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Abstract

This paper introduces the structural threshold regression model that allows for an endogeneous threshold

variable as well as for endogenous regressors. This model provides a parsimonious way of modeling

nonlinearities and has many potential applications in economics and finance. Our framework can

be viewed as a generalization of the simple threshold regression framework of Hansen (2000) and

Caner and Hansen (2004) to allow for the endogeneity of the threshold variable and regime specific

heteroskedasticity. Our estimation of the threshold parameter is based on a concentrated least squares

method that involves an inverse Mills ratio bias correction term in each regime. We derive its asymptotic

distribution and propose a method to construct bootstrap confidence intervals. We also provide inference

for the slope parameters based on GMM. Finally, we investigate the performance of the asymptotic

approximations and the bootstrap using a Monte Carlo simulation that indicates the applicability of

the method in finite samples.
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1 Introduction

One of the most interesting forms of nonlinear regression models with wide applications in economics

is the threshold regression model. The attractiveness of this model stems from the fact that it treats

the sample split value (threshold parameter) as unknown. That is, it internally sorts the data, on

the basis of some threshold determinant, into groups of observations each of which obeys the

same model. While threshold regression is parsimonious it also allows for increased flexibility in

functional form and at the same time is not as susceptible to curse of dimensionality problems as

nonparametric methods.

A crucial assumption in all the studies of the current literature is that the threshold variable is

exogenous. This assumption severely limits the usefulness of threshold regression models in practice,

since in economics many plausible threshold variables are endogenous. For example, Papageorgiou

(2002) organized countries into multiple growth regimes using the trade share, defined as the

ratio of imports plus exports to real GDP in 1985, as a threshold variable. Similarly, Tan (2010)

classified countries into development clubs using the average expropriation risk from 1984-97 as the

threshold variable. In each of these cases, there is strong evidence in the growth literature; see,

Frankel and Romer (1999) and Acemoglu, Johnson, and Robinson (2001), respectively, that the

proposed threshold variable is endogenous.

In this paper we introduce the Structural Threshold Regression (STR) model that allows for

endogeneity in the threshold variable as well as in the slope regressors. Our research is related

to several recent papers in the literature; see for example Hansen (2000) and Caner and Hansen

(2004), Seo and Linton (2007), Gonzalo and Wolf (2005), and Yu (2010, 2011). The main difference

of all these papers with our work is that they maintain the assumption that the threshold variable

is exogenous. As we will show, if the threshold variable is endogenous, the above approaches will

yield inconsistent slope coeffi cients for the two regimes. The reason for the bias is that, just as

in the limited dependent variable framework, a set of inverse Mills ratio bias correction terms is

required to restore the orthogonality of the errors.

Intuitively, the main strategy of this paper is to exploit the insight obtained from the limited

dependent variable literature (e.g., Heckman (1979)), and to relate the problem of having an

endogenous threshold variable with the analogous problem of having an endogenous dummy variable

or sample selection in the limited dependent variable framework. However, there is one important

difference. While in sample selection models, we observe the assignment of observations into regimes

but the (threshold) variable that drives this assignment is taken to be latent, here, it is the opposite;

we do not know which observations belong to which regime (i.e., we do not know the threshold

value), but we can observe the threshold variable. To put it differently, while endogenous dummy

models treat the threshold variable as unobserved and the sample split as observed (dummy), here
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we treat the sample split value as unknown and we estimate it.

Specifically, we propose to estimate the threshold parameter using a concentrated least squares

method and the slope estimates using 2SLS or GMM.We show the consistency of our estimators and

derive the corresponding asymptotic distributions. To do so, we cast STR as a threshold regression

model that is subject to cross-regime restrictions. Specifically, it imposes the restriction of having a

different inverse Mills ratio for each regime. Analyzing such a restricted threshold regression model

is nontrivial for two reasons. First, the estimates cannot be analyzed using results obtained regime

by regime in the presence of restrictions across regimes, and, second, the orthogonalized errors of

the structural model are regime specific heteroskedastic.

To overcome these problems we explore the relationship between the restricted and unrestricted

sum of squared errors. We show that the threshold estimate has the same properties with or

without restrictions, which implies that ignoring the restrictions will result in the same estimates

and inference for the threshold. Our finding is similar to the result of Perron and Qu (2006)

who consider change-point models with restrictions across regimes. This finding also implies that

existing methods as in Hansen (2000), Caner and Hansen (2004) that ignore in the endogeneity

in threshold will still yield consistent estimates for the threshold parameter. However, the story

is totally different for the estimates of the slope parameters, which suffer from bias when one

ignores the endogeneity in the threshold and omits the inverse Mills ratio terms. In terms of

inference the existing methods are problematic as they ignore the assumption of regime specific

heteroskedasticity, which is inherent in our framework.

In particular, the asymptotic distribution of the threshold estimate is nonstandard because the

threshold parameter is not identified under the null. STR employs the framework of Hansen (2000)

and Caner and Hansen (2004) who assume that the threshold effect diminishes as the sample

increases. This assumption is the key to overcoming a problem that was first pointed out by

Chan (1993). Chan shows that while the threshold estimate is superconsistent, the asymptotic

distribution of the threshold estimate turns out to be too complicated for inference as it depends

on nuisance parameters, including the marginal distribution of the regressors and all the regression

coeffi cients.

Under regime specific heteroskedastcity, the asymptotic distribution is further characterized by

parameters associated with regime specific heteroskedasticity as in the case of change-point models;

see Bai (1997). More precisely, it involves two independent Brownian motions with two different

scales and two different drifts. While these parameters are in principle estimable, inverting the

likelihood ratio to obtain a confidence interval is not trivial as it involves a nonlinear algorithm.

Instead, we employ a bootstrap inverted likelihood ratio approach. To examine the finite sample

properties of our estimators we provide a Monte Carlo analysis.
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In terms of the broader literature, our paper is related to Seo and Linton (2007) who allow the

threshold variable to be a linear index of observed variables. They avoid the assumption of the

shrinking threshold by proposing a smoothed least squares estimation strategy based on smoothing

the objective function in the sense of Horowitz’s smoothed maximum scored estimator. While they

show that their estimator exhibits asymptotic normality it depends on the choice of bandwidth.

Gonzalo and Wolf (2005) proposed subsampling to conduct inference in the context of threshold

autoregressive models. Yu (2010) explores bootstrap methods for the threshold regression. He

shows that while the nonparametric bootstrap is inconsistent the parametric bootstrap is consistent

for inference on the threshold point in discontinuous threshold regression. He also finds that the

asymptotic nonparametric bootstrap distribution of the threshold estimate depends on the sampling

path of the original data. Finally, Yu (2011) proposes a semiparametric empirical Bayes estimator

of the threshold parameter and shows that it is semiparametrically effi cient.

The paper is organized as follows. Section 2 describes the model and the setup. Section 3 derives

results for inference. Section 4 presents our Monte Carlo experiments. Section 5 concludes. In the

appendix we collect the proofs of the main results.

2 The Model

We assume weakly dependent data {yi, xi, qi, zi, ui}ni=1 where yi is real valued, xi is a p× 1 vector

of covariates, qi is a threshold variable, and zi is a l× 1 vector of instruments with l ≥ p. Consider
the following structural threshold regression model,

yi = β′1xi + ui, qi ≤ γ (2.1)

yi = β′2xi + ui, qi > γ (2.2)

where E(ui|zi) = 0. Equations (2.1) and (2.2) describe the relationship between the variables of

interest in each of the two regimes and qi is the threshold variable with γ being the sample split

(threshold) value. The reduced form equation that determines the threshold variable is analogous

to a selection equation that appears in the literature on limited dependent variable models; see

Heckman (1979). The main difference is that while limited dependent variable models treat qi as

latent and the sample split as observed, here we treat the sample split value as unknown and we

estimate it. The selection equation that determines which regime applies takes the form

qi = π′qzi + vqi (2.3)

where E(vqi|zi) = 0.
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Let us consider the following partition xi = (x′1i,x
′
2i)
′ where x1i are endogenous and x2i are

exogenous and the l × 1 vector of instrumental variables zi = (z′1i, z
′
2i)
′ where x2i ∈ zi. If both qi

and xi are exogenous then we get the threshold regression (TR) model studied by Hansen (2000).

If qi and x2i are exogenous and x1i is not a null set, then we get the instrumental variable threshold

regression (IVTR) model studied by Caner and Hansen (2004). If vqi = 0 then we get the smoothed

exogenous threshold model as in Seo and Linton (2005), which allows the threshold variable to be

a linear index of observed variables. In this paper we focus on the case where qi is endogenous and

the general case where x1i is not a null set.1

By defining the indicator function

I(qi ≤ γ) =

{
1 iff qi ≤ γ ⇔ vqi ≤ γ − z′iπq : Regime 1

0 iff qi > γ ⇔ vqi > γ − z′iπq : Regime 2
(2.4)

and I(qi > γ) = 1− I(qi ≤ γ), we can rewrite the structural model (2.1)-(2.2) as

yi = β′x1xiI(qi ≤ γ) + β′x2xiI(qi > γ) + ui (2.5)

The reduced form model, gxi ≡ gx(zi;πx) = E(xi|zi) = Π′xzi, is given by

xi = Π′xzi + vxi, (2.6)

where E(vxi|zi) = 0.2 For simplicity we assume that the error vxi is independent of the indicator

function I(qi ≤ γ).

Assuming joint normality of the errors conditionally on zi,(
ui

vqi

)
∼ N

((
0

0

)
,

(
σ2
u κ

κ 1

))
(2.7)

and using the properties of the truncated Normal distribution we can obtain the inverse Mills ratio

terms

E(vqi|zi, vqi ≤ γ − z′iπq) = λ1(γ − z′iπq) = −φ(γ − z′iπq)

Φ(γ − z′iπq)
(2.8)

and

E(vqi|zi, vqi > γ − z′iπq) = λ2(γ − z′iπq) =
φ(γ − z′iπq)

1− Φ(γ − z′iπq)
, (2.9)

1Note that we exclude (i) the special case of a continuous threshold model; see Hansen (2000) and Chan and Tsay
(1998) and (ii) the case that qi ∈ x1i. Our framework can be extended to consider these cases.

