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1 Introduction

Empirical growth research has become a dominant field in macroeconomics. However, despite
the vast amount of research, there is remarkably little confidence in the results and the
implications that have come from conventional empirical methods of growth analysis. A
typical example is Pack (1994) (pages 68-69), who describes several problems with cross-
country growth regression models:

The production function interpretation is further muddled by the assumption

that all countries are on the same international production frontier ... regression

equations that attempt to sort out the sources of growth also generally ignore

interaction effects ... The recent spate of cross-country growth regressions also

obscures some of the lessons that have been learned from the analysis of policy in

individual countries.

One of the major reasons for the general mistrust of the conventional approach is the
assumption of parameter homogeneity in cross-country growth regression. Indeed, there
is a growing number of recent empirical studies that question the assumption of a single
linear model that can be applied to all countries. Instead, these studies find evidence that
is consistent with multiple steady-state equilibria that classify the countries into different
convergence clubs.

One approach to allowing for parameter heterogeneity in cross-country growth
regressions is to use threshold regression models or classification algorithms such as a
regression tree. In a pioneer paper, Durlauf and Johnson (1995) employ a regression tree
approach to uncover multiple regimes in the data. This evidence is formally tested by Hansen
(2000) who develops statistical theory for the threshold regression and applies procedures
to formally test for the presence of threshold effects and to obtain a confidence set for
the threshold parameter. More recently, using a generalized regression tree analysis, Tan
(2010) investigates how fundamental determinants, such as institutions, interact to hinder
or facilitate development outcomes for different groups of countries.

A conceptually different approach employs semiparametric models based on
nonparametric smooth functions to identify general nonlinear growth patterns. Notable
examples include Liu and Stengos (1999) and Kalaitzidakis, Mamuneas, Savvides, and
Stengos (2001) who employ a partially linear model, Canova (2004) who uses a predictive
density approach, Desdoigts (1999) who employs an exploratory projection pursuit (density
estimation), and Kourtellos (2002) who uses a projection pursuit regression.

Durlauf, Kourtellos, and Minkin (2001) (DKM) extended this search for nonlinearities
in cross-country growth regressions to one for parameter heterogeneity. In particular, DKM
employ a varying coefficient approach to estimate a local Solow growth model that allows
the parameters for each country to vary as smooth functions of initial income. They find
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evidence for substantial country-specific heterogeneity that is associated with differences in
initial income in the Solow parameters. The varying coefficient approach is also employed
in Mamuneas, Savvides, and Stengos (2006) who find nonlinearities in the estimates of the
elasticity of human capital with respect to output using annual measures of Total Factor
Productivity (TFP) for 51 countries.

There are several interpretations of parameter heterogeneity. First, modern economic
growth models provide microfoundations for the presence of multiple steady states and the
emergence of convergence clubs. Examples include models with human capital externalities
(e.g., Azariadis and Drazen (1990)), imperfections in credit markets and indivisibilities of
investment in human capital (e.g., Galor and Zeira (1993)), local technological spillovers (e.g.,
Durlauf (1993)), Schumpeterian patterns of innovation and technology (e.g., Howitt and
Mayer-Foulkes (2005)), institutional barriers (e.g., Acemoglu, Aghion, and Zilibotti (2006)),
and differential timing of take-offs (e.g., Galor and Weil (1999), Galor and Weil (2000)).
Each of these theories suggests that from the perspective of a local linear approximation of
the growth process, different countries will be characterized by different parameters. Second,
the assumption of Cobb–Douglas production function as the basis of the derivation of the
Solow growth model has been challenged. Duffy and Papageorgiou (2000) and Masanjala
and Papageorgiou (2004) find evidence in favor of a constant elasticity of substitution (CES)
production function rather than the standard Cobb-Douglas specification. This finding is
important given that a Cobb-Douglas production function is a necessary condition for the
linearity of the Solow growth model. Third, parameter heterogeneity may be induced by
omitted growth determinants. In fact, a range of new growth theories suggest additional
covariates beyond those originally proposed by Solow. Durlauf, Johnson, and Temple (2005)
identified more than 140 variables used by various researchers, including, but not limited to,
market distortions, geographical regions, source endowments, climate, institutions, politics,
and war.

