 0.001"* 0.001* 0.001"* 0.618 0.000"
(0.649) (0.617) (0.776) (0.989) (0.989)
AR(5) - RV 0.003" 0.000° 0.052 0.006 0.000"
(0.228) (0.212) (0.316) (0.118) (0.989)
AR(10) - RV 0.002 0.000° 0.041 0.003" 0.000"
(0.230) (0.208) (0.304) (0.128) (0.946)
AR(15) - RV 0.003" 0.000° 0.047 0.003" 0.000"
(0.230) (0.203) (0.297) (0.139) (0.944)
HAR - RV 0.001 0.000° 0.011 0.000° 0.028"
(0.123) (0.139) (0.137) (0.010) (0.883)
LHAR - RV 0.000° 0.000° 0.002 0.000° 0.000"
(0.097) (0.112) (0.085) (0.005) (0.944)
Normal GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.968) (0.971) (0.958) (0.794) (0.960)
Normal TARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.920) (0.947) (0.944) (0.661) (0.946)
Normal EGARCH 0.000° 0.000° 0.000" 0.000° 0.000"
(0.447) (0.318) (0.695) (0.466) (0.922)
Normal APARCH 0.000" 0.002* 0.000" 0.000" 0.000"
(0.751) (0.808) (0.879) (0.578) (0.931)
t GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.966) (0.971) (0.952) (0.802) (0.960)
t TARCH 0.000" 0.000" 0.000" 0.001"* 0.000"
(0.935) (0.954) (0.942) (0.746) (0.949)
t EGARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.633) (0.559) (0.808) (0.538) (0.936)
t APARCH 0.000* 0.000* 0.000" 0.000" 0.000*
(0.864) (0.899) (0.906) (0.704) (0.942)
RiskMetrics 0.000" 0.000" 0.000" 0.000" 0.000"
(0.930) (0.903) (0.915) (0.784) (0.946)
Rolling 30 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.907) (0.863) (0.909) (0.770) (0.938)
Rolling 60 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.935) (0.909) (0.936) (0.831) (0.963)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the high volatility subsample of
the S&P 500 Index (January 4, 2008 to June 30, 2010). We consider three different loss functions for the CPA test,
namely the Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage
of cases that the column method outperforms the row method in forecasting volatility. Entries in bold correspond
to the cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method

significantly outperforms (is outperformed) by the row method in forecasting volatility.
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Table 28: Comparison of forecast combination methods with individual forecasts using the CPA

test based on the Square Error loss function for the full sample of the S&P 500 Index

A. Square Error loss function

Method Mean Median Geometric FC-RS FFC SE
Mean
AR(1) - RV 0.135 0.091 0.178 0.917 0.136
(0.843) (0.068) (0.916) (0.052) (0.986)
AR(5) - RV 0.135 0.152 0.361 0.954 0.107
(0.802) (0.062) (0.932) (0.029) (0.989)
AR(10) - RV 0.135 0.116 0.307 0.820 0.042"
(0.846) (0.099) (0.918) (0.968) (0.987)
AR(15) - RV 0.164 0.128 0.360 0.884 0.046"
(0.854) (0.096) (0.919) (0.974) (0.988)
HAR - RV 0.133 0.143 0.263 0.235 0.452
(0.043) (0.040) (0.702) (0.015) (0.986)
LHAR - RV 0.621 0.537 0.554 0.523 0.332
(0.990) (0.987) (0.990) (0.991) (0.991)
Normal GARCH 0.007" 0.002" 0.001" 0.092" 0.003"
(0.992) (0.991) (0.985) (0.970) (0.984)
Normal TARCH 0.011" 0.109 0.053" 0.075" 0.141
(0.958) (0.972) (0.966) (0.951) (0.967)
Normal EGARCH 0.087 0.087 0.086 0.207 0.571
(0.100) (0.062) (0.073) (0.069) (0.147)
Normal APARCH 0.086" 0.236 0.090" 0.122 0.148
(0.954) (0.979) (0.977) (0.958) (0.969)
t GARCH 0.005" 0.001* 0.000" 0.093" 0.001*
(0.990) (0.990) (0.985) (0.966) (0.982)
t TARCH 0.013" 0.034" 0.019* 0.137 0.087"
(0.972) (0.982) (0.979) (0.966) (0.969)
t EGARCH 0.072 0.126 0.591 0.133 0.187
(0.160) (0.061) (0.938) (0.108) (0.961)
t APARCH 0.021" 0.039* 0.022* 0.175 0.080"
(0.974) (0.982) (0.982) (0.972) (0.972)
RiskMetrics 0.004" 0.002* 0.001"* 0.063" 0.003"
(0.991) (0.991) (0.985) (0.965) (0.984)
Rolling 30 days 0.006" 0.004" 0.002* 0.057* 0.004"
(0.987) (0.978) (0.982) (0.971) (0.986)
Rolling 60 days 0.010" 0.012" 0.003" 0.038" 0.004"
(0.986) (0.976) (0.981) (0.974) (0.991)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the full sample of the S&P 500
Index (January 2, 2004 to June 30, 2010). We consider three different loss functions for the CPA test, namely the
Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage of cases
that the column method outperforms the row method in forecasting volatility. Entries in bold correspond to the
cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method significantly

outperforms (is outperformed) by the row method in forecasting volatility.
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Table 29: Comparison of forecast combination methods with individual forecasts using the CPA
test based on the QLIKE loss function for the full sample of the S&P 500 Index