2Our framework can easily be extended to allow nonlinear reduced form models, such as a threshold model; see
for example Caner and Hansen (2004).
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where φ(·) and Φ(·) are the normal pdf and cdf, respectively. Using the assumption of joint

Normality (2.7) we can also get that ui = κvqi + εi, where εi is independent of vqi. Then, under

Regime 1 the conditional expectation becomes

E(ui|zi, qi ≤ γ) = E(ui|zi, vqi ≤ γ − z′iπq) = κE(vqi|zi, vqi ≤ γ − z′iπq) = κλ1(γ − z′iπq) (2.10)

since E(εi|zi, vqi ≤ γ − z′iπq) = 0. Similarly, under Regime 2 we get

E(ui|zi, qi > γ) = E(ui|zi, vqi > γ − z′iπq) = κE(vqi|zi, vqi > γ − z′iπq) = κλ2(γ − z′iπq) (2.11)

Define λ1i(γ) = λ1(γ− z′iπq) and λ2i(γ) = λ2(γ− z′iπq) and note that the independence of vxi with

I(qi ≤ γ) implies that E(xi|zi, I(qi ≤ γ)) = E(xi|zi). Next, using equations (2.1), (2.2), (2.10), and
(2.11) we obtain the following conditional expectations

E(yi|zi, qi ≤ γ) = β′x1E(xi|zi) + E(ui|zi, qi ≤ γ) = β′x1gxi + κλ1i(γ) (2.12)

E(yi|zi, qi > γ) = β′x2E(xi|zi) + E(ui|zi, qi > γ) = β′x2gxi + κλ2i(γ) (2.13)

that define the STR model

yi = β′x1gxi + κλ1i(γ) + ε1i, qi ≤ γ (2.14)

yi = β′x2gxi + κλ2i(γ) + ε2i, qi > γ (2.15)

where ε1i = β′x1vxi − κλ1i(γ) + ui and ε2i = β′x2vxi − κλ2i(γ) + ui.
3

Following Hansen (2000) and a suggestion from the change-point literature we assume a “small

threshold” effect. In particular, we assume that δxn = βx1 − βx2 and κ = κn will both tend to

zero slowly as n diverges. The latter assumption implies that the endogeneity bias κn vanishes as

n→∞ to ensure that the bias correction (i.e. the inverse Mills ratio terms) to the endogeneity of

the threshold will not be present when the model is linear (i.e. there is only one regime). Under this

framework, Hansen (2000) showed in the case without regime specific heteroskedasticity that the

threshold estimate has an asymptotic distribution free of nuisance parameters. As we show below

this assumption allows us to derive an asymptotic distribution of the threshold estimate that only

depends on parameters associated with regime specific heteroskedasticity that are, in principle,

estimable.
3Note that equations (2.12) and (2.13) hold even when one relaxes the assumption of Normality but with the

correction terms being unknown functions (depending on the error distributions). These functions can be estimated
by using a series approximation, or by using Robinson’s two-step partially linear estimator; see Li and Wooldridge
(2002).
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Let λi (γ) = λ1i (γ) I(qi ≤ γ) + λ2i (γ) I(qi > γ), βx = βx2, and εi = ε1iI(qi ≤ γ) + ε2iI(qi > γ).

We can then express (2.14) and (2.15) as

yi = g′xiβx + g′xiI(qi ≤ γ)δxn + λi(γ)κn + εi, (2.16)

where E(εi|zi) = 0.

A few remarks are in order. First, note that when the error structure in the two regimes (2.1) and

(2.2) is different u1 6= u2 then the slope coeffi cient of the inverse Mills ratio terms κ1 and κ2 can be

different across the two regimes κ1 6= κ2. Here, for simplicity we assume κ1 = κ2 but our results

carry over to the more general case. Second, when κ = 0, this model nests Caner and Hansen’s

IVTR model and if additionally xi is exogenous then it coincides with Hansen (2000)’s TR model.

In general, there are two main differences between STR and TR/IVTR. First, the inverse Mills

ratio bias correction term is omitted from either TR or IVTR and as we will be arguing below this

yields inconsistent estimates of the slope parameters βx1 and βx2. Second, the presence of different

inverse Mills ratio terms in each of the regimes implies that the error term of the STR model in

equation (2.16) is regime-specific heteroskedastic.

In the following section we propose a consistent profile estimation procedure for STR that takes

into account the inverse Mills ratio bias correction.

2.1 Estimation

We proceed in three steps. First, we estimate by LS the reduced form models (2.3) and

(2.6) to obtain π̂q and Π̂x, respectively. The fitted values are then given by q̂i = π′qzi and

x̂i = ĝxi = Π̂′xzi along with first stage residuals, v̂xi = xi − x̂i and v̂qi = qi − q̂, respectively.

We can also define the following functions of γ, λ̂1i(γ) = λ1(γ − z′iπ̂q), λ̂2i(γ) = λ2(γ − z′iπ̂q), and
λ̂i (γ) = λ̂1i (γ) I(qi ≤ γ) + λ̂2i (γ) I(qi > γ).

Second, we estimate the threshold parameter γ by minimizing a Concentrated Least Squares (CLS)

criterion

γ̃ = arg min
γ

Sn(γ) (2.17)

where

Sn(γ) =
n∑
i=1

(yi − ĝ′xiβx − ĝ′xiI(qi ≤ γ)δxn − λ̂i(γ)κn)2 (2.18)

Finally, once we obtain γ̃, we estimate the slope parameters by 2SLS or GMM. Notice that

conditional on γ, estimation in each regime mirrors the Heckman (1979) sample selection bias

correction model, the Heckit model. Let X be the matrix of stacked vectors xi(γ̃) = (x′i,x
′
iI(qi ≤
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γ̃), λi (γ̃))′. Similarly, let Z be the matrix of stacked vectors zi(γ̃) = (z′i, z
′
iI(qi ≤ γ̃), λi (γ̃)). Given

a weight matrix W we can define the class of GMM estimators for Θ = (β′x, δ
′
xn, κn)′

Θ̃ =
(
X′ZWZ′X

)−1
X′ZWZ′Y. (2.19)

When W = (Z′Z)−1 we obtain the 2SLS estimator Θ̃2SLS . The 2SLS residual is given by

ε̃i,2SLS = yi − xi(γ̃)′Θ̃2SLS . Define Σ̃ =
n∑
i=1

zi(γ̃)zi(γ̃)′ε̃i,2SLS ,. When W̃ = Σ̃−1 then we obtain

the effi cient GMM estimator, Θ̃GMM .

While from a computational standpoint our estimation strategy is similar to the one employed by

Caner and Hansen (2004) there is one key difference. The STR model includes different inverse

Mills ratio terms in each regime. To put it differently, STR imposes the exclusion restrictions across

the regimes that require that only λ1i(γ) appears in Regime 1 and only λ2i(γ) appears in Regime

2. As a result we cannot analyze the estimation problem using results obtained regime by regime.

In particular, we cannot decompose the sum of squared errors into two separable regime specific

terms due to overlaps. To overcome this problem we next recast the STR model in equation (2.16)

as a threshold regression subject to restrictions and exploit the relationship between restricted and

unrestricted estimation problems.

3 Threshold Regression with Restrictions

In this section we rewrite the STR model in equation (2.16) as a threshold regression subject

to restrictions. In particular, the unrestricted problem generalizes Caner and Hansen (2004)

by including both inverse Mills ratio terms in both regimes. We denote with “˜” the restricted

estimators and with “^”the unrestricted estimators.

Define the vector of inverse Mills ratio terms λi(γ) = (λ1i(γ), λ2i(γ))′ and the corresponding slope

parameters βλ1 = (κ11, κ12)′, βλ2 = (κ21, κ22)′. Let gi(γ) = (g′xi,λi(γ)′)′, β1 = (β′x1,β
′
λ1)′, and

β2 = (β′x2,β
′
λ2)′. Then the unrestricted STR model takes the form

yi = gi(γ)′I(qi ≤ γ)β1 + gi(γ)′I(qi > γ)β2 + ei, (3.20)

or more compactly in terms of Regime 1

yi = g′i(γ)β + g′i(γ)I(qi ≤ γ)δn + ei, (3.21)
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where β = β2 and δn = β1 − β2 and the (unrestricted) error term, ei, is given by

ei =
(
v′xiβx1 − λi(γ)′βλ1

)
I(qi ≤ γ) +

(
v′xiβx2 − λi(γ)′βλ2

)
I(qi > γ) + ui. (3.22)

Using consistent first stage estimates as in Section 2.1 we define ĝi(γ) = (ĝ′xi, λ̂i(γ)′)′. Then we

can estimate the threshold parameter γ by minimizing the unconstrained CLS problem

γ̂ = arg min
γ

SUn (γ) (3.23)

where

SUn (γ) =

n∑
i=1

(yi − ĝ′i(γ)β − ĝ′i(γ)I(qi ≤ γ)δn)2 (3.24)

It is easy to verify that the STR model in equation (2.16) is a special case of (3.20) under the

following restrictions

κ12 = κ21 = 0 (3.25)

and

κ11 = κ22 = κ. (3.26)

In general, define β∗ =
(
β′1,β

′
2

)′ and the restriction
R′β∗= ϑ (3.27)

with R a 2q × r matrix of rank r, ϑ a r dimensional vector of constants. Note that the criterion,
Sn(γ), in equation (2.18) is in fact the restricted sum of squared errors, SRn (γ) = Sn(γ). Then

estimation of the STR model in equation (2.16) is equivalent to the estimation of the unrestricted

model in equation (3.21) subject to (3.27). In terms of the slope parameters, we can exploit the

relationship between the restricted and unrestricted GMM estimators. Consider the unrestricted

GMM estimator β̂
∗
and a consistent weight matrix Ŵ. Then, the restricted GMM estimator for

β∗ is given by

β̃
∗

= β̂
∗ − ŴR

(
R′ŴR

)−1 (
R′β̂

∗ − ϑ
)
. (3.28)

As we show in Lemma 4 of the Appendix inference for the threshold estimator is the same with or

without restrictions. We note that Perron and Qu (2006) obtained a similar finding in the context

of change-point models. Therefore, we proceed by presenting the assumptions for the unrestricted

threshold regression.
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4 Inference

Define the sigma field Fi−1 generated by {zi−j ,vi−j , ui−j : j > 0} with vi−j = (v′xi−j , vqi−j)
′

and gi = sup
γ∈Γ
|gi (γ) | and gi|ei| = sup

γ∈Γ
|gi(γ)ei|. Then define the moment functional M(γ) =

E(gi(γ)gi(γ)′) and let fq(q) be the density function of q and γ0 denotes the true value of γ. Let

lim
γ↗γ0

and lim
γ↘γ0

, denote the limits from below and above the threshold γ0, respectively. Then, we

can define the following limits:

D1 = lim
γ↗γ0

D(γ) = lim
γ↗γ0

E (gi(γ)gi(γ)′|qi = γ)

D2 = lim
γ↘γ0

D(γ) = lim
γ↘γ0

E (gi(γ)gi(γ)′|qi = γ)

Ω1 = lim
γ↗γ0

Ω(γ) = lim
γ↗γ0

E
(
gi(γ)gi(γ)′e2

i |qi = γ
)

Ω2 = lim
γ↘γ0

Ω(γ) = lim
γ↘γ0

E
(
gi(γ)gi(γ)′e2

i |qi = γ
)

(1.1) {zi,gi (γ) , ui,vi} is strictly stationary and ergodic with ρ mixing coeffi cients
∞∑
m=1

ρ
1/2
m <∞,

(1.2) E(ui|Fi−1) = 0,

(1.3) E(vi|Fi−1) = 0,

(1.4) E|gi|4 <∞ and E|giei|4 <∞,

(1.5) for all γ ∈ Γ, E(|gi|4|qi = γ) ≤ C, lim
γ↘γ0

E(|gi(γ)|4e4
i |qi = γ) ≤ C, lim

γ↗γ0
E(|gi(γ)|4e4

i |qi = γ) ≤
C, and for some C <∞,

(1.6) for all γ ∈ Γ, the marginal distribution of the threshold variable, fq(γ) ≤ f < ∞ and it is

continuous at γ = γ0.