In this chapter, we model parameter heterogeneity in the cross-country growth regression
using two alternative human development variables that allow us to uncover their complex
relationship to economic growth. Methodologically, we employ a local generalization of the
Solow growth model along the lines of DKM in the sense that while the Solow model applies
to all countries, the parameters of the aggregate production function vary across countries.
More precisely, we allow these parameters to vary according to a countrys initial human
development level. We study local generalizations of Solow growth models with and without
accounting for population growth and saving rates. That is, we study unconditional and
conditional local Solow growth models.

The generalization of the Solow growth model takes the form of a semiparametric varying
coefficient model along the lines of Hastie and Tibshirani (1993). This model is described
as semiparametric because it is a conditional linear model that imposes no assumptions
on the functional form of the coefficients, but the shape of the function is estimated by
the data. While this restricts the form of parameter heterogeneity, it is an appealing way
to generalize the traditional linear Solow model.That is, if we index the countries by an
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interesting variable, such as the initial conditions of human development, then, near steady
state, the Solow model can provide a good approximation. Our approach also allows us to
evaluate how the shares of human and physical capital vary with the initial levels of human
development.

We measure human development using two key indicators of economic development
beyond income: initial levels of adult literacy rates and life expectancy at birth. Literacy
rates are a measure of the ability of a country to acquire human capital and may have a large
impact on the ability of an economy to generate economic growth. Life expectancy at birth
is the most commonly used measure of human capital health. High levels of longevity are
critical for a countrys economic and social well-being. Improving health outcomes can have
large indirect payoffs because healthy citizens have a positive effect on economic growth.
Better health stimulates learning ability, fosters education incentives, and encourages long-
term savings (see, e.g., Bloom (1998)).

Our findings suggest that there is substantial heterogeneity across countries. This
heterogeneity is reflected in the estimated varying coefficients of the local Solow growth
model. The findings also suggest that there is substantial evidence of a latent determinant
of negative growth rates or poverty traps. The results suggest the presence of multiple
steady-state equilibria in the growth process with respect to initial human capital. This
evidence is consistent with the twin peaks found by Quah (1997) in the limit distribution
of cross-country per capita income, the presence of multiple regimes found in Durlauf and
Johnson (1995) and Masanjala and Papageorgiou (2004) and the global divergence found in
Mayer-Foulkes (2006).

Section 2 revisits the standard approach to cross-country growth analysis and proposes a
varying coefficient. Section 3 describes the data employed in this chapter. Section 4 presents
estimates of the varying coefficients for Solow parameters in unconditional and conditional
specifications using human development at the beginning of the period with adult literacy
rates and life expectancy at birth as a proxy. Section 5 presents the summary and conclusion.

2 Econometric methodology

The standard approach to cross-country growth analysis as illustrated by Azariadis and
Drazen (1991),Barro (1997), Barro and Sala-I-Martin (1995), and Mankiw, Romer, and Weil
(1992) and extended by Evans (1998), Islam (1995), and Lee, Pesaran, and Smith (1997)
to panel data has focused on the linear regression model. For each country, i, average per
capita real GDP growth, gi, is assumed to obey

gi = X′
iγ + ui, (2.1)

where Xi is a p-dimensional vector of growth determinants and ui is the regression error.
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In the standard Solow model, the determinants consist of the logarithm (log) of population
growth rate plus 0.05, which corresponds to the sum of the constant rates of technical change
and depreciation; the log of the savings rate for physical capital accumulation; and the log of
the real per capita income of the country at the beginning of the period over which growth is
measured.1 The underlying assumption of this regression is that each country is associated
with a common Cobb-Douglas aggregate production function.

One way to model parameter heterogeneity in Equation (2.1) is to consider a local
generalization, which effectively generalizes the constant coefficient γ to become a smooth
function γ(zi) that maps the scalar index zi into a set of country-specific Solow parameters
using the human development index. By local, we refer to the idea that a Solow model applies
to each country, but the parameters of the aggregate production function vary according to
a slower moving variable, such as countrys initial levels of human development. In other
words, although the Solow model can be an inappropriate specification when applied to
all countries, it can still be a good approximation locally for an individual country. This
generalization yields the varying coefficient model:

gi = X′
iγ(zi) + ui, (2.2)

where E(ui|Xi) = 0, E(u2
i |Xi) = σ2(zi), and γ(zi)=(γ1(zi),γ2(zi),. . .,γp(zi))

′.