B. Homogeneous Robust loss function for b=-1

Method Mean Median Geometric FC-RS FFC Robust
Mean b=-1
AR(1) - RV 0.082* 0.050* 0.146 0.917 0.000*
(0.673) (0.524) (0.821) (0.515) (0.961)
AR(5) - RV 0.029 0.048 0.069 0.159 0.000"
(0.185) (0.142) (0.480) (0.075) (0.960)
AR(10) - RV 0.010° 0.023" 0.020 0.257 0.001"*
(0.222) (0.171) (0.468) (0.051) (0.973)
AR(15) - RV 0.011 0.022 0.029 0.267 0.001"*
(0.222) (0.166) (0.470) (0.050) (0.976)
HAR - RV 0.075 0.058 0.151 0.009 0.087*
(0.080) (0.091) (0.119) (0.027) (0.973)
LHAR - RV 0.010° 0.004 0.040 0.004 0.501
(0.125) (0.125) (0.256) (0.090) (0.894)
Normal GARCH 0.000" 0.000" 0.000" 0.006" 0.000"
(0.981) (0.975) (0.960) (0.905) (0.958)
Normal TARCH 0.000" 0.004" 0.000" 0.021"* 0.000"
(0.878) (0.921) (0.913) (0.830) (0.914)
Normal EGARCH 0.007 0.056 0.001" 0.115 0.003"
(0.440) (0.315) (0.645) (0.312) (0.953)
Normal APARCH 0.003" 0.033" 0.000" 0.029* 0.000"
(0.845) (0.925) (0.930) (0.830) (0.930)
t GARCH 0.000" 0.000" 0.000" 0.005" 0.000"
(0.981) (0.969) (0.954) (0.907) (0.951)
t TARCH 0.000" 0.000" 0.000" 0.025" 0.000"
(0.918) (0.950) (0.944) (0.897) (0.920)
t EGARCH 0.009" 0.030 0.016" 0.059 0.001"*
(0.618) (0.379) (0.868) (0.433) (0.943
t APARCH 0.000* 0.000* 0.000" 0.044" 0.000*
(0.903) (0.948) (0.944) (0.911) (0.924)
RiskMetrics 0.000" 0.000" 0.000" 0.006" 0.000"
(0.979) (0.966) (0.950) (0.902) (0.950)
Rolling 30 days 0.000" 0.000" 0.000" 0.011"* 0.000"
(0.968) (0.952) (0.959) (0.913) (0.962)
Rolling 60 days 0.000" 0.000" 0.000" 0.004" 0.000"
(0.972) (0.963) (0.966) (0.919) (0.974)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the full sample of the S&P 500
Index (January 2, 2004 to June 30, 2010). We consider three different loss functions for the CPA test, namely the
Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage of cases
that the column method outperforms the row method in forecasting volatility. Entries in bold correspond to the
cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method significantly

outperforms (is outperformed) by the row method in forecasting volatility.
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Table 30: Comparison of forecast combination methods with individual forecasts using the CPA
test based on the QLIKE loss function for the full sample of the S&P 500 Index