(1.7) D1(γ), D1(γ), Ω2(γ), and Ω2(γ) are semi-continuous at γ = γ0.

(1.8) δn = β1 − β2 = cn−α → 0, c 6= 0, α ∈ (0, 1/2),

(1.9) fq(γ) > 0, c′D1(γ)c > 0, c′Ω1(γ)c > 0, c′D2(γ)c > 0, c′Ω2(γ)c > 0

(1.10) for all γ ∈ Γ, M > M(γ) > 0.

(1.11) for all γ ∈ Γ , γ̃ = arg min
γ∈Γ

∑n
i=1(yi − g′i(γ)β − g′i(γ)I(qi ≤ γ)δn)2 exists and it is unique.

Furthermore, γ̂ lies in the interior of Γ, with Γ compact and convex.
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This set of assumptions is similar to Hansen (2000) and Caner and Hansen (2004). Assumption

1.1 excludes time trends and integrated processes. This assumption is trivially satisfied for i.i.d.

data. Assumptions 1.2 and 1.3 imply that we assume the correct specification of the conditional

mean in the structural equation and reduced form. Assumptions 1.4 and 1.5 are unconditional

and conditional moment bounds. Assumptions 1.6 and 1.7 require the threshold variable to have

a continuous distribution and the conditional variance E(e2
i |qi = γ) to be semi-continuous at γ0.

This is different from Hansen (2000) and Caner and Hansen (2004) as we are dealing with an

asymmetric two sided argmax distribution with different scales; see Stryhn (1996). Assumption 1.8

assumes that a “small threshold”asymptotic framework applies in the sense that δn =
(
δ′xn, δ

′
λn

)′
will tend to go to zero as n→∞. Assumptions 1.9 and 1.10 are full rank conditions needed to have
nondegenerate asymptotic distributions. Assumption 1.11 is an identification condition, which is

trivially satisfied given the monotonicity of the inverse Mills ratio terms. The above assumptions

are also suffi cient to guarantee that the first stage regressions are consistent for the true conditional

means i.e. r̂ = (r̂′xi, r̂
′
λi)
′= gi(γ)− ĝi(γ) = op(1).

4.1 Threshold Estimate

Proposition 4.1 Consistency of γ̂

Under Assumption 1, the estimator for γ obtained by minimizing the CLS criterion (2.18), γ̂, is

consistent. That is,

γ̂ →
p
γ0

The proof is given in the appendix.

Corollary 4.1 Under Assumption 1, the estimator for γ obtained by minimizing the CLS based
on a restricted projection, γ̃, is also consistent for γ0. The proof is immediate from the proof of

Proposition 4.1.

Remark 1 When we ignore the endogeneity in the threshold we would still get a consistent
estimate for γ0, regardless of whether there is endogeneity in the slope. This means that

the estimators of Hansen’s TR and Caner-Hansen’s IVTR that ignore the endogeneity in the

threshold will both yield consistent estimates for γ0.

Remark 2 Although the endogeneity in the threshold does not generate bias in the threshold
estimate, it does yield a bias for the estimation of the slope coeffi cients. As in the standard

omitted variable case, the bias will depend on the degree of correlation between the omitted

inverse Mills ratio term and the included regressors.
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To obtain the asymptotic distribution let us first define two independent standard Wiener processes

W1(s) and W2(s) defined on [0,∞).

Let

T (s) =

{
−1

2 |s|+W1(−s), if s ≤ 0

−1
2ξ|s|+

√
φW2(s) if s > 0

,

where ξ = c′D2c
c′D1c

, and ϕ = c′Ω2c
c′Ω1c

.4

Theorem 4.1 Asymptotic Distribution of γ̂

Under Assumption 1

n1−2α(γ̂ − γ0)
d−→ ωT (4.29)

where ω = c′Ω1c
(c′D1c)2f

and T ≡ arg max
−∞<s<∞

T (s). The proof is given in the appendix.

The distribution function of T is given by Bai (1997) in the context of change-point models.5 For

x < 0, the cdf of T is given by

P (T ≤ x) = −
√
|x|
2π

exp(−|x|
8

)− c exp(a|x|)Φ(−b
√
|x|) + (d− 2 +

|x|
2

)Φ(−
√
|x|
2

), (4.30)

where a = 1
2
ξ
ϕ(1 + ξ

ϕ), b = 1
2 + ξ

ϕ , c = ϕ(ϕ+2ξ)
ξ(ϕ+ξ) , and d = (ϕ+2ξ)2

ξ(ϕ+ξ) .

For x > 0,

P (T ≤ x) = 1 + ξ

√
x

2πϕ
exp(−ξ

2x

8ϕ
)− c exp(ax)Φ(−b

√
x) + (−d+ 2− ξ2x

2ϕ
)Φ(−ξ

2

√
x

ϕ
), (4.31)

where a = ϕ+ξ
2 , b = 2ϕ+ξ

2
√
ϕ , c = ξ(ξ+2ϕ)

ϕ(ϕ+ξ) , and d = (ξ+2ϕ)2

ϕ(ϕ+ξ) . The distribution is not symmetric when

ϕ 6= 1 or ξ 6= 1. In the case of ϕ = ξ = 1, we get the symmetric case; see for example Hansen

(2000).

Note that a simpler case occurs when we assume regime specific heteroskedasticity but

homoskedasticity within each regime. In this case we get Ω1 = σ2
e1D1, Ω2 = σ2

e2D2, where

σ2
e1 = E(e2

1i|q = γ), σ2
e2 = E(e2

2i|q = γ). This implies that ω =
σ2e1

(c′D1c)f , and ϕ =
σ2e2
σ2e1

ξ.

Furthermore, note that when D1 = D2 = D and Ω1 = Ω2 = Ω we obtain the case that excludes

regime specific heteroskedasticity. In this case we obtain ξ = 1, ϕ = 1, ω = c′Ωc
(c′Dc)2f

. Hence,

4The case of the asymmetric two sided Brownian motion argmax distribution with unequal variances was first
examined by Stryhn (1996).

5However, change-point models (i.e., qi = i) assume that the stochastic process of
n∑
i=1

gieiI{qi < γ} is a martingale

in γ, but this may not be true for the case of STR unless the data are independent across i.
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when we define W (s) = W1(s) for s ≤ 0 and W (s) = W2(s) for s > 0, we can easily see that

the distribution coincides with the two sided Wiener distribution established in Hansen (2000) and

Caner and Hansen (2004).

Next we investigate the construction of confidence intervals for γ0 using the distributional result in

Theorem 4.1. Let us first consider the pseudo Likelihood Ratio (LR) statistic

LRn (γ) = n
Sn(γ)− Sn(γ̂)

Sn(γ̂)
. (4.32)

Define

η2 =
c′Ω1c

(c′D1c)σ2
e

(4.33)

and

ψ = sup
−∞<s<∞

((
−1

2
|s|+W1(−s)

)
I(s < 0) +

(
−1

2
ξ|s|+

√
φW2(s)

)
I(s > 0

)
(4.34)

Then we have the following theorem.

Theorem 4.2 Asymptotic Distribution of LR(γ0)

Under Assumption 1, the asymptotic distribution of the likelihood ratio test under H0 is given by

LRn (γ0)
d−→ η2ψ (4.35)

where the distribution of ψ is P (ψ ≤ x) = (1− e−x/2)(1− e−ξx/2)
√
ϕ

The proof is given in the appendix.

Note that when we exclude regime specific heteroskedasticity we obtain ξ = ϕ = 1 and the

distribution is identical to the distribution of Hansen (2000) and Caner and Hansen (2004). Under

homoskedasticity within each regime the distribution of the asymptotic distribution of the LR

statistic is free of nuisance parameters and simplifies to LRn (γ) = nSn(γ)−Sn(γ̂)
Sn(γ̂)

d→ ψ since η2 = 1.

Define Γ̂ = {γ : LRn (γ) ≤ c} and let 1− a denote the desired asymptotic confidence level and let
c = cψ(1− a) be the critical value for ψ. Assuming α = 1, ξ = ϕ = 1, η2 = 1 and Gaussian errors

we can invoke Theorem 3 of Hansen (2000) to show that the likelihood ratio test is asymptotically

conservative. This implies that at least in this special case inferences based on the confidence region

Γ̂ are asymptotically valid.

The nuisance parameters, η2, ξ, and ϕ, are in principle estimable. They can be estimated for each

regime separately as in Section 3.4 of Hansen (2000). However, it is quite diffi cult to apply the test-
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inversion method of Hansen (2000) to construct an asymptotic confidence interval for γ0 because

there is no closed form solution for 1− a = (1− e−x/2)(1− e−ξx/2)
√
ϕ. Therefore we propose to use

a bootstrap inverted likelihood ratio approach that we describe next.

4.2 The Bootstrap

Given consistent estimates (δ̃xn, β̃x, κ̃n, ĝxi, λ̂i(γ̃)) we define the residuals of the STR model

ε̃i = yi − ĝ′xiβ̃x − ĝ′xiI(qi ≤ γ̃)δ̃xn − λ̂i(γ̃)κ̂n

Then following Hansen (1996) we fix the regressors and define the bootstrap dependent variable

ybi = εi (γ) ζi, where ζi is Normal i.i.d. and εi is the recentered residual ε̃i.

To construct bootstrap confidence intervals for γ we follow the test-inversion method of Hansen

(2000). Using the bootstrap estimates (δ̃
b

xn, β̃
b

x, κ̃
b
n, ĝ

b
xi, λ̂

b

i(γ̃)) we propose to use the following

non-pivotal bootstrap statisitic

LRbn (γ) = n
Sbn(γ)− Sbn(γ̂b)

Sbn(γ̂b)((η̂b1)2 + (η̂b2)2)
,

where (η̃b1)2 =
c′Ωb

1c

(c′Db
1c)(σbe)

2 = (η̃b)2 and (η̃b2)2 =
c′Ωb

2c

(c′Db
2c)(σbe)

2 .
6 We store likelihood ratio values

from bootstraps {LRb(1)
n (γ) , ...., LR

b(B)
n (γ)} and sort them to determine the a(B + 1)th LR value,

LRbn
(
cba
)
, as the critical value for the 1− a confidence level. Then we construct the bootstrapped

inverted LR confidence region for γ0, Γ̃b =
{
γ : LRn (γ) ≤ LRbn(cba)

}
, where LRn (γ) is computed

from the data.

