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Abstract

We study a general multiparty model of plurality rule elections with costly

participation, and prove that strategic voting —that is, situations in which some

voters abandon their most preferred alternative and vote strategically for the se-

rious contender they dislike less—may emerge in equilibrium; just like when par-

ticipation is costless/compulsory (Palfrey 1988). This qualifies opposite claims

made in more confined setups (e.g. Arzumanyan and Polborn 2017), and estab-

lishes that the Duverger’s psychological effect is present in a much larger set of

cases than currently believed.
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1 Introduction

Duverger’s (1951) law postulates that in plurality rule elections it is highly unlikely

that all voters will vote sincerely for their top-ranked alternative. Indeed, when one is

endowed with a unique vote, one should want to make the most of it. Since one’s vote is

relevant in the determination of the outcome only if this vote breaks or generates a tie

for the first place, there is often a question between voting for the alternative one likes

most and voting for the serious contender one dislikes less. This tension will lead sup-

porters of less popular alternatives to behave "strategically." That is, to abandon their

top choices and back, among the serious contenders (i.e. among the alternatives that

have substantial chances of winning the election), the one that gives them the highest

utility. Duverger concluded that this line of reasoning —usually referred to as Duverger’s

"psychological" effect or factor (Cox 1997)—will lead to strategic voting equilibria in

which a small set of serious contenders —typically, two—is supported sincerely by indi-

viduals that like them more than any other candidate, and strategically by individuals

whose top choice does not enjoy serious election prospects.

Formal analysis of strategic voting under plurality rule has confirmed the existence

of strategic voting equilibria only when voting is costless or compulsory (Riker 1982;

Palfrey 1988; Myerson and Weber 1993; Cox 1997; Fey 1997). That is, only when

full participation is guaranteed. In many relevant real life contexts though (e.g. U.S.

presidential elections) participation is voluntary and costly for the voters. Hence, it

is of utmost importance to investigate whether the described psychological effect still

exists in these settings. So far, the literature has mainly focused on studying costly

voting in the framework of two-party elections (see, for example, Palfrey and Rosenthal

1983, 1985; Ledyard 1984; Levine and Palfrey 2007; Krasa and Polborn 2009; Goeree

and Grosser 2012; Herrera, Morelli and Palfrey 2014; Krishna and Morgan 2015; Tyson
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2016) and, surprizingly, very little is known regarding the effect of introducing voting

costs in multiparty settings on the shaping of strategic voting incentives: Do strate-

gic voting equilibria exist even when participation is voluntary and costly? That is,

when turnout is partial, are there voters that switch, and abandon their top-ranked

alternatives and vote for the serious contender they dislike less?

To our knowledge, the only paper that tries to give a first answer to these questions

is Arzumanyan and Polborn (2017). This paper studies multiparty elections under

plurality rule with costly participation, and finds that strategic voting cannot take

place in equilibrium. In particular, it demonstrates that in equilibrium all voted parties

tie (in expectation) and all voters vote sincerely (i.e. all individuals that decide not to

abstain, vote for their top-ranked alternative) suggesting that Duverger’s psychological

effect is not present when voting is costly. To arrive to this conclusion, Arzumanyan and

Polborn (2017) examine a setup with three alternatives and general ordinal preferences

(i.e. individuals were allowed to have any strict preference ordering over the three

alternatives) but a very special structure of cardinal preferences and voting costs (i.e.

all individuals enjoy 1, λ ∈ (0, 1) and 0 units of utility by the election of their top-ranked,

their second-best and their bottom-ranked alternative respectively; and voting costs are

homogeneous). It is true that when voting is costless or compulsory, cardinal utilities

are not really central in the shaping of equilibrium behavior, since the probabilities of

ties and their ratios are by far the most relevant determinant factor of voters’behavior

(e.g. Palfrey 1988). When voting is voluntary and costly, though, cardinal utilities and

voting costs are as much relevant as the probabilities of ties in determining who turns

out to vote and, subsequently, whether strategic voting takes place or not. Hence, it

is imperative that we try to study multiparty elections with costly voting, in a more

general framework: i.e. allowing for a larger variety in voters’cardinal characteristics