Two important points need to be highlighted about the relationship of the varying
coefficient model in Equation (2.2) with the linear regression and threshold regression
or tree regression. First, the varying coefficient model encompasses not only the linear
model in Equation (2.1) but also any regression model that augments the latter with zi
in a linear or nonlinear way. Notable examples of nonlinear models that can be viewed
as nested models within the varying coefficient model are the semiparametric partially
linear model and parametric models with higher-order polynomials or interactions. Second,
one important difference of the varying coefficient model vis-a-vis the tree regression and
threshold regression models is that the parameter heterogeneity is modeled through smooth
functions as opposed to abrupt changes by using indicator functions. In effect, the human
development index acts as a threshold variable but in a smooth way. One can argue that
given the short span of time in cross-country growth data, smooth functions can be more
efficient in identifying nonlinearities in the cross-country growth process.

Following Fan and Zhang (1999), we estimate the varying coefficient model in Equation
(2.2) using simple local regression based on a two-stage estimation procedure. The major
advantage of a two-stage estimation over a one-stage estimation is that it allows the functional
coefficients to possess different degrees of smoothness, which ensures that the optimal rate
of convergence for the asymptotic mean-squared error is achieved. The appendix describes
the estimation procedure in detail.

1Mankiw, Romer, and Weil (1992) extended this model to include the savings rate for physical capital
accumulation.
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3 Data

This chapter uses a balanced panel dataset for 88 countries (see Table 1). Data are averaged
over four 10-year periods between 1960 and 1999.2 The explanatory variables reflect the
standard set variables suggested by the Solow growth theory (see Mankiw, Romer, and Weil
(1992)). They include the logarithm of average growth rate of the population plus 0.05
for depreciation, gpop; the logarithm of average proportion of real investments, including
government, to real GDP, inv; and the logarithm of initial per capita income, y0. The two
human development indices that we use are as follows: (a) the logarithm of adult literacy
rates defined as the fraction of the population over the age of 15 that is able to read and
write in 1960, lit0 and (b) the logarithm of life expectancy at birth in 1960, lifee0. All
explanatory variables, except schooling, were obtained from the Penn World Table 6.1. The
two indices are from the World Banks World Report. Table 1 presents the countries along
with two human development indices, lit0 and lifee0.

4 Empirical Results

4.1 Unconditional models

We start by investigating a simplified local generalization of growth regression that assumes
that the steady-state value of per capita income is constant across countries. Then, using
the human development index, zi, the varying coefficient model takes the following form,

gi = γ1(zi) + γ2(zi)y0i + ui. (4.3)

Figures 1(a)(d) and 2(a)(d) present the results for z = lit0 and z = lifee0, respectively.
3

They present the point estimates and associated 95% pointwise confidence intervals for the
varying coefficient functions, conditional variance, and implied convergence rates. Confidence
intervals for the implied convergence rates and the implied shares of capital, estimated in
the following sections, are computed using the delta method. The superimposed horizontal
dashed lines refer to the corresponding least squares estimated (invariant) parameters of a
linear Solow growth model.

The results are quite revealing. The varying coefficients are substantially different from
the linear Solow growth model, as the least squares estimates cut the confidence intervals

2Similar results are obtained for a 20-year period panel data set.
3Outliers were omitted from the graphs, as they render the graphs unreadable. For z = lit0, Niger,

Burkina Faso, Mali, and Cote dIvoire are omitted, and for z = lifee0, El Salvador and Gambia are omitted.
Despite these countries omission from the graph, estimation is based on the full sample. Complete graphs
are available upon request.
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several times in all of the estimated models. The relationship between the log of adult literacy
rates in 1960 and growth is increasing and nonlinear. The estimation reveals a threshold
at the level of the 45th percentile corresponding to Nicaragua, below which the relationship
between literacy rates in 1960 and growth is negative and above which the relationship is
positive. Figure 1(b) shows the estimates for the varying coefficient of the logarithm of initial
income, y0. Unlike the least squares estimate of the constant coefficient for the corresponding
linear model, the estimates of γ2(zi) are mostly negative with a quadratic shape, implying
that high and low initial literacy countries have larger estimates than the countries with
middle levels of initial literacy rates. These estimates suggest that the differences in per
capita incomes are not temporary and that unconditional convergence to a common long-run
level is not occurring. Figure 1(c) presents substantial evidence of parameter heterogeneity
in the conditional variance, which takes the form of a hump-shaped function.