One diffi culty with the above bootstrap procedure is that its validity relies heavily on the

assumptions of the underlying model and in particular on the assumption of the diminishing

threshold effect. Furthermore, it is not clear how one can distinguish whether a given dataset

follows the STR model with the diminishing or fixed threshold effect as in Chan (1993). This is a

problem because as Yu (2010) shows, the nonparametric bootstrap is invalid in the framework of

Chan (1993) and while the parametric bootstrap is valid it is typically not feasible as one needs

to specify a complete likelihood. Therefore, to overcome these problems we rely on the framework

of an asymptotically diminishing threshold effect, which guarantees the validity of bootstrap at

least under the assumption of regime specific homoskedasticity and Normal i.i.d. errors. The

validity of the bootstrap under the assumptions of an asymptotically diminishing threshold and

i.i.d. errors was established by Antoch et al (1995) in the context of change-point models. Using

6We have also investigated the alternative bootstrap statistic, LRbn (γ) = n
Sbn(γ)−S

b
n(γ̂

b)

Sbn(γ̂
b)(η̂b)2

. We have found similar

patterns, albeit a bit weaker interval coverage.
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similar arguments one can easily extend these results to threshold regression.7

4.3 Slope Parameters

Consider the unrestricted vector of covariates xi (γ0) = (x′i,λi(γ0)′)′. Then, the inference on the

slope parameters of the STR model can be viewed as the restricted problem of Caner and Hansen

(2004). Let us define the following matrices

Q1 = E(ziz
′
iI(qi ≤ γ0),Q2 = E(ziz

′
iI(qi > γ0)

S1 = E(zixi (γ0)′ I(qi ≤ γ0),S2 = E(zixi (γ0)′ I(qi > γ0)

Σ1 = E(ziz
′
iu

2
i I(qi ≤ γ0),Σ2 = E(ziz

′
iu

2
i I(qi > γ0)

V1 = (S′1Q
−1
1 S1)−1S′1Q

−1
1 Σ1Q

−1
1 S1(S′1Q1S1)−1

V2 = (S′2Q
−1
2 S2)−1S′2Q

−1
2 Σ2Q

−1
2 S2(S′2Q

−1
2 S2)−1

V =diag(V1,2SLS ,V2,2SLS)

Q =diag(Q1,Q2)

V1 = (S′1Σ
−1
1 S1)−1,V2 = (S′2Σ

−1
2 S2)−1

V=diag(V1,V2)

Then the following theorem establishes the asymptotic distributions of the (restricted) 2SLS and

GMM slope estimators of the STR model in equation (2.16)

Theorem 4.3 Under Assumption 1 and restrictions given in equation (3.27)

(a)
√
n(β̃

∗
2SLS − β∗)

d−→ N(0, Ṽ2SLS) (4.36)

where

Ṽ2SLS = V −Q−1R
(
R′Q−1R

)−1
R′V −VR

(
R′Q−1R

)−1
R′Q−1

+Q−1R
(
R′Q−1R

)−1
R′VR

(
R′Q−1R

)−1
R′Q−1. (4.37)

(b)
√
n(β̃

∗
GMM − β∗)

d−→ N(0, ṼGMM ) (4.38)

7However, the problem of proving the validity of bootstrap in the general case of regime specific heteroskedasticity
is left for future research.
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where

ṼGMM = V −VR
(
R′VR

)−1
R′V (4.39)

The proof is given in the appendix.

5 Monte Carlo

We proceed below with an exhaustive simulation that investigates the finite sample performance of

our estimators. We explore two sets of simulation experiments. The first set of simulations assume

an endogenous threshold variable but retain the assumption of an exogenous slope variable. In this

case we compare our results with TR of Hansen (2000). In the second set of simulations we allow

for endogeneity in both the threshold and the slope variable and compare our results with IVTR

of Caner and Hansen (2004).

Specifically, we assume that the threshold is determined by

qi = 2 + zqi + vqi,

where vqi is i.i.d. N(0, 1). The first set of simulations are based on the following threshold regression

Model 1 : yi = β1 + β2xi + (δ1 + δ2xi)I{qi ≤ 2}+ ui, (5.40)

where

zi = (wxi + (1− w)ςzi) /
√
w2 + (1− w)2 (5.41)

and

ui = 0.1ςui + κvqi, (5.42)

where ςzi and ςui are independent i.i.d. N(0, 1) random variables. The degree of endogeneity of the

threshold is controlled by κ. The degree of correlation between the instrumental variable zi and the

included exogenous slope variable xi is controlled by w. We fix κ = 0.95, w = 0.5, β1 = β2 = 1,

and δ1 = 0 and vary δ2 over the values of 1, 2, 3, 4, 5, which correspond to a range of small to large

threshold effects.

The second set of simulations are based on a model that includes both an endogenous, x1i, and an

exogenous slope variable, x2i,

Model 2: yi = β1 + β2x1i + β2x2i + (δ1 + δ2x1i + δ3x1i)I{qi ≤ 2}+ ui, (5.43)

x1i = zxi + vxi,
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where

zi = (wxi + (1− w)ςzi) /
√
w2 + (1− w)2, (5.44)

and

ui = (cxuvxi + cquvqi + (1− cxu − cqu)ςui) /
√
c2
xu + c2

qu + (1− cxu − cqu)2, (5.45)

where ςzi and ςui are independent i.i.d. N(0, 1) random variables. The degree of endogeneity

of the threshold, κ, is controlled by the correlation coeffi cient between ui and vqi given by

cqu/
√
c2
xu + c2

qu + (1− cxu − cqu)2. Similarly, the degree of endogeneity of x1 between ui and vxi

given by cxu/
√
c2
xu + c2

qu + (1− cxu − cqu)2. We fix cxu = cqu = 0.45, w = 0.5, β1 = β2 = 1, and

δ1 = δ2 = 0 and vary δ3 over the values of 1, 2, 3, 4, 5.

In both cases we consider sample sizes of 100, 250, 500, and 1000 using 1000 monte carlo replications

simulations. We also investigated different degrees of endogeneity and correlation between xi and

zi and our results are qualitatively similar. We then examined what happened when we allowed

for a threshold effect in all slope variables (including the intercept) as well as when we varied the

degree of endogeneity. We also considered various degrees of correlation between the instrumental

variables z′s and the exogenous slope variables x′2s. All the results are qualitatively similar and are

available upon request.

First, we discuss the monte carlo findings on the estimation of the threshold value, γ, based on the

STR model as described in Section 3.1. Table 1 presents the 5th, 50th, and 95th quantiles for the

distribution of the threshold estimate of γ̂ for Model 1 and Model 2 in equations (5.40) and (5.43),

respectively. We also compare our STR results with the results obtained if we ignore endogeneity

in the threshold and simply employ the TR of Hansen (2000) in the case of Model 1 and the IVTR

of Caner and Hansen (2004) in the case of Model 2. We see that the performance of the STR

estimator improves as the parameter of the threshold effect, δ2 or δ3, and/or the sample size, n,

increases. Specifically, the 50th quantile approaches the true threshold parameter, γ0 = 2, as the

sample size increases and the width of the distribution becomes smaller as δ increases. We also find

that both TR and IVTR, which both ignore the endogeneity in the threshold variable estimate the

threshold parameter accurately and exhibit similar behavior to STR. This finding verifies Corollary

4.1.

The results of Table 1 are also verified by Figures 1 and 2 that present the Gaussian kernel density

estimates, using Silverman’s bandwidth, for γ̂, over different sample sizes and different threshold

effects, respectively. Specifically, Figures 1(a)-(d) and Figures 1(e)-(h) present the density estimates

for Model 1 (using δ2 = 2) and Model 2 (using δ3 = 2), respectively, for n = 100, 250, 500, and

1000. Similarly, Figures 2(a)-(e) present the density estimates for Model 1 using n = 1000 and

δ2 = 1, 2, 3, 4, 5 and Figures 2(e)-(h) present the density estimates for Model 2 using n = 1000 and

δ3 = 1, 2, 3, 4, 5. The solid red line shows the STR estimates while the black dashed line shows the
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TR or IVTR estimates, which ignore endogeneity in the threshold variable. The similar behavior of

all three estimators is evident for all threshold effects and sample sizes. Furthermore, all estimators

exhibit effi ciency gains the larger the threshold effect and/or the larger the sample size.

Table 2 presents bootstrap coverage probabilities of a nominal 90% interval Γ̂∗ using 300 bootstrap

replications.8 We constructed Γ̂∗ using the parametric correction of heteroskedasticity within each

regime as explained in Section 3.4 of Hansen (2000). We find that the coverage probability increases

with either the size of the threshold effect or the sample size and becomes conservative for larger

values. In particular, while for a small threshold effect δ2 = 1 or δ3 = 1 the bootstrap coverage is far

from the nominal coverage, for a large threshold effect δ2 = 5 or δ3 = 5 the coverage is conservative

even for a small sample size of 100. Interestingly, our bootstrap findings are similar, albeit less

conservative, to the simulation findings of Hansen (2000) and Caner and Hansen (2004), which are

based on an asymptotic distribution, under the assumption of regime specific homoskedasticity.

Furthermore, our results are consistent with Theorem 3 of Hansen (2000), which suggests that

under the assumption of i.i.d. Gaussian errors and regime specific homoskedastacity the confidence

interval is asymptotically conservative for fixed parameter value as n becomes large.

Next, we discuss the monte carlo evidence on the estimation of the slope parameters, β2, δ2 (or

δ3) and κ. Table 3 presents the quantiles of the distributions of the slope coeffi cients β2 and δ2. In

Panel A we present the LS estimates for Model 1 and in Panel B we present the GMM estimates

for Model 2. As in the case of the threshold estimates we find that STR accurately estimates the

parameters for both models, for different sample sizes, and for different threshold effects. The

performance of both slope coeffi cient estimates improves as the threshold effect or the sample size

increases. In sharp contrast to the results for the threshold estimate, we find that TR in the case

of Model 1 and IVTR in the case of Model 2 yield substantial bias in the estimation of β2. More

precisely, while the true value of β2 = 1, in the case of Model 1, TR converges about the value

0.81 and in the case of Model 2, IVTR converges about the value of 0.74. Nevertheless the slope

estimates for δ2 and δ3 appear to be accurate implying that the bias in the estimation of β1 is of

an equal magnitude. These findings suggest that, consistent with the theory, the omission of the

inverse Mills ratio bias correction terms results in the estimators for the slope parameters of TR

and IVTR to be inconsistent.