(namely, utility levels and participation costs), in order to get new and robust insights

regarding the persistence of strategic voting.
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In this paper we undertake this task and employ a rather general model regard-

ing cardinal preferences and voting costs. We consider any arbitrary finite class of

voters’ cardinal preference types and variable voting costs —in the tradition of Pal-

frey and Rosenthal (1985)—and we prove that strategic voting equilibria indeed exist

in multiparty elections, even when voting is voluntary and costly. That is, we show

that Duverger’s psychological effect survives in additional settings of applied interest

by establishing that, when voting costs are heterogeneous and the space of cardinal

preferences is rich, we always have equilibria in large elections such that the top-ranked

alternative of a significant share of the non-abstaining voters does not coincide with

any of the alternatives that are expected to receive a positive vote-share. To this end,

we prove existence of Duvergerian equilibria, that is, two-candidate equilibria in which

a voter either abstains or votes —sincerely or strategically—for one of the two candidates

that are expected to be voted by the rest of the voters.

But why does strategic voting arise in this general framework and not when voting

costs and utility levels are homogeneous? When, for example, there are three alter-

natives —say A, B and C—but only two of them are expected to receive a positive

vote-share —say A and B—and voting costs are homogeneous, then, in large elections,

only voters who have the highest stakes may turn out to vote (that is, voters whose

utility difference between the two alternatives is at least as high as that of any other

voter). Moreover, if one assumes that all voters with ordinal preferences A � C � B

and B � C � A care necessarily more about the election’s outcome, than every voter

with ordinal preferences C � A � B and C � B � A (as do Arzumanyan and Polborn

2017), then one, essentially, rules out that voters whose top-ranked alternative is C will

turn out to vote in large elections. On the contrary, when one allows for richer spaces of

cardinal preferences and/or heterogeneous participation costs, then this arguably knife-

edge reasoning breaks down and, in large elections, a substantial share of the voting

population may vote strategically for the serious contender they dislike less.
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In what follows we first present the model (section 2) and then we proceed with the

formal analysis (section 3).

2 The model

Let us assume that a society, K = {1, 2, ..., k}, that is composed of k ∈ N0 individuals,

has to make a policy choice from the setM = {1, 2, ..., ,m} withm > 2. The preferences

of each individual are given by a vector of real numbers vi = (v1i , v
2
i , ..., v

m
i ) ∈ V ⊂ [0, 1]m

which is interpreted in the following way: The utility that individual i ∈ K derives

from the implementation of policy h ∈ M is vhi . The type-space, V , is a finite subset

of [0, 1]m with following properties: a) ordinal preferences are strict (i.e. for every

v = (v1, v2, ..., vm) ∈ V we have vh 6= vq for every h 6= q), and b) ordinal preferences

are nonidentical (i.e. there exist v, ṽ ∈ V and h, q ∈M such that vh > vq and ṽq > ṽh).

Each voter’s preference vector is not publicly observed and is considered to be the

result of i.i.d. draws from a distribution F with support V , and a strictly positive

probability mass function f : V → (0, 1). That is, F is public information, while the

specific parameter draw for a given individual is her private information. Following,

Myerson (2000), Bouton and Castanheira (2012), Herrera, Morelli and Palfrey (2014)

and many others, we assume that k is a random draw from a Poisson distribution with

parameter n > 0:

k ∼ e−n(n)k

k!
.