Although the conditional variance initially appears to increase for the countries with
the lowest levels of initial literacy rates, this variance monotonically decreases for countries
with higher levels of initial literacy rates than Senegal. We now turn to the case of life
expectancy. While Figures 2(a)(d) appear to be qualitatively similar to those obtained using
literacy rates, the results based on the initial levels of life expectancy are more volatile. In
particular, the estimates of the varying intercept reveal a threshold at the 42nd percentile,
corresponding to Lesotho, below which the relationship between initial life expectancy rates
and growth is negative, and above which the relationship is positive. The estimates of
the varying coefficient of the log of initial income are mostly negative but with substantial
variability. For example, the implied convergence rates vary from 0 to approximately 4%.
Finally, the conditional variance appears to generally decrease with the levels of initial life
expectancy.

In sum, we find that while the average relationship between growth and human
development, as measured by the initial literacy rates or life expectancy at birth, appears
to be generally increasing, the relationship is positive only for countries above the median
index. We also find substantial parameter heterogeneity in the convergence rates when we
index them by the initial levels of human development. Taking all of the evidence together,
we conclude that initial levels of human development can determine long-run outcomes and
that countries with similar initial conditions exhibit similar long-run outcomes. This finding
suggests the presence of multiple steady-state equilibria and the emergence of convergence
clubs in the growth process consistent with the twin peaks in the cross-country income
distribution found by Quah (1997). Finally, we find that the conditional variance appears
to be generally decreasing in the levels of initial human development index, which implies
the beneficial effect of human development on growth volatility.
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4.2 Conditional models on population growth and investments

This section estimates a local generalization of the basic Solow growth model which is based
on a two-factor Cobb–Douglas production function with physical capital and labor as inputs.
In this case, the varying coefficient model in Equation (4.3) is augmented by the variables
of the population growth rates and the saving rate of physical capital and takes the form of
Equation (4.4):

gi = γ1(zi) + γ2(zi)gpopi + γ3(zi)invi + γ4(zi)y0i + ui. (4.4)

Figures 3(a)(g) and 4(a)(g) present the results for the two development indices lit0 and
lifee0, respectively. Let us first discuss the results based on adult literacy rates, z = lit0.
First, for the varying coefficients associated with the intercept, population growth, and
physical capital, the estimates exhibit substantial parameter heterogeneity for countries with
literacy rates in 1960 lower than the 18th percentile, corresponding to Senegal. Second, the
estimates of the varying intercept show that the relationship between literacy rates in 1960
and growth is negative for countries with literacy rates lower than the rate that corresponds
to Senegal. Similar to unconditional models, this pattern suggests that negative growth rates
may be the result of a latent determinant of countries with low literacy rates. However, this
threshold appears to be lower than in the case of the unconditional models. It is estimated to
be around the 18th percentile rather than around the 45th percentile. Third, for countries
with literacy rates lower than the 12th percentile, corresponding to Nepal, the estimates
of the varying coefficient of population growth rates are positive. This finding suggests
the presence of possible scale effects for the poorest countries. Fourth, the estimates for
the varying coefficients of physical capital and initial income do not exhibit any sort of
monotonicity. The highest values of the varying coefficients of physical capital are associated
with countries that have higher literacy rates. For the majority of countries with initial
literacy rates higher than the 16th percentile, corresponding to Togo, the estimate for the
varying coefficient of physical capital is larger than that predicted by the linear Solow model.
For the varying coefficient of initial income, the estimates are negative and mostly significant.
However, for countries with point estimates smaller than the 29th percentile, corresponding
to Malawi, the estimates are insignificant. This finding may imply the absence of conditional
convergence for this group. Alternatively, the non-monotonicity of the estimates may suggest
the presence of multiple steady states. For instance, the majority of countries with lower
initial literacy rates experience lower convergence rates, and countries with high initial
literacy rates have higher convergence rates. It is worth noting that the estimates for the
majority of countries are larger than the ones predicted by the linear Solow growth model.