Table 4 presents the quantiles of the coeffi cient of the inverse Mills ratio term and verifies that

STR accurately estimates, κ, for both models, for different sample sizes, and for different threshold

effects. The true value for κ is 0.95 for Model 1 and 0.70 for Model 2 as implied by equations (5.44)

and (5.45), respectively. In both cases, the 50th quantile approaches the true value of κ, as the

sample size increases and the width of the distribution becomes smaller as δ increases.

8More accurate results will need a much larger number of replications. Unfortunately, computational power
restricted our monte carlo experiments to 300 bootstrap replications.
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Finally, we discuss the inference of the slope parameters. The fact that the threshold estimator

enjoys a faster rate of convergence than the slope estimators implies that we can estimate the slope

coeffi cients without error by simply treating the threshold estimate as known as described in Section

2.1. In the case of Model 2, Theorem 4.3 shows that the GMM slope estimates are asymptotically

normal and asymptotic standard errors can be computed by consistently estimating the asymptotic

covariance matrix. It is also easy to show that in the case of Model 1, the LS estimates are also

asymptotically normal. This implies that we can construct conventional asymptotic confidence

intervals using the normal approximation. As in the case of Caner and Hansen (2004) we focus on

the threshold effect parameter and report the nominal 95% confidence interval coverage for Models

1 and 2 in Table 5. Generally, coverage improves as the sample size increases and especially as the

threshold effect becomes larger. However, coverage is rather poor for a small threshold effect δ3 = 1

in the case of Model 2. In principle, one can employ a bootstrap version of the Bonferroni-type

approach, which is employed in Caner and Hansen (2004), in order to account for the uncertainty

concerning γ. One diffi culty is that the asymptotic distribution of the threshold estimator in the

case of STR is not practical (as explained in Section 4.1) and therefore a Bonferroni-type approach

will have to rely on bootstrap approximation. However, such an approach would be extremely

computationally intensive, and it is not clear how practical it would be to implement in applied

settings. We plan to follow up on this issue in future research.

6 Conclusion

In this paper we introduce the Structural Threshold Regression (STR) model that allows for the

endogeneity of the threshold variable as well as the slope regressors. We study a concentrated

least squares estimator that deals with the problem of endogeneity in the threshold variable by

including a correction term based on the inverse Mills ratios in each regime as well as a GMM

estimator for the slope parameters. We show that our estimators are consistent and derive their

asymptotic distributions. Our monte carlo simulation experiments demonstrate the good finite

sample properties of our estimators.

19



References

[1] Antoch, J., M. Huskova, and N. Veraverbeke, (1995), Change-point Problem and Bootstrap,

Journal of Nonparametric Statistics, 5, 123-144.

[2] Acemoglu, D. Johnson, S. and J. A. Robinson, (2001), “The Colonial Origins of Comparative

Development: An Empirical Investigation,”American Economic Review, 91, 1369-1401.

[3] Bai, M., (1997), “Estimation of a Change Point in Multiple Regression Models,”The Review

of Economics and Statistics, 79, 551-563.

[4] Caner, M. and B. Hansen, (2004), “Instrumental Variable Estimation of a Threshold Model,”

Econometric Theory, 20, 813-843.

[5] Chan, K. S., (1993), “Consistency and Limiting Distribution of the Least Squares Estimator

of a Threshold Autoregressive Model,”The Annals of Statistics, 21, 520-533.

[6] Chan, K. S., and R. S. Tsay, (1998), “Limiting Properties of the Least Squares Estimator of

a Continuous Threshold Autoregressive Model,”Biometrika, 85, 413-426.

[7] Frankel, J. and D. Romer, (1999), “Does Trade Cause Growth?,”American Economic Review,

89, 3, 379-399.

[8] Gonzalo, J. and M.Wolf, (2005), “Subsampling Inference in Threshold Autoregressive Models,”

Journal of Econometrics, 127, 2, 201-224.

[9] Hansen, B. E., (2000), “Sample Splitting and Threshold Estimation,” Econometrica, 68, 3,

575-604.

[10] Heckman, J., (1979), “Sample Selection Bias as a Specification Error,”Econometrica, 47, 1,

153-161.

[11] Li , Q. and J. Wooldridge, (2002) “Semiparametric estimation of partially linear models for

dependent data with generated regressors,”Econometric Theory, 18, 625-645.

[12] Papageorgiou, C., (2002), “Trade as a Threshold Variable for Multiple Regimes,”Economics

Letters, 77, 85-91.

[13] Perron, P. and Z. Qu, (2006), “Estimating Restricted Structural Change Models,”Journal of

Econometrics, 134, 372-399.

[14] Seo, M. H. and O. Linton, (2007), “A Smoothed Least Squares Estimator For Threshold

Regression Models,”Journal of Econometrics, 141, 2, 704-735.

20



[15] Stryhn, H., (1996), “The Location of the Maximum of Asymmetric Two-Sided Brownian

Motion with Triangular Drift,”Statistics and Probability Letters, 29, 279-284.

[16] Tan, C. M., (2009), “No One True Path: Uncovering the Interplay Between

Geography, Institutions, and Fractionalization in Economic Development,”Journal of Applied

Econometrics, 25, 7, 1100-1127.

[17] Van der Vaart, A. W., (1998), “Asymptotic Statistics,”Cambridge University Press.

[18] Van der Vaart, A. W. and J. A. Wellner, (1996), “Weak Convergence and Empirical Processes,”

Springer.

[19] Yu P., (2010a), “Bootstrap in Threshold Regression,”University of Auckland, mimeo.

[20] Yu P., (2010b), “Threshold Regression with Weak and Strong Identifications,”University of

Auckland, mimeo.

[21] Yu P., (2011a), “Likelihood Estimation and Inference in Threshold Regression,”University of

Auckland, mimeo.

[22] Yu P., (2011b), “Adaptive Estimation of the Threshold Point in Threshold Regression,”

University of Auckland, mimeo.

A Appendix

The model in matrix notation

Recall that gi(γ) = (g′xi, λ1i (γ) , λ2i (γ))′. Define the regime specific matrix Gγ(γ) =

(Gx,γ ,Λ1,γ (γ) ,Λ2,γ (γ)) by stacking gγi(γ) = (g′xiI(qi ≤ γ), λ1i (γ) I(qi ≤ γ), λ2i (γ) I(qi ≤ γ))′.

Similarly, we can define its orthogonal matrix, G⊥(γ) = (Gx,⊥,Λ1,⊥ (γ) ,Λ2,⊥ (γ)). Let Y and e

be the stacked vectors of yi and ei, respectively. Then we can write (3.21) as follows.

Y = G(γ0)β + G0(γ0)δn+e (A.1)

or

Y = G∗(γ)β∗ + e (A.2)

where G∗(γ) = (Gγ(γ),G⊥(γ)) and β∗ = (β′1,β
′
2)′.

Let us now define the projection matrices by first noting that x̂i = ĝxi so that Ĝx = X̂. Let

X̂γ(γ) = (X̂γ , Λ̂1,γ (γ) , Λ̂2,γ (γ)) be the stacked vector of x̂γi(γ) = (x̂′iI(qi ≤ γ), λ̂1,i (γ) I(qi ≤
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γ), λ̂2,i (γ) I(qi ≤ γ))′ and similarly define its orthogonal matrix X̂⊥(γ) = (X̂⊥, Λ̂1,⊥ (γ) , Λ̂2,⊥ (γ)).

We can then define the projections Pγ (γ) = X̂γ(γ)(X̂γ(γ)′X̂γ(γ))−1X̂γ(γ), P⊥ (γ) =

X̂⊥(γ)(X̂⊥(γ)′X̂⊥(γ))−1X̂⊥(γ)′, and P∗ (γ)=X̂∗(γ)(X̂∗(γ)′X̂∗(γ))−1X̂∗(γ)′ where X̂∗(γ) =

(X̂γ(γ), X̂⊥(γ)) such that P∗ (γ) = Pγ (γ) + P⊥ (γ).

Finally, let us also define the second stage residual êi = r̂′xβ + ei and its vector form ê = r̂xβ + e.

�

LEMMA 1. For some B <∞ and γ ≤ γ′ ≤ γ ≤ γ and r ≤ 4, uniformly in γ

Ehri (γ, γ
′) ≤ B|γ − γ′| (A.3)

Ekri (γ, γ
′) ≤ B|γ − γ′| (A.4)

Proof of Lemma 1.

Define di(γ) = I{qi≤γ} and d
⊥
i (γ) = I{qi>γ}. Define hi(γ, γ

′) = | (hi(γ)− hi(γ′)) ei| and ki(γ, γ′) =

| (hi(γ)− hi(γ′)) |. In the case of the STR model in equation (2.16) hi(γ) = (gidi(γ), λi(γ)) and

thus hi(γ, γ′) takes the form

hi(γ, γ
′) =

(
|giεi||di(γ)− di(γ′)|
|λi(γ)εi − λi(γ′)εi|

)

The first argument in our hi(γ, γ′) is the same as Hansen (2000) and Caner and Hansen (2004) so

it is suffi cient to show that

E|λi(γ)εi − λi(γ′)εi|r ≤ B|γ − γ′|λ

E|λi(γ)εi − λi(γ′)εi|r =

E| ((λ2i(γ)− λ2i(γ
′)) + (λ1i(γ)di(γ)− λ1i(γ

′)di(γ′))− (λ2i(γ)di(γ)− λ2i(γ
′)di(γ′))) εi|r ≤

(E| (λ2i(γ)− λ2i(γ
′)) εi|r)1/r + (E| (λ1i(γ)di(γ)− λ1i(γ

′)di(γ′)) εi|r)1/r

+ (E|(λ2i(γ)di(γ)− λ2i(γ
′)di(γ′))εi|r)1/r ≤(

E|
(
λ2i − λ2i

)
εi|r
)1/r

+
(
E|(λ1i − λ1i)εi(di(γ)− di(γ′)|r

)1/r
+
(
E|(λ2i − λ2i)εi(di(γ)− di(γ′)|r

)1/r
.

The last inequality is due to the monotonicity of λ1i(γ) and λ2i(γ). Then by Lemma A1 of Hansen

(2000) it follows that

E|λi(γ)εi − λi(γ′)εi|r ≤ C1 + C2 |γ − γ′|+ C3 |γ − γ′| ≤ B |γ − γ′|.