Each individual, i ∈ K, is also characterized by a cost, ci > 0, that she has to

pay in case she decides to vote, which is also her private information. These costs
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are results of i.i.d. draws from a differentiable distribution function, g : [0, c] → [0, 1],

with strictly positive density on [0, c], for some c ≥ 1.1 An individual, i ∈ K, decides

si ∈ S = {a, 1, 2, ...,m}: she decides if she wishes to abstain (si = a) or to vote for a

specific policy (si ∈ M). If a voter, i, decides to vote for a policy, she incurs the cost

ci but avoids it if she decides to abstain. The voting system is the plurality rule: the

alternative that gets more votes than any other alternative wins the election (ties are

broken with equiprobable draws). Hence, the utility of an individual, i ∈ K, in action

profile s = (si, s−i) ∈ {a, 1, 2, ...,m}k, is given by:

ui(si, s−i : vi, ci) =
∑
j∈Ms v

j
i

#Ms − ci1{si 6=a},

where M s ⊆ M is the set of plurality winners in strategy profile s with cardinality

#M s ∈M , and 1{si 6=a} = 1 if si 6= a, and 1{si 6=a} = 0 otherwise.

Since there is incomplete information about certain aspects of the game and in-

strumental decisions are taken simultaneously by all the players, the most suitable

equilibrium concept is Bayesian Nash Equilibrium (BNE). In such games the focus is

on ex-ante symmetric behavior. That is, we try to find a function σ : V × [0, c] → S

that, along with its ensuing beliefs, constitutes a BNE.

3 Duvergerian equilibria

In a Duvergerian equilibrium there are exactly two policies that are expected to receive

positive vote-shares, and a substantial share of voters engage in strategic voting. Our

1This restriction only simplifies the argument regarding the existence of an equilibrium, and does not
have any other substantial implication. Once the equilibrium analysis for large societies is presented,
it will be evident that all main results go through for any possible c > 0. This is also noted in Herrera,
Morelli and Palfrey (2014) which we follow closely.
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main contribution is to argue that such equilibria exist in multiparty elections, even

when voting is costly. The structure of our argument is as follows: a) first we show that,

in a restriction of our game to two policy alternatives and abstention, an equilibrium

with partial participation, always exists (Subsection 3.1); and b) then we prove that the

identified equilibrium of the restricted game remains an equilibrium of the unrestricted

version of our game, for suffi ciently large societies (Subsection 3.2).

3.1 Restricted game

By the fact that individual preferences are nonidentical, we can assume without loss of

generality that there exist v, ṽ ∈ V such that v1 > v2 and ṽ2 > ṽ1. We will first study

the restriction of the game to {1, 2} ⊂ M . That is, the restricted version of the game

in which players are allowed to choose any action from {a, 1, 2}. In this limited version

of the game, the whole vector vi that characterizes the preferences of individual i on

M contains a lot of redundant information: the only important part for the choices

of individual i is the pair (v1i , v
2
i ). Since F is common information, every individual i

has well-defined beliefs regarding the value of v1j − v2j , for every fellow citizen j. We

formally assume that i believes that the relevant difference of utilities for every other

individual j, yj = v1j −v2j , is a random draw from F1,2 : [−1, 1]→ [0, 1] with probability

mass function, f1,2 that takes positive values in Y1,2 ⊂ [−1, 1]. Notice that, given that

preferences are strict, there exists ε > 0 such that F1,2(ε)−F1,2(−ε) = 0 (alternatively,

there exists ε > 0 such that [−ε, ε]∩ Y1,2 = ∅). Whenever ε appears in the subsequent

analysis, it is assumed to have this property.

If σ̂n is a threshold BNE of this restricted game for a given n > 0 —that is, if for

every y ∈ [−1, 1] there exists wn(y) such that when ci > wn(v1i − v2i ), then i prefers

to abstain and otherwise votes for the alternative, 1 or 2, that she prefers—we have
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that a voter, i, with utility difference yi > 0 is expected to vote for 1 with probability

g(wn(yi)) and to abstain with the remaining probability; and that a voter, i, with utility

difference yi < 0 is expected to vote for 2 with probability g(wn(yi)) and to abstain

with the remaining probability. Therefore, each voter believes that a random fellow

citizen will vote for 1 with probability pn1 =
∑

y∈Y1,2∩[0,1] g(wn(y))f1,2(y) and will vote

for 2 with probability pn2 =
∑

y∈Y1,2∩[−1,0] g(wn(y))f1,2(y). That is, i considers that the

number of fellow citizens that will vote for 1 is a draw from a Poisson distribution with

parameter n× pn1 and that the number of fellow citizens that will vote for 2 is a draw

from a Poisson distribution with parameter n× pn2 .