Fifth, the implied shares of physical capital are generally quite large and display a hump
for a range of countries with lower literacy rates, between the 9th percentile, corresponding to
Benin, and the 32nd percentile, corresponding to Ghana. Countries within the above range
exhibit higher shares of physical capital than countries with higher literacy rates. Notably,
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the estimate of the implied share of physical capital for Burundi is as high as 0.91. However,
for countries with literacy rates higher than Ghana, the shares are much lower and rather
stable, with an approximate value of about 0.65.

In the case of life expectancy at birth (z = lifee0), the results in Figure 4(a)(g) show
a stronger parameter heterogeneity. First, the estimates of the varying intercept exhibit an
increasing pattern with negative estimates below the 49th percentile, corresponding to Peru.
Second, although the evidence is weaker, there is also a group of countries with positive
estimates for the varying coefficient of the population growth rates. More precisely, for
countries with literacy rates lower than the 10th percentile, which corresponds to Benin, the
estimates are positive. Third, for the majority of countries, the implied convergence rates
are larger than the ones predicted by the linear Solow growth model. Interestingly, countries
with the lowest rates of life expectancy enjoy convergence rates as high as countries with the
highest rates of life expectancy. For instance, Mozambique has the same convergence rate
as that of Switzerland. Fourth, the implied shares of physical capital is also hump shaped
as that of lit0. In particular, countries with rates of life expectancy between the 10th and
27th percentiles, corresponding to Nepal and India, respectively, have higher shares than
the other countries in the sample. Interestingly, many countries in this interval enjoy shares
very close to one. Moreover, the only major difference between the two human development
indices is that the evidence for parameter heterogeneity in the varying coefficients of physical
capital and initial income appears to be stronger for the estimates based on lifee0 than those
based on lit0.

Furthermore, we impose the theoretical restriction that the coefficients on inv and gpop

sum up to zero; see Mankiw, Romer, and Weil (1992). Under this restriction, we estimate
the following varying coefficient model:

gi = γ1(zi) + γ2(zi)(invi − gpopi) + γ3(zi)y0i + ui. (4.5)

Figures 5(a)(f) and 6(a)(f) present the results for adult literacy rate (z = lit0) and life
expectancy at birth (z = lifee0), respectively. The results are similar to those obtained in
the unrestricted models for both indices. The only notable exception is that many countries
that have life expectancies between the 16th and 22nd percentiles, corresponding to Cote
dIvoire and Madagascar, respectively, exhibit negative convergence rates and have shares of
physical capital that are greater than one.

In sum, the empirical results show that the Solow growth model exhibits strong evidence
of parameter heterogeneity. More precisely, the coefficients of the Solow regression and
the corresponding implied parameters of the Solow model (convergence rates and shares
of physical and human capital) vary substantially with initial levels of literacy rates and
life expectancy. This evidence is consistent with the presence of multiple regimes found in
Durlauf and Johnson (1995) and Masanjala and Papageorgiou (2004) that are associated
with adult literacy rates and the global divergence found in Mayer-Foulkes (2006) that
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is associated with life expectancy. Furthermore, the average relationship between growth
and human development appears to be nonlinear and generally increasing. This relationship
suggests the presence of a latent determinant of negative growth rates or poverty trap that is
omitted from the Solow model. Kourtellos (2003) provided evidence that this latent variable
is not associated with the omitted variable of human capital accumulation. In particular,
Kourtellos extended the basic local Solow growth model in Equation (4.4) to include human
capital accumulation along the lines of Mankiw, Romer, and Weil (1992) to find similar
results.

5 Conclusion and directions for future research

This chapter studies local generalizations of the Solow model that take the form of varying
coefficient models. In particular, using two measures of initial human development, initial
literacy rates and initial life expectancy rates, we investigate parameter heterogeneity and
study the complex relationship of human development and economic growth in the context
of unconditional and conditional local Solow growth specifications.

We find that both development indices provide strong evidence of parameter
heterogeneity. In particular, we find that the parameters of the local Solow growth model
vary substantially with the initial levels of literacy rates and especially life expectancy in
unconditional and conditional specifications. Furthermore, we find that there may be a latent
determinant of negative growth rates or poverty trap that is omitted from the Solow model.
Overall, our findings are suggestive of multiple steady states and richer growth dynamics
than neoclassical theories, and hence, empirical studies that do not account for parameter
heterogeneity are likely to produce a misleading inference.