�
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LEMMA 2. Uniformly in γ ∈ Γ as n −→∞

1

n
X̂∗(γ)′X̂∗(γ) =

1

n

n∑
i=1

x̂∗i (γ)x̂∗i (γ)′
p−→M(γ) (A.5)

1

n
X̂∗(γ0)′G∗(γ0) =

1

n

n∑
i=1

x̂∗i (γ)x̂∗i (γ)′
p−→M(γ0) (A.6)

1√
n

X̂∗(γ)′ê =
1√
n

n∑
i=1

x̂∗i (γ)êi = Op(1) (A.7)

Proof of Lemma 2.

To show (A.5) note that

1
nX̂γ(γ)′X̂γ(γ)

=


1
nX̂′γX̂γ

1
nX̂′γΛ̂1γ (γ) 1

nX̂′γΛ̂2γ (γ)
1
nΛ̂1γ (γ)′ X̂γ

1
nΛ̂1γ (γ)′ Λ̂1γ (γ) 1

nΛ̂1γ (γ)′ Λ̂2γ (γ)
1
nΛ̂2γ (γ)′ X̂γ

1
nΛ̂2γ (γ)′ Λ̂1γ (γ) 1

nΛ̂2γ (γ)′ Λ̂2γ (γ)



=


1
n

∑
i

(x̂ix̂
′
iI(qi ≤ γ)) 1

n

∑
i
λ̂1i (γ) x̂iI(qi ≤ γ) 1

n

∑
i
λ̂2i (γ) x̂iI(qi ≤ γ)

1
n

∑
i
λ̂1i (γ) x̂′iI(qi ≤ γ)) 1

n

∑
i

(λ̂1i (γ))2I(qi ≤ γ) 1
n

∑
i
λ̂1i (γ) λ̂2i (γ) I(qi ≤ γ)

1
n

∑
i
λ̂2i (γ) x̂′iI(qi ≤ γ)) 1

n

∑
i
λ̂1i (γ) λ̂2i (γ) I(qi ≤ γ) 1

n

∑
i

(λ̂2i (γ))2I(qi ≤ γ)

 and

recall that x̂i = ĝxi = gxi − r̂xi, λ̂i (γ) = (λ̂1i (γ) , λ̂2i (γ)), λ̂1i (γ) = λ1i (γ) − r̂λ1i, and

λ̂2i (γ) = λ2i (γ)− r̂λ2i.

First note that 1
n

∑
i

(x̂ix̂
′
iI(qi ≤ γ))

p→ E (gig
′
iI(qi ≤ γ)) follows from Caner and Hansen (2004)

and Lemma 1 of Hansen (1996). Since the first stage regressions are consistently estimated, from

Lemma 1 of Hansen (1996) we get for j = 1, 2

1
n

∑
i
λ̂ji (γ) x̂iI(qi ≤ γ) = 1

n

∑
i
λ̂ji (γ) g′iI(qi ≤ γ)− 1

n

∑
i

r̂xiλ̂ji (γ) I(qi ≤ γ)

= 1
n

∑
i
λji (γ) g′iI(qi ≤ γ)− 1

n

∑
i
r̂λjig

′
iI(qi ≤ γ)

− 1
n

∑
i

r̂xiλji (γ) I(qi ≤ γ) + 1
n

∑
i

r̂xir̂λjiI(qi ≤ γ)

1
n

∑
i

(λ̂ji (γ))2I(qi ≤ γ) = 1
n

∑
i

(λji (γ))2 I(qi ≤ γ)− 2 1
n

∑
i
λji (γ) r̂λjiI(qi ≤ γ) + 1

n

∑
i
r̂2
λji
I(qi ≤ γ)

Similarly, we can show that

1
n

∑
i
λ̂1i (γ) λ̂2i (γ) I(qi ≤ γ) = 1

n

∑
i
λ1i (γ)λ2i (γ) I(qi ≤ γ)− 1

n

∑
i
λ1i (γ) r̂λ1iI(qi ≤ γ)

− 1
n

∑
i
λ2i (γ) r̂λ2iI(qi ≤ γ) + 1

n

∑
i
r̂λ1ir̂λ2iI(qi ≤ γ)
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Therefore, uniformly in γ ∈ Γ, 1
nX̂γ(γ)′X̂γ(γ)

p−→ E(gγi(γ)gγi(γ)′) = Mγ(γ), where

Mγ(γ) =

 E (gig
′
iI(qi ≤ γ)) E(λ1i (γ) giI(qi ≤ γ)) E(λ2i (γ) giI(qi ≤ γ))

E(λ1i (γ) g′iI(qi ≤ γ)) E (λ1i (γ))2 I(qi ≤ γ) Eλ1i (γ)λ2i (γ) I(qi ≤ γ)

E(λ2i (γ) g′iI(qi ≤ γ)) E(λ2i (γ)λ1i (γ) I(qi ≤ γ)) E (λ2i (γ))2 I(qi ≤ γ)


Similarly we can show that, 1

nX̂⊥(γ)′X̂⊥(γ)
p−→ E(g⊥i(γ)g⊥i(γ)′) = M⊥(γ). Then, we get (A.5)

1

n
X̂∗(γ)′X̂∗(γ)

p−→M(γ) =

(
Mγ(γ) 0

0 M⊥(γ)

)

(A.6) follows similarly. We now show (A.7).

First note that 1
n

∑
i

(xiê
′
iI(qi ≤ γ)) = Op(1) follows from Caner and Hansen (2004). Second, from

Lemma A.4 of Hansen (2000) and Theorem 1 of Hansen (1996) we can obtain for j = 1, 2

1
n

∑
i
λ̂ji (γ) ê′iI(qi ≤ γ)) = 1

n

∑
i
λji (γ) ê′iI(qi ≤ γ)− 1

n

∑
i
r̂λjiê

′
iI(qi ≤ γ)

= 1
n

∑
i
λji (γ)β′r̂xiI(qi ≤ γ) + 1

n

∑
i
λji (γ) e′iI(qi ≤ γ)

− 1
n

∑
i
r̂λjiβ

′r̂xiI(qi ≤ γ)− 1
n

∑
i
r̂λjieiI(qi ≤ γ)

= Op(1)

Then,

1√
n

X̂γ(γ)′ê =


1
n

∑
i

x̂iêiI(qi ≤ γ)

1
n

∑
i

(λ̂1i (γ) ê′iI(qi ≤ γ))

1
n

∑
i

(λ̂2i (γ) ê′iI(qi ≤ γ))

 p−→ Op(1)

Similarly, we can show that 1√
n
X̂⊥(γ)′ê

p−→ Op(1) and hence 1√
n
X̂∗(γ)′ê

p−→ Op(1).

�

Proof of Proposition 1.

The proof proceeds as follows. First, we show that γ̂ is consistent for the unrestricted problem

following the proof strategy of Caner and Hansen (2004). Then, we show that the same estimator

has to be consistent for the restricted problem.
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Define ê = r̂β + e. Given that G (γ) = Ĝ (γ) + V̂ and Ĝ (γ) = X̂(γ) is in the span of X̂∗(γ) then

(I−P∗ (γ))G (γ) = (I−P∗ (γ))r̂ and

(I−P∗ (γ))Y = (I−P∗ (γ))(G(γ0)β + G0(γ0)δn + ê)

Then

SUn (γ) = Y′(I−P∗ (γ))Y (A.8)

= (n−αc′G0(γ0)′ + ê′)(I−P∗ (γ))(G0(γ0)n−αc + ê) (A.9)

= (n−αc′G0(γ0)′ + ê′)(G0(γ0)n−αc + ê)

−(n−αc′G0(γ0)′ + ê′)P∗ (γ) (G0(γ0)n−αc + ê) (A.10)

Because the first term in the last equality does not depend on γ, and γ̂ minimizes SUn (γ), we can

equivalently write that γ̂ maximizes S∗n(γ) where

S∗Un (γ) = n−1+2α(n−αc′G0(γ0)′ + ê′)P∗ (γ) (G0(γ0)n−αc + ê)

= n−1+2αê′P∗ (γ) ê + 2n−1+αc′G0(γ0)′P∗ (γ) ê + n−1c′G0(γ0)′P∗ (γ) G0(γ0)c

Let us now examine S∗Un (γ) for γ ∈ (γ0, γ]. Note that G0(γ0)′P⊥ (γ) = 0

From Lemma 2 we can show that for all γ ∈ Γ,

n−1+2αê′Pγ (γ) ê = n−1+2α( 1√
n
ê′X̂γ(γ))( 1

nX̂γ(γ)′X̂γ(γ))−1( 1√
n
X̂γ(γ)′ê)

p−→ 0

n−1+2αê′P⊥(γ)ê = n2α−1( 1√
n
ê′X̂⊥(γ))( 1

nX̂⊥(γ)′X̂⊥(γ))−1( 1√
n
X̂⊥(γ)′ê)

p−→ 0

and

n−1+αc′δG0(γ0)′Pγ (γ) ê = nα−1/2( 1
nG0(γ0)′X̂0(γ))( 1

nX̂γ(γ)′X̂γ(γ))−1( 1√
n
X̂γ(γ)′ê)

p−→ 0

So

S∗Un (γ) = n−1+2αê′Pγ (γ) ê + n−1+2αê′P⊥ (γ) ê + 2n−1+αc′G0(γ0)′Pγ (γ) ê

+n−1c′G0(γ0)′Pγ (γ) G0(γ0)c.

Before examining the last two terms let us calculate 1
nX̂1(γ)′G(γ0) and 1

nX̂2(γ)′G(γ0)
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1
nX̂γ(γ)′G0(γ0) =


1
nX̂′γGx,0

1
nX̂′γΛ1,0(γ0) 1

nX̂′γΛ2,0(γ0)
1
nΛ̂1,γ (γ)′Gx,0

1
nΛ̂1,γ (γ)′Λ1,0(γ0) 1

nΛ̂1,γ (γ)′Λ2,0(γ0)
1
nΛ̂2,γ (γ)′Gx,0

1
nΛ̂2,γ (γ)′Λ1,0(γ0) 1

nΛ̂2,γ (γ)′Λ2,0(γ0)



=


1
n

∑
i

g′xix̂iI(qi ≤ γ0) 1
n

∑
i
λ1,i (γ0) x̂iI(qi ≤ γ0) 1

n

∑
i
λ2,i (γ0) x̂iI(qi ≤ γ0)

1
n

∑
i

g′xiλ̂1i (γ) I(qi ≤ γ0) 1
n

∑
i
λ1i (γ0) λ̂1i (γ) I(qi ≤ γ) 1

n

∑
i
λ2i (γ0) λ̂1i (γ) I(qi ≤ γ0)

1
n

∑
i

g′xiλ̂2i (γ) I(qi ≤ γ0) 1
n

∑
i
λ1i (γ0) λ̂2i (γ) I(qi ≤ γ0) 1

n

∑
i
λ2i (γ0) λ̂2i (γ) I(qi ≤ γ0)



→

 E(gxig
′
xiI(qi ≤ γ0) E(gxiλ1i (γ0) I(qi ≤ γ0)) E(λ2,i (γ0) gxiI(qi ≤ γ0))

E(λ1i (γ) g′xiI(qi ≤ γ0)) E(λ1i (γ0)λ1i (γ) I(qi ≤ γ0)) E(λ2i (γ0)λ1i (γ) I(qi ≤ γ0))

E(λ2i (γ) g′xiI(qi ≤ γ0)) E(λ1i (γ0)λ2i (γ) I(qi ≤ γ0)) E(λ2i (γ0)λ2i (γ) I(qi ≤ γ0))


≡M0(γ0, γ).