Hence, for an individual with yi ∈ [−1, 1] the expected utility difference from voting

for her preferred alternative h(yi) =

 1 if yi ≥ 0

2 if yi < 0
compared to abstaining, in the

threshold equilibrium σ̂n of our restricted game, is:

Ph(yi)(yi, ci, wn) =
∑

k∈N0
e
−n×pn

h(yi) (n×pn
h(yi)

)k

k!

e
−n×pn

ĥ(yi) (n×pn
ĥ(yi)

)k

k!
|yi|
2

+

+
∑

k∈N0
e
−n×pn

h(yi) (n×pn
h(yi)

)k

k!

e
−n×pn

ĥ(yi) (n×pn
ĥ(yi)

)k+1

(k+1)!
|yi|
2
− ci =

= |yi|
2

∑
k∈N0

e
−n×pn

h(yi) (n×pn
h(yi)

)k

k!

e
−n×pn

ĥ(yi) (n×pn
ĥ(yi)

)k

k!
(1 +

n×pn
ĥ(yi)

k+1
)− ci

where ĥ(yi) =

 1 if h(yi) = 2

2 if h(yi) = 1
.

Since, c > 1, a threshold equilibrium wn is such that for every y ∈ [−1, 1] we have

Ph(y)(y, wn(y), wn) = 0. Moreover, for y ∈ {−1, 1} we have:

wn(y) = 1
2

∑
k∈N0

e
−n×pn

h(y) (n×pn
h(y)

)k

k!

e
−n×pn

ĥ(y) (n×pn
ĥ(y)

)k

k!
(1 +

n×pn
ĥ(y)

k+1
)
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which implies that for every yi ≥ 0, wn(yi) = wn(1)yi and for every yi < 0, wn(yi) =

−wn(−1)yi, and thus:

pn1 =
∑

y∈Y1,2∩[0,1] g(wn(1)y)f1,2(y) and pn2 =
∑

y∈Y1,2∩[−1,0] g(−wn(−1)y)f1,2(y).

In other words, the issue of existence of a threshold equilibrium is reduced to the

issue of existence of a pair (wn(1), wn(−1)) ∈ [0, c]2 such that, for each y ∈ {−1, 1}:

ξh(y)(wn(1), wn(−1)) = 1
2

∑
k∈N0

e
−n×pn

h(y) (n×pn
h(y)

)k

k!

e
−n×pn

ĥ(y) (n×pn
ĥ(y)

)k

k!
(1 +

n×pn
ĥ(y)

k+1
) = wn(y).

Notice that Ξ(x, z) = {ξ1(x, z), ξ2(x, z)}, is a continuous mapping from [0, c]2 into

itself so it is guaranteed to have a fixed point by the Brouwer fixed point theorem for

every n > 0. This observation allows us to state our first lemma.

Lemma 1 The restriction of the game to {1, 2} ⊂M admits a threshold BNE for every

n > 0.

3.2 Unrestricted game

We now seek to establish that such a BNE of the reduced game is also a BNE of the

unrestricted game when the population is large. To this end, it suffi ces to establish that

there exists n̂ such that for every n > n̂, an individual i of any type prefers to behave

according to σ̂n when the other players are expected to behave according to σ̂n, even if

i can now vote for any of the m alternatives.

To achieve this we first need to show that in a threshold BNE of our restricted game,

σ̂n, as the size of the society grows, the expected number of votes for each of the two

alternatives becomes arbitrarily large.
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Lemma 2 Every threshold BNE of the restricted game is such that: limn→+∞ n×pn1 =

+∞ and limn→+∞ n× pn2 = +∞.

Proof. As a first step it is helpful to observe that limn→+∞wn(1) = limn→+∞wn(−1) =

0. Indeed, if there exists a sequence {nt}∞t=1 and C ∈ R++ such that wnt(1) > C for

every t ∈ N+, then limt→+∞ ξ
1(wnt(1), wnt(−1)) = 0 < C < wnt(1) leading to a contra-

diction with the equilibrium condition ξ1(wnt(1), wnt(−1)) = wnt(1).