Finally, we point out that this chapter does not purport to make strong structural claims
per se; rather, it shows that structural claims in the literature are exaggerated due to the
failure of the linear model to account for parameter heterogeneity. That being said, future
research should attempt to unify the new set of statistical or reduced form findings with
growth theories to provide testable econometric models that can be used for policy analysis.

A first step toward that direction is to deal with model uncertainty. As Brock
and Durlauf (2001), among others, have argued, the inherent openendedness of new
growth theories presents unique challenges to researchers in exploring their quantitative
consequences on growth. The statement that a particular theory of growth is empirically
relevant does not logically preclude other theories of growth from also being relevant and
therefore the inclusion or exclusion of growth variables may significantly alter previous
conclusions.

One appealing approach to deal with the problem of model uncertainty is to employ a
Bayesian model averaging (BMA) by constructing estimates conditional on a model space
with elements that span an appropriate range of determinants suggested by a large body
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of work. A number of recent papers have documented the advantages of using BMA in
constructing robust estimates primarily in the context of the linear model (see, e.g., Brock
and Durlauf (2001); Fernandez, Ley, and Steel (2001); Sala-I-Martin, X. and Doppelhofer,
G. and Miller, R. (2004); Durlauf, Kourtellos, and Tan (2008); Masanjala and Papageorgiou
(2008); Ciccone and Jarocinski (2010)). However, model averaging methods have yet to
account for nonlinearities and parameter heterogeneity in a systematic way that deals with
the problem of model uncertainty as a whole. Some initial attempts in this direction have
been made by Brock and Durlauf (2001), Kourtellos, Tan, and Zhang (2007), and Cuaresma
and Doppelhofer (2007). We expect this avenue of research to provide fruitful results.
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Table 1: List of Countries and the logarithms of literacy rates and life expectancy

in 1960

Code Country lit0 lifee0 Code Country lit0 lifee0

ARG Argentina -0.09 4.18 JOR Jordan -1.14 3.85
AUS Australia -0.02 4.26 JPN Japan -0.02 4.22
AUT Austria -0.02 4.23 KEN Kenya -1.61 3.81
BDI Burundi -1.97 3.73 KOR Korea, Rep. -0.35 3.99
BEL Belgium -0.02 4.24 LKA Sri Lanka -0.29 4.13
BEN Benin -2.53 3.66 LUX Luxembourg -0.02 -
BFA Burkina Faso -4.20 3.59 LSO Lesotho - 3.86
BGD Bangladesh -1.53 3.78 MAR Morocco -1.97 3.85
BOL Bolivia -0.95 3.76 MDG Madagascar -1.02 3.71
BRA Brazil -0.49 4.01 MEX Mexico -0.43 4.05
BRB Barbados -0.06 - MLI Mali -3.51 3.58
CAN Canada -0.07 4.26 MOZ Mozambique -2.53 3.56
CHE Switzerland -0.01 4.27 MUS Mauritius -0.50 4.08
CHL Chile -0.17 4.05 MWI Malawi -1.51 3.63
CHN China - 3.59 MYS Malaysia -0.63 3.99
CIV Cote d’Ivoire -3.00 3.68 NER Niger -4.61 3.57
CMR Cameroon -1.66 3.77 NGA Nigeria -1.90 3.68
COG Congo, Rep. -1.86 3.86 NIC Nicaragua -0.70 3.86
COL Colombia -0.46 3.97 NLD Netherlands -0.02 4.29
CRI Costa Rica -0.17 4.13 NOR Norway -0.01 4.30
DNK Denmark -0.01 4.28 NPL Nepal -2.41 3.65
DOM Dominican Republic -0.44 3.96 NZL New Zealand -0.02 4.26
DZA Algeria -2.30 3.86 PAK Pakistan -1.90 3.77
ECU Ecuador -0.39 3.98 PAN Panama -0.31 4.11
EGY Egypt, Arab Rep. -1.35 3.84 PER Peru -0.49 3.87
ESP Spain -0.14 4.23 PHL Philippines -0.33 3.97
ETH Ethiopia -2.81 3.74 PRT Portugal -0.48 4.15
FIN Finland -0.01 4.23 PRY Paraguay -0.29 4.16
FRA France -0.02 4.25 SEN Senegal -2.03 3.66
GAB Gabon -2.12 3.71 SLV El Salvador -2.66 3.45
GBR United Kingdom -0.04 4.26 SWE Sweden -0.01 4.29
GHA Ghana -1.31 3.81 SYR Syrian Arab Republic -1.20 3.91
GMB Gambia, The -2.81 3.48 TCD Chad - 3.55
GNB Guinea-Bissau -2.66 3.55 TGO Togo -2.30 3.68
GRC Greece -0.21 4.23 THA Thailand -0.39 3.96
GTM Guatemala -1.16 3.83 TTO Trinidad and Tobago -0.07 4.16
HKG Hong Kong, China -0.35 4.19 TUR Turkey -0.97 3.92
HND Honduras -0.80 3.85 TZA Tanzania -2.35 3.70
IDN Indonesia -0.94 3.73 UGA Uganda -1.05 3.77
IND India -1.27 3.75 URY Uruguay -0.10 4.21
IRL Ireland -0.04 4.24 USA United States -0.02 4.25
IRN Iran, Islamic Rep. -1.71 3.83 VEN Venezuela -0.46 4.09
ISL Iceland 0.00 - ZAF South Africa -0.56 3.90
ISR Israel -0.17 4.27 ZMB Zambia -1.26 3.73
ITA Italy -0.09 4.24 ZWE Zimbabwe -0.37 3.82
JAM Jamaica -0.20 4.14
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Figure 1a: 
 intercept
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Figure 1b: 
 coefficient of log initial income
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Figure 1c: 
 conditional variance
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Figure 1d:
 implied convergence rates
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Figures 1a - 1d show the varying coefficients of the unconditional local Solow model using z = lit0
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Figure 2a: 
 intercept
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Figure 2b: 
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Figure 2c: 
 conditional variance
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Figure 2d:
 implied convergence rates