Note that when γ = γ0, M0(γ0, γ0) = M0(γ0) as it is in the case of Hansen (2000) and Caner and

Hansen (2004).

Therefore,

1

n
G0(γ0)′Pγ (γ) G0(γ0)→M0(γ0, γ)′Mγ(γ)−1M0(γ0, γ)

Then, uniformly for γ ∈ (γ0, γ] we get

S∗Un (γ)→ c′M0(γ0, γ)′Mγ(γ)−1M0(γ0, γ)c (A.11)

by a Glivenko-Cantelli theorem for stationary ergodic processes.

Given the monotonicity of the inverse Mills ratio, M0(γ0, γ0 + ε) ≥ M0(γ0) for any ε > 0 with

equality at γ = γ0. To see this note that for ε > 0, λ1i (γ0 + ε) > λ1i (γ0) and λ2i (γ0 + ε) > λ2i (γ0).

Therefore, we need to show that S∗Un (γ) < M0(γ0) for any γ ∈ (γ0, γ]. It is suffi cient to show that

M0(γ0)′Mγ(γ)−1M0(γ0) < M0(γ0), which reduces to Mγ(γ) > M0(γ0) for any γ ∈ (γ0, γ].

To see this recall that Mγ(γ) = E
(
gγi(γ)g′γi(γ)

)
. Then,

Mε(γ0 + ε)−M0(γ0) =
γ0+ε∫
γ0

E(gi(t)gi(t)
′|q = t)fq(t)dt

> inf
γ0<γ≤γ0+ε

Egi(γ)g′i(γ))|q = γ)

(
γ0+ε∫
γ0

f(ν)dν

)

= inf
γ0<γ≤γ0+ε

D1(γ)

(
γ0+ε∫
γ0

f(ν)dν

)
> 0
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Therefore, S∗(γ) is uniquely maximized at γ0, for γ ∈ (γ0, γ]. The case of γ ∈ [γ, γ0] can be proved

using symmetric arguments.

Thus, the conditions of Theorem 5.7 by Van der Vaart (1998) are satisfied. Given the uniform

convergence of S∗n(γ), i.e. sup
γ∈Γ
|S∗Un (γ) − S∗Un (γ0)| p→ 0 as n −→ ∞, the compactness of Γ, and the

fact that S∗Un (γ) is uniquely maximized at γ0, we can have sup
|γ−γ0|≥ε

S∗Un (γ) < S∗Un (γ0) for every

ε > 0. Therefore, it follows that γ̂
p→ γ0 for the unrestricted problem.

Assuming the restrictions in equation (3.27) hold we have

SRn (γ̂) ≤ SRn (γ0) ≤ SUn (γ) (A.12)

When γ̂ is not consistent it must be the case that SRn (γ̂) ≥ SUn (γ) + C||β10 − β1||2 + ||β20 −
β2||2 + op(1), where β10 and β20 are the true slope coeffi cients for the two regimes. But since

SUn (γ̂) ≤ SRn (γ̂) we also have SRn (γ̂) ≥ SUn (γ) + C||β10 − β1||2 + ||β20 − β2||2 + op(1), which yields

a contradition with (A.12). This completes the proof.

�

LEMMA 3. an(γ̂ − γ0) = Op(1).

Proof of Lemma 3.

Note that SRn (γ) = SUn (γ) + (ϑ−R′β∗)′(R′(X̂∗(γ)′X̂∗(γ))−1R)−1(ϑ−R′β∗). The proof proceeds

in steps. First we establish that the unrestricted and the restricted problems share the same rate

of convergence.

Let X̂∗(γ) denote the partitioned regressor matrix associated with the unrestricted sum of squared

residuals SUn (γ), threshold value γ, and estimated coeffi cients β̂
∗
γ . Similarly, let X̂∗(γ0) denote the

partitioned regressor matrix associated with the unrestricted sum of squared residuals SUn (γ0),

threshold value γ0 and estimated coeffi cients β̂
∗
γ0
. We also use the subscript 0 to denote the

parameter at the true value.

Using Lemma A.2 of Perron and Qu (2006) and the joint events A.24-A.32 of Caner and Hansen

(2004) we can deduce that

(X̂∗(γ)′X̂∗(γ))−1 = (X̂∗(γ0)′X̂∗(γ0))−1 +Op(
|γ − γ0|
n2

) (A.13)

and

(R′(X̂∗(γ)′X̂∗(γ))−1R)−1 = (R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1 +Op(|γ − γ0|). (A.14)
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Consider

β̂
∗
∆ = β̂

∗
γ − β̂

∗
γ0

= (X̂∗(γ)′X̂∗(γ))−1X̂∗(γ)′(G∗(γ0)β∗0 + e)−(X̂∗(γ0)′X̂∗(γ0))−1X̂∗(γ0)′(G∗(γ0)β∗0 + e)

= (X̂∗(γ0)′X̂∗(γ0))−1((X̂∗(γ)− X̂∗(γ0))′G∗(γ0)β∗0

+(X̂∗(γ0)′X̂∗(γ0))−1((X̂∗(γ)− X̂∗(γ0))′e+|γ − γ0|Op( 1
n)

= (X̂∗(γ0)′X̂∗(γ0))−1/2An

with

An = X̂∗(γ0)′X̂∗(γ0))−1/2(X̂∗(γ)− X̂∗(γ0))′G∗(γ0)β∗0

+(X̂∗(γ0)′X̂∗(γ0))−1/2(X̂∗(γ)′ − X̂∗(γ0)′)e+|γ − γ0|Op( 1√
n

)

= |γ − γ0|Op(n−1/2), where the first equality uses (A.13). To get the second equality note that

(X̂∗(γ)− X̂∗(γ0))′G∗(γ0) = |γ − γ0|Op(1),

X̂∗(γ0)′X̂∗(γ0))−1/2(X̂∗(γ)− X̂∗(γ0))′G∗(γ0)β∗0 = |γ − γ0|Op( 1√
n

), and

(X̂∗(γ)− X̂∗(γ0))′e = |γ − γ0|Op(1).

Therefore, β̂
∗
∆ = |γ − γ0|Op(n−1).

Furthermore, note that β̂
∗
∆R =|γ − γ0|Op(n−1) and (ϑ−R′β∗)′ = |γ − γ0|Op(n−1). Then,

SRn (γ)− SRn (γ0)

= [SUn (γ)− SUn (γ0)]

+[(ϑ−R′β̂
∗
γ)′(R′(X̂∗(γ)′X̂∗(γ))−1R)−1(ϑ−R′β̂

∗
γ)

−(ϑ−R′β̂
∗
γ0

)′(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(ϑ−R′β∗γ0)]

= [SUn (γ)− SUn (γ0)]

+[(ϑ−R′β̂
∗
γ)′(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(ϑ−R′β̂

∗
γ)

−(ϑ−R′β̂
∗
γ0

)′(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(ϑ−R′β̂
∗
γ0

)] + (γ − γ0)2Op(n
−1)

= [SUn (γ)− SUn (γ0)]

+(β̂
∗
γ0

+ β̂
∗
∆)′R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′(β̂

∗
γ0

+ β̂
∗
∆)

−β̂∗′γ0R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′β̂
∗
γ0

−2ϑ′R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′(β̂
∗
γ − β̂

∗
γ0

)

28



+|γ − γ0|2Op(n−1)

= [SUn (γ)− SUn (γ0)]

+2β̂
∗′
∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′(X̂∗(γ0)′X̂∗(γ0))−1X̂∗(γ0)′e

+β̂
∗′
∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′β̂

∗
∆

+2β̂
∗′
∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(R′(X̂∗(γ0)′X̂∗(γ0))−1X̂∗(γ0)′G∗(γ0)β∗0 − ϑ)

+|γ − γ0|2Op(n−1).

= [SUn (γ)− SUn (γ0)]

+2β̂
∗′
∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′(X̂∗(γ0)′X̂∗(γ0))−1X̂∗(γ0)′e

+β̂
∗′
∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′β̂

∗
∆

+2β̂
∗′
∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(R′(X̂∗(γ0)′X̂∗(γ0))−1X̂∗(γ0)′(G∗(γ′)− X̂∗(γ0))β∗0

+|γ − γ0|2Op(n−1).

Now consider the second term divided by |γ − γ0|

||2β̂∗′∆R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′(X̂∗(γ0)′X̂∗(γ0))−1X̂∗(γ0)′e||/n2α−1(γ − γ0)

= ||A′n((X̂∗(γ0)′X̂∗(γ0))−1/2R
(
R′(X̂∗(γ0)′X̂∗(γ0))−1R

)−1
R′(X̂∗(γ0)′X̂∗(γ0))−1/2)

·((X̂∗(γ0)′X̂∗(γ0))−1/2e)||/n2α−1(γ − γ0)

≤ ||A′n||||((X̂∗(γ0)′X̂∗(γ0))−1/2e)||/n2α−1(γ − γ0) = op(1)

Note that the third term is nonnegative and divided by n2α−1(γ− γ0) is also op(1). The key in the

fourth term is (G∗(γ′)− X̂∗(γ0))β∗0 which is also op(1) when it is divided by n2α−1(γ − γ0).

Therefore,
SRn (γ)− SRn (γ0)

n2α−1(γ − γ0)
≥ SUn (γ)− SUn (γ0)

n2α−1(γ − γ0)
+ op(1) (A.15)

We can now focus on the unrestricted problem since the rates of convergence for the restricted

and unrestricted problems ar the same. Our proof follows in spirit Yu (2010b). In this lemma

we use the notation for empirical processes in van der Vaart and Wellner (1996). Define

Mn(θ) = Pnm(θ), where Pn denotes the empirical measure Pn = 1
n

∑n
i=1, such that for any class

of measurable function f : x→ R, we denote Pnf = 1
n

∑n
i=1 f(xi). We also define M(θ) = Pm(θ),

where Pm(θ) =
∫
x f(x)P (dx). Finally, define the empirical process Gn =

√
n(Pn − P) so that

Gnm(θ) =
√
n(Mn(θ)−M).
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Given that the theorem is for the maximization problem we will consider m(θ) = −(yi −
gi (γ)′ β1I(qi ≤ γ) − gi (γ)′ β2I(qi > γ))2 and let θ =

(
β′1,β

′
2, γ
)′
. Recall that γ ∈ Γ = [γ, γ],

then we have I(qi ≤ γ) ≤ I(q ≤ γ ∧ γ0) and I(qi > γ) ≥ I(γ0 < q ≤ γ ∨ γ0), where “∧”and “∨”
denote the minimum and maximum, respectively.