It is fairly easy to see that if there exists a sequence {nt}∞t=1 and C,C ′ ∈ R++ such

that nt× pnt1 < C and nt× pnt2 < C ′ for every t ∈ N+, then there exists C ′′ ∈ R++ such

that:

∑
k∈N0

e−nt×p
nt
1 (nt×pnt1 )k
k!

e−nt×p
nt
2 (nt×pnt2 )k
k!

> C ′′

for every t ∈ N+. Hence, by the equilibrium condition ξ1(wnt(1), wnt(−1)) = wnt(1),

we also have wnt(1) > 1
2
C ′′ for every t ∈ N+. The last inequality implies that

limt→+∞ nt× pnt1 = +∞ which clearly contradicts the assumption that nt× pnt1 < C for

every t ∈ N+.

If there exists a sequence {nt}∞t=1 and C ∈ R++ such that nt × pnt1 < C for every

t ∈ N+ but there is no C ′ ∈ R++ such that nt × pnt2 < C ′ for every t ∈ N+, then there

exists a subsequence {n̂t}∞t=1 such that nt × pnt1 < C for every t ∈ N+ and nt × pnt2 is

monotonically increasing and diverging in t ∈ N+. Hence, for t suffi ciently large, it must

be the case that pn̂t1 < pn̂t2 and, by ξ
1(wn(1), wn(−1)) = wn(1) and ξ2(wn(1), wn(−1)) =

wn(−1), it must also be the case that w
n̂t

(−1) < w
n̂t

(1). Therefore:

n̂t×pn̂t2
n̂t×pn̂t1

=

∑
y∈Y1,2∩[−1,0]

g(−w
n̂t
(−1)y)f1,2(y)∑

y∈Y1,2∩[0,1]
g(w

n̂t
(1)y)f1,2(y)

≤ ν2g(wn̂t
(−1))

f1ming(wn̂t
(1)ε)
≤ ν2g(wn̂t

(1))

f1ming(wn̂t
(1)ε)

,
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for t suffi ciently large, where ν2 is the cardinality of Y1,2∩ [−1, 0], f 1min is the smallest

probability mass that corresponds to an element of Y1,2 ∩ [0, 1]; and ε ∈ R++ is such

that [−ε, ε] ∩ Y1,2 = ∅.

Now define a differentiable function φ : R++ → [0, c] such that φ(n̂t) = w
n̂t

(1)

for every t ∈ N+. We have that limx→+∞
ν2g(φ(x))

f1ming(φ(x)ε)
= limx→+∞

ν2g′(φ(x))φ′(x)
f1ming

′(φ(x)ε)φ′(x)ε
=

ν2g′(0)
f1ming

′(0)ε
= ν2

f1minε
∈ R++, which contradicts our assumption that limt→+∞

n̂t×pn̂t2
n̂t×pn̂t1

= +∞.

The above arguments are suffi cient to establish limn→+∞ n×pn1 = +∞ and limn→+∞ n×

pn2 = +∞.2�

Consider now an individual, i, who believes that the other voters will behave ac-

cording to σ̂n in this unrestricted game. For such an individual the expected utility

difference from voting for alternative h ∈ {3, 4, ...,m} compared to abstaining is at most

as large as:

∑
(k,k′)∈{(0,0),(0,1),(1,0),(1,1)}

e−n×p
n
1 (n×pn1 )k
k!

e−n×p
n
2 (n×pn2 )k

′

k′! − ci.