log life expectancy in 1960

3.6 3.8 4.0 4.2

-0
.0

2
0
.0

2
0
.0

6

v
a
ry

in
g
 c

o
e
ff

ic
ie

n
t

v
a
ry

in
g
 c

o
e
ff

ic
ie

n
t

v
a
ry

in
g
 c

o
e
ff

ic
ie

n
t

V
a
r(
Y
|X
) 

Figures 2a - 2d show the varying coefficients of the unconditional growth regression model using z = lifee0
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Figure 3a: 
 intercept
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Figure 3c: 
 coefficient of log investments
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Figure 3d: 
 coefficient of log initial income
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Figure 3e: 
 conditional variance
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Figure 3f:
 implied convergence rates
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Figure 3g:
 implied share of physical capital

log literacy rates in 1960
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Figures 3a - 3g show the varying coefficients of the local Solow model using z = lit0
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Figure 4a: 
 intercept

log life expectancy in 1960
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Figure 4b: 
 coefficient of log population growth rates
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Figure 4c: 
 coefficient of log investments
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Figure 4d: 
 coefficient of log initial income
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Figure 4e: 
 conditional variance
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Figure 4f:
 implied convergence rates

log life expectancy in 1960

3.6 3.8 4.0 4.2

-0
.0

2
0
.0

2
0
.0

6

Figure 4g:
 implied share of physical capital
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Figures 4a - 4g show the varying coefficients of the local Solow model using z = lifee0

18



Figure 5a: 
 coefficient of intercept
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Figure 5b: 
 coef. of log (investments/pop. growth)
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Figure 5c: 
 coefficient of log initial income
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Figure 5d: 
 conditional variance

log literacy rates in 1960
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Figure 5e:
 implied convergence rates
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Figure 5f:
 implied share of physical capital

log literacy rates in 1960
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Figures 5a - 5f show the varying coefficients of the restricted local Solow model using z = lit0
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Figure 6a: 
 intercept
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Figure 6c: 
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Figure 6d: 
 conditional variance
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Figure 6f:
 implied share of physical capital
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Figures 6a - 6f show the varying coefficients of the restricted local Solow model using z = lifee0
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Appendix

Following Fan and Zhang (1999) this paper adopts a two-stage estimation procedure
based on a simple local regression. The major advantage of a two-stage estimation over a
one-stage estimation is that it allows the functional coefficients to possess different degrees
of smoothness that ensure that the optimal rate of convergence for the asymptotic mean-
squared error is achieved.