C. QLIKE loss function

Method Mean Median Geometric FC-RS FFC QLIKE
Mean
AR(1) - RV 0.004" 0.004" 0.001"* 0.006" 0.000"
(0.582) (0.561) (0.725) (0.950) (0.997)
AR(5) - RV 0.000° 0.000° 0.001 0.098" 0.000"
(0.234) (0.207) (0.305) (0.212) (0.993)
AR(10) - RV 0.000° 0.000° 0.002 0.022 0.000"
(0.233) (0.207) (0.283) (0.220) (0.958)
AR(15) - RV 0.000° 0.000° 0.002 0.021° 0.000"
(0.234) (0.208) (0.287) (0.233) (0.949)
HAR - RV 0.000° 0.000° 0.000° 0.000° 0.000"
(0.152) (0.157) (0.166) (0.045) (0.900)
LHAR - RV 0.000° 0.000° 0.000° 0.000° 0.000*
(0.102) (0.114) (0.084) (0.011) (0.993)
Normal GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.957) (0.957) (0.953) (0.849) (0.946)
Normal TARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.891) (0.927) (0.916) (0.782) (0.919)
Normal EGARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.647) (0.620) (0.770) (0.706) (0.910)
Normal APARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.825) (0.890) (0.889) (0.771) (0.924)
t GARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.955) (0.954) (0.946) (0.851) (0.945)
t TARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.903) (0.933) (0.921) (0.813) (0.920)
t EGARCH 0.000" 0.000" 0.000" 0.000" 0.000"
(0.693) (0.681) (0.794) (0.729) (0.912)
t APARCH 0.000* 0.000* 0.000" 0.000" 0.000*
(0.868) (0.910) (0.905) (0.804) (0.923)
RiskMetrics 0.000" 0.000" 0.000" 0.000" 0.000"
(0.870) (0.834) (0.885) (0.812) (0.914)
Rolling 30 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.823) (0.790) (0.838) (0.813) (0.910)
Rolling 60 days 0.000" 0.000" 0.000" 0.000" 0.000"
(0.897) (0.884) (0.910) (0.849) (0.938)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations with individual models using the full sample of the S&P 500
Index (January 2, 2004 to June 30, 2010). We consider three different loss functions for the CPA test, namely the
Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage of cases
that the column method outperforms the row method in forecasting volatility. Entries in bold correspond to the
cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method significantly

outperforms (is outperformed) by the row method in forecasting volatility.
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Table 31: Comparison of volatility predictions given by forecast combination methods using the

CPA test for the low volatility subsample of the S&P 500 Index

A. Square Error loss function

Method Mean Median Geometric FC-RS FFC SE
Mean
Mean . 0.026° 0.004" 0.014"% 0.012*
) (0.182) (0.918) (0.711) (0.843)
Median 0.026" . 0.004" 0.020" 0.026"
(0.818) ) (0.893) (0.768) (0.872)
Geometric Mean 0.004° 0.004° . 0.023" 0.020"
(0.082) (0.107) . (0.587) (0.802)
FC-RS 0.014° 0.020° 0.023° . 0.014"
(0.289) (0.232) (0.413) . (0.934)
FFC SE 0.012° 0.026° 0.020° 0.014
(0.157) (0.128) (0.198) (0.066)
B. Homogeneous Robust loss function for b=-1
Method Mean Median Geometric FC-RS FFC Robust
Mean b=-1
Mean . 0.000° 0.000" 0.000" 0.000*
. (0.321) (0.900) (0.741) (0.844)
Median 0.000" . 0.000" 0.001" 0.000*
(0.679) ) (0.823) (0.758) (0.846)
Geometric Mean 0.000° 0.000° . 0.001" 0.000"
(0.100) (0.177) ) (0.694) (0.840)
FC-RS 0.000° 0.001° 0.001° . 0.001*
(0.259) (0.242) (0.306) . (0.910)
FFC Robust b=-1 0.000° 0.000° 0.000° 0.001
(0.156) (0.154) (0.160) (0.090)
C. QLIKE loss function
Method Mean Median Geometric FC-RS FFC QLIKE
Mean
Mean . 0.000° 0.000" 0.000" 0.000"
. (0.356) (0.896) (0.764) (0.925)
Median 0.000" . 0.000" 0.000" 0.000"
(0.644) ) (0.807) (0.781) (0.913)
Geometric Mean 0.000° 0.000° . 0.000" 0.000"
(0.104) (0.193) ) (0.738) (0.940)
FC-RS 0.000° 0.000° 0.000° . 0.000*
(0.236) (0.219) (0.262) ) (0.927)
FFC QLIKE 0.000° 0.000° 0.000° 0.000°
(0.075) (0.087) (0.060) (0.073)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations using the low volatility subsample of the S&P 500 Index
(January 2, 2004 to January 3, 2008). We consider three different loss functions for the CPA test, namely the
Square Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage of cases
that the column method outperforms the row method in forecasting volatility. Entries in bold correspond to the
cases that the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method significantly

outperforms (is outperformed) by the row method in forecasting volatility.
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Table 32: Comparison of volatility predictions given by forecast combination methods using the
CPA test for the high volatility subsample of the S&P 500 Index