This is so because when all other voters are expected to vote either for 1 or 2,

then one, by voting for a third alternative, can: a) affect the outcome only if each of

alternatives 1 and 2 is voted by at most one other voter, and b) gain at most one unit

of utility by doing so (because vi ∈ [0, 1]m). We observe that:

∑
(k,k′)∈{(0,0),(0,1),(1,0),(1,1)}

e−n×p
n
1 (n×pn1 )k
k!

e−n×p
n
2 (n×pn2 )k

′

k′! − ci ≤ 4τ̃ − ci
2Notice that despite the fact that the expected number of voters diverges, the ratio of the expected

number of voters over the expected number of players that decide to abstain converges to zero. This
commonly happens in costly voting models unless there is aggregate uncertainty regarding voters’
preferences (see Myatt 2012).
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where:

τ̃ ∈ maxT

and:

T = { e
−n×pn1 (n×pn1 )k

k!

e−n×p
n
2 (n×pn2 )k

′

k′! |(k, k′) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}}.

That is, any individual i with yi ∈ Y1,2∩ [0, 1], conditional on not abstaining, prefers

to vote for 1 rather than any other alternative she likes more than alternative 2 if:

yi
2

∑
k∈N0

e−n×p
n
1 (n×pn1 )k
k!

e−n×p
n
2 (n×pn2 )k
k!

(1 +
n×pn2
k+1

) > 4τ̃ ⇒

⇒ yi
e
−n×pn1 (n×pn1 )

2

2!

e
−n×pn2 (n×pn2 )

2

2!
(1+

n×pn2
3

)

8τ̃
+yi

∑
k∈N0−{2}

e
−n×pn1 (n×pn1 )

k

k!

e
−n×pn2 (n×pn2 )

k

k!
(1+

n×pn2
k+1

)

8τ̃
> 1.

From Lemma 2 we have that limn→+∞(1 +
n×pn2
3

) = +∞. Moreover, by Lemma 2

and by the fact that yi > ε for every yi ∈ Y1,2 ∩ [0, 1], it follows that:

limn→+∞ yi
e
−n×pn1 (n×pn1 )

2

2!

e
−n×pn2 (n×pn2 )

2

2!

8τ
= +∞

for every τ ∈ T and yi ∈ Y1,2 ∩ [0, 1]. This confirms that for n suffi ciently large, the

threshold equilibrium of the restricted game is an equilibrium even when voters are free

to vote among any of the m > 2 alternatives. We summarize the above findings in the

lemma that follows.
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Lemma 3 There exists n̂ such that for every n > n̂, the threshold BNE of the restricted

game, σ̂n, is a BNE of the unrestricted game too.

Finally, we notice that in this BNE the ratio of the expected number of voters of

any pair of preference types (with identical ordinal preference regarding the two voted

policies), converges to the ratio of the "stakes" of these voters’types in the given two-

policy election, weighted by the share of these types in the overall population. Take

for instance two types characterized by y and y′ such that y > y′ > 0. The limit of the

ratio of the expected number of voters of these types, when n→ +∞, is equal to:

limwn(1)→0
g(wn(1)y)f1,2(y)

g(wn(1)y′)f1,2(y′)
= yf1,2(y)

y′f1,2(y′)
∈ R++.

Since this holds also for pairs of types such that voters of the first type like policy 1

more than any other policy, and voters of the second type like some third policy more

than policy 1, it follows that the ratio of sincere voters over strategic voters does not

diverge when n→ +∞. This constitutes the last step of our overall argument.

Lemma 4 In the identified BNE of the unrestricted game the share of strategic voters

does not vanish as the society grows arbitrarily large.

All the above establish that Duvergerian dynamics are not restricted to the case in

which voting is costless, and allow us to state a general theorem.

Theorem 1 When elections are held according to the plurality rule in large societies,

Duvergerian equilibria —i.e. two-party equilibria which involve a substantial level of

strategic voting—exist both when voting is costless/compulsory, and when voting is vol-

untary and costly.
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What appears to be the crucial determinant factor for the existence of Duvergerian

equilibria —both when voting is costless and when voting is costly— is the strictness

of preferences. Indeed, when a voter is indifferent between alternatives h and q and

strictly prefers some other alternative d, then even if all other voters are expected

to vote either h or q, this voter has incentives to vote d for suffi ciently small voting

costs. Hence, the existence result is equally general in both cases and subsequently the

Duvergerian prediction is proved to be relevant in a quite wide range of frameworks of

plurality rule elections.
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