A one stage estimation solves a simple weighted local least squares problem. More
precisely, for each given point z0, the functions γj(z), j = 1, . . . p, are approximated by local
linear polynomials

γj(z) ≈ cj0 + cj1(z − z0) (A1)

for sample points z in a neighborhood of z0. This approximation results in the following
weighted local least squares problem:

min
{(cj0,cj1)}

N∑

i=1

[
gi −

p∑

j=1

[cj0 + cj1(z − z0)]Xij

]2

Kh(zi − z0) (A2)

where Kh(·) =
1
h
K

(
·
h

)
and K(·) is the Epanechnikov kernel.

Let g = (g1, . . . , gN)
′, W = diag

(
1
h
K( z1−z0

h
), . . . , 1

h
K( zN−z0

h
)
)
, and

X =




X11 (z1 − z0)X11 · · · X1p (z1 − z0)X1p
...

...
. . .

...
...

XN1 (zN − z0)XN1 · · · XNp (zN − z0)XNp


 (A3)

The solution of the problem (A2) is then given by

γ̂j(z) = e′2j−1,2p(X
′WX)−1X′Wg (A4)

where ek,m denote the unit vector of length m with 1 at the kth position.

The conditional variance is estimated by a normalized weighted residual sum of squares

σ̂2(z) =

N∑
i=1

(gi − ĝi)
2
Kh(zi − z)

tr{W −WX(X′WX)−1X′W}
(A5)

where
ĝ = (ĝ1, . . . , ĝN)

′ = X(X′WX)−1X′Wg (A6)

In the first stage of a two-stage procedure, we obtain initial estimates γ̂j,0(z) using
h = h0, for j = 1, 2, .., p; see equation (A4). In the second stage, a two-stage estimate
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γ̂j,2(z) is obtained by replacing the unknown varying coefficient γk(z), for k 6= j into the
local least-squares (A2) by their initial estimates γ̂k(z), for k 6= j. Then a local least-squares
regression is fitted again by minimizing4

N∑

i=1

[
gi −

p∑

k 6=j

γ̂k,0(z)Xik − [cj0 + cj1(z − z0)]Xj

]2

Khj,2
(zi − z0) (A7)

This paper employs the cross-validation to select both the initial and the two-step
bandwidths. However, the initial bandwidth h0 is chosen so that the estimate is
undersmoothed. In particular, the optimal rates of convergence for estimating the two-
stage coefficient is achieved when the optimal hj,2 is of the order O(N−1/9) and the initial
bandwidth5 is between O(N−1/3) and O(N−2/9). In practice, we choose the initial bandwidth
to ensure that the bias of the initial estimator is small and that makes the two-step estimator
not sensitive to the choice of the initial bandwidth; see Fan and Zhang (1999).

By defining

Aj = e′2j−1,2p

(
X′

jWjXj

)−1 (
X′

jWjBj

)
(A8)

the two-step estimator can be written in the familiar form of

γ̂j,2 = Ajg (A9)

where Xj denotes the matrix X with only those columns that refer to the variable j, Wj is
the diagonal weight matrixW with h = hj,2, and Bj is the N×N matrix of some complicated
weights

Bj = IN −

p∑

k 6=j




X1ke
′
2j−1,2p(X

′
(1)W(1)X(1))

−1X′
(1)W(1)

...
X1ke

′
2j−1,2p(X

′
(N)W(N)X(N))

−1X′
(N)W(N)




where X(i) and W(i) are the matrices X and W with z0 = zi, respectively. The asymptotic
confidence intervals for the two-stage estimator γ̂j,2(z) are based on the asymptotic
approximation of the variance given by

AjA
′
jσ̂

2(z) (A10)

where σ̂2(z) is the estimate of the corresponding conditional variance.

4In theory a local cubic fit should be used in the second step. In practice, however, it is not substantially
different from the local linear fit to justify the extra computational burden.

5In practice, we use h0 = 0.5ĥ, where ĥ is the optimal h for one-stage estimation.
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