A. Square Error loss function

Method Mean Median Geometric FC-RS FFC SE
Mean
Mean . 0.104 0.061" 0.111 0.087"
. (0.027) (0.939) (0.227) (0.949)
Median 0.104 . 0.007" 0.061" 0.164
(0.973) . (0.954) (0.885) (0.955)
Geometric Mean 0.061° 0.007° . 0.157 0.186
(0.061) (0.046) . (0.120) (0.950)
FC-RS 0.111 0.061" 0.157 . 0.026"
(0.773) (0.115) (0.880) . (0.986)
FFC SE 0.087" 0.164 0.186 0.026°
(0.051) (0.045) (0.050) (0.014)
B. Homogeneous Robust loss function for b=-1
Method Mean Median Geometric FC-RS FFC Robust
Mean b=-1
Mean . 0.081" 0.001" 0.084" 0.004"
. (0.105) (0.968) (0.403) (0.915)
Median 0.081" . 0.000" 0.037" 0.000"
(0.895) . (0.887) (0.545) (0.933)
Geometric Mean 0.001° 0.000° . 0.137 0.000"
(0.032) (0.113) . (0.204) (0.955)
FC-RS 0.084" 0.037° 0.137 . 0.000*
(0.597) (0.455) (0.796) . (0.979)
FFC Robust b=-1 0.004" 0.000° 0.000° 0.000"
(0.085) (0.067) (0.045) (0.021)
C. QLIKE loss function
Method Mean Median Geometric FC-RS FFC QLIKE
Mean
Mean . 0.000° 0.000" 0.000 0.000"
. (0.284) (0.903) (0.500) (0.936)
Median 0.000" . 0.000" 0.000" 0.000"
(0.716) . (0.853) (0.526) (0.925)
Geometric Mean 0.000° 0.000° . 0.000" 0.000"
(0.097) (0.147) . (0.345) (0.965)
FC-RS 0.000 0.000° 0.000" . 0.000"
(0.500) (0.474) (0.655) . (0.995)
FFC QLIKE 0.000° 0.000° 0.000° 0.000°
(0.064) (0.075) (0.035) (0.005)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations using the high volatility subsample of the S&P 500 Index
(January 4, 2008 to June 30, 2010). We consider three different loss functions for the CPA test, namely the Square
Error, Homogeneous Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage of cases that the
column method outperforms the row method in forecasting volatility. Entries in bold correspond to the cases that
the null hypothesis of the CPA test is rejected. The sign + (-) indicates that column method significantly

outperforms (is outperformed) by the row method in forecasting volatility.
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Table 33: Comparison of volatility predictions given by forecast combination methods using the
CPA test for the full sample of the S&P 500 Index

A. Square Error loss function

Method Mean Median Geometric FC-RS FFC SE
Mean
Mean . 0.132 0.068" 0.129 0.106
. (0.018) (0.971) (0.145) (0.964)
Median 0.132 . 0.011" 0.081" 0.198
(0.982) . (0.971) (0.922) (0.971)
Geometric Mean 0.068" 0.011° . 0.175 0.201
(0.029) (0.029) . (0.080) (0.964)
FC-RS 0.129 0.081" 0.175 . 0.042"
(0.855) (0.078) (0.920) . (0.990)
FFC SE 0.106 0.198 0.201 0.042"
(0.036) (0.029) (0.036) (0.010)
B. Homogeneous Robust loss function for b=-1
Method Mean Median Geometric FC-RS FFC Robust
Mean b=-1
Mean . 0.078" 0.000" 0.091° 0.002"
. (0.094) (0.968) (0.383) (0.912)
Median 0.078" . 0.000" 0.041" 0.000"
(0.906) . (0.890) (0.588) (0.931)
Geometric Mean 0.000° 0.000° . 0.155 0.000"
(0.032) (0.110) . (0.204) (0.949)
FC-RS 0.091" 0.041° 0.155 . 0.000*
(0.617) (0.412) (0.796) . (0.980)
FFC Robust b=-1 0.002" 0.000° 0.000° 0.000"
(0.088) (0.069) (0.051) (0.020)
C. QLIKE loss function
Method Mean Median Geometric FC-RS FFC QLIKE
Mean
Mean . 0.000° 0.000" 0.000" 0.000"
. (0.321) (0.895) (0.655) (0.921)
Median 0.000" . 0.000" 0.000" 0.000"
(0.679) . (0.819) (0.678) (0.910)
Geometric Mean 0.000° 0.000° . 0.000" 0.000"
(0.105) (0.181) . (0.557) (0.945)
FC-RS 0.000° 0.000° 0.000° . 0.000"
(0.345) (0.322) (0.443) . (0.994)
FFC QLIKE 0.000° 0.000° 0.000° 0.000°
(0.079) (0.090) (0.055) (0.006)

This table shows the p-values of the null hypothesis of the CPA test of equal predictive ability of alternative
volatility predictions given by forecast combinations using the full sample of the S&P 500 Index (January 2, 2004 to
June 30, 2010). We consider three different loss functions for the CPA test, namely the Square Error, Homogeneous
Robust for b=-1 and QLIKE. The entries in parenthesis are the percentage of cases that the column method
outperforms the row method in forecasting volatility. Entries in bold correspond to the cases that the null
hypothesis of the CPA test is rejected. The sign + (-) indicates that column method significantly outperforms (is

outperformed) by the row method in forecasting volatility.
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