We can derive the following formula.

m(θ) = −(yi − gi (γ)′ β1I(qi ≤ γ)− gi (γ)′ β2I(qi > γ))2 =

−
[
gi (γ0)′ β10 − gi (γ)′ β1 + e1i

]2
I(qi ≤ γ ∧ γ0)

−
[
gi (γ0)′ β20 − gi (γ)′ β2 + e2i

]2
I(qi > γ ∨ γ0)

−
[
gi (γ0)′ β10 − gi (γ)′ β2 + e1i

]2
I(γ ∧ γ0 < qi ≤ γ0)

−
[
gi (γ0)′ β20 − gi (γ)′ β1 + e2i

]2
I(γ0 < qi ≤ γ ∨ γ0)

=

−
[
g′xi(βx10 − βx1) + λi (γ0)′ (βλ10 − βλ1) + (λi (γ)− λi (γ0))′βλ1 + e1i

]2
I(q ≤ γ ∧ γ0)

−
[
g′xi(βx20 − βx2) + λi (γ0)′ (βλ20 − βλ2) + (λi (γ)− λi (γ0))′βλ2 + e2i

]2
I(q > γ ∨ γ0)

−
[
g′xi(βx10 − βx2) + λi (γ0)′ (βλ10 − βλ2) + (λi (γ)− λi (γ0))′βλ2 + e1i

]2
I(γ ∧ γ0 < q ≤ γ0)

−
[
g′xi(βx20 − βx1) + λi (γ0)′ (βλ20 − βλ1) + (λi (γ)− λi (γ0))′βλ1 + e2i

]2
I(γ0 < q ≤ γ ∨ γ0)

=

−
[
gi (γ0)′ (βx10 − βx1) + (λi (γ)− λi (γ0))′βλ1 + e1i

]2
I(q ≤ γ ∧ γ0)

−
[
gi (γ0)′ (βx20 − βx2) + (λi (γ)− λi (γ0))′βλ2 + e2i

]2
I(q > γ ∨ γ0)

−
[
gi (γ0)′ (βx20 − βx2) + (λi (γ)− λi (γ0))′βλ2 + e2i

]2
I(γ ∧ γ0 < q ≤ γ0)

−
[
gi (γ0)′ (βx20 − βx1) + (λi (γ)− λi (γ0))′βλ1 + e2i

]2
I(γ0 < q ≤ γ ∨ γ0)

Define

T (θ1,0,θ1) =
(
gi (γ0)′ (βx10 − βx1) + (λi (γ)− λi (γ0))′βλ1 + e1i

)2 − e2
1i

T (θ2,0,θ2) =
(
gi (γ0)′ (βx20 − βx2) + (λi (γ)− λi (γ0))′βλ2 + e2i

)2 − e2
2i

T (θ1,0,θ2) =
(
gi (γ0)′ (βx10 − βx2) + (λi (γ)− λi (γ0))′βλ2 + e1i

)2 − e2
1i

T (θ2,0,θ1) =
(
gi (γ0)′ (βx20 − βx1) + (λi (γ)− λi (γ0))′βλ1 + e2i

)2 − e2
2i

Define the discrepancy function d(θ,θ0) = ||β − β0|| + |γ0 − γ| +
√
Fq(γ)− Fq(γ0) for θ in the

neighborhood of θ0. Note that d(θ,θ0)→ 0 if and only if ||β − β0|| → 0 and |γ − γ0| → 0.
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The proof of this lemma relies on two suffi cient conditions. First, we need to show that

M(θ)−M(θ0) ≤ −Cd2(θ,θ0) for θ in a neighborhood of θ0.

Consider

M(θ)−M(θ0) =

−E [T (θ1,0,θ1)I(qi ≤ γ ∧ γ0)]

−E [T (θ2,0,θ2)I(qi > γ ∨ γ0)]

−E [T (θ1,0,θ2)I(γ ∧ γ0 < qi ≤ γ0)]

−E [T (θ2,0,θ1)I(γ0 < qi ≤ γ ∨ γ0)]

≤

−(β10 − β1)′E
(
gi (γ0) gi (γ0)′ I(qi ≤ γ ∧ γ0)

)
(β10 − β1)

−(β20 − β2)′
(
Egi (γ0) gi (γ0)′ I(qi > γ ∨ γ0)

)
(β20 − β2)

−(β10 − β2)′E(gi (γ0) gi (γ0)′ I(γ ∧ γ0 < qi ≤ γ0))(β20 − β1)

−(β20 − β1)′E(gi (γ0) gi (γ0)′ I(γ0 < qi ≤ γ ∨ γ0))(β10 − β2)− Cλ|γ0 − γ|2

≤ −C
(
||β10 − β1||2 + ||β20 − β2||2 + |γ0 − γ|2 + |Fq(γ)− Fq(γ0)|

)
= −Cd2(θ,θ0), where the the

first inequality is due to the monotonicity of λ1 (·) and λ2 (·), Assumption 1, and Lemma 1.

Let us now proceed to the second condition of this lemma, which requires that

E∗

(
sup
d(θ,θ0)

|Gn (m(w|θ)−m(w|θ0))

)
≤ Cε,

where E∗ is the outer expectation and ε > 0.

To show this, let us first define the class of functions

Mε = {m(θ)−m(θ0) : d(θ,θ0) < ε}

Let us also write m(θ)−m(θ0) as follows

m(θ)−m(θ0) =

−T (θ1,0,θ1)I(qi ≤ γ ∧ γ0)− T (θ2,0,θ2)I(qi > γ ∨ γ0)

−T (θ1,0,θ2)I(γ ∧ γ0 < qi ≤ γ0)− T (θ2,0,θ1)I(γ0 < qi ≤ γ ∨ γ0)
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= A+B + C +D, where A,B,C, and D are defined accordingly.

Note that {T (θ1,0,θ1) : d(θ,θ0) < δ̃} is a finite-dimensional vector space of real valued functions.
Then Lemma 2.4 of Pakes and Pollard (1989) implies that {I(q ≤ γ ∧ γ0) : d(θ,θ0) < δ̃} is a VC
subgraph class of functions. Then it follows that {An : d(θ,θ0) < δ̃} is also a VC subgraph by

Lemma 2.14 (ii) of Pakes and Pollard (1989). Similarly, we can show that {Bn : d(θ,θ0) < δ̃},
{Cn : d(θ,θ0) < δ̃}, {Dn : d(θ,θ0) < δ̃} are VC-classes.

Given these results we use Theorem 2.14.2 of Van der Vaart and Wellner (1996) to show that

E∗

(
sup
d(θ,θ0)

|Gn (m(w|θ)−m(w|θ0))

)
≤ C
√
PF 2,

where F is the envelope function of the class of functions defined by {m(w|θ)−m(w|θ0) : d(θ,θ0) <

δ̃}. Given the functional form of m(w|θ) −m(w|θ0),
√
PF 2 ≤ Cδ̃ follows by Assumption 1.4 and

1.5.

Corollary 3.2.6 of van der Vaart and Wellner (1996) implies that φ(δ̃) = δ̃ and thus φ(δ̃)/δ̃
α

= δ1−α

is decreasing for any α ∈ (1, 2), hence Theorem 14.4 in Kosorok (2008) is satisfied. Since r2
nφ(r−1

n ) =

rn and hence
√
nd(θ̂,θ0) = Op(1). By the definition of d,we get that ||β̂∗ − β∗0|| =Op(n−1/2) and

|γ̂ − γ0|+ |F (γ̂)− F (γ0) | = Op(n
−1/2) +Op(n

−1)=Op(n−1).

Therefore for any ε > 0, we can find Mε such that P (n(F (γ̂) − F (γ0)) >

Mε)=P (n(F (γ0 + an(γ̂ − γ0)/an) − F (γ0)) > Mε)<ε, which implies that there exists an such

that P (an|γ̂ − γ0| > M ε) ≤ ε for n ≥ n. This completes the proof.

�

LEMMA 4. arg min
ν/an≤|γ−γ0|≤B

SRn (γ)− SRn (γ0) = arg min
ν/an≤|γ−γ0|≤B

SUn (γ)− SUn (γ0) + op(1)

Proof of Lemma 4.

Recall that SRn (γ) = SUn (γ) + (ϑ−R′β̂
∗
)′(R′(X̂∗(γ)′X̂∗(γ))−1R)−1(ϑ−R′β̂

∗
). Then

SRn (γ)− SRn (γ0) = [SUn (γ)− SUn (γ0)]

+[(ϑ−R′β̂
∗
)′(R′(X̂∗(γ)′X̂∗(γ))−1R)−1(ϑ−R′β̂

∗
)

−(ϑ−R′β̂
∗
0)′(R′(X∗(γ0)′X∗(γ0))−1R)−1(ϑ−R′β̂

∗
0))]

We show that the second term is op(1).
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Define ∆(γ) = I(q ≤ γ)− I(q ≤ γ0) and Ĩ =

(
1 0

0 −1

)
.

Let us consider the case of γ ≤ γ0,

1
n ||X̂

∗(γ)′X̂∗(γ)− X̂∗(γ0)′X̂(γ0)||

= 1
n ||(
∑
i

gi(γ)gi(γ)′∆(γ)−
∑
i

gi(γ)r̂′∆(γ)−
∑
i

gi(γ)r̂′∆(γ) +
∑
i

r̂r̂′∆(γ))⊗ Ĩ||

≤ 1
n ||(
∑
i

gi(γ)gi(γ)′∆(γ)⊗ Ĩ||+ 2 1
n ||(
∑
i

gi(γ)r̂′∆(γ)⊗ Ĩ||+ ||
∑
i

r̂r̂′∆(γ))⊗ Ĩ||

≤
√

2 1
n(tr(

∑
i

gi(γ0 + ε)gi(γ0 + ε)′∆(γ))2)1/2+

√
2 2
n(tr(

∑
i

gi(γ0 + ε)r̂′∆(γ))2)1/2+

√
2 1
n(tr(

∑
i

r̂r̂′∆(γ))2)1/2 = op(1).

So 1
nX̂∗(γ)′X̂∗(γ) = 1

nX̂∗(γ0)′X̂∗(γ0) + op(1). Then using Lemma A.2 of Perron and Qu (2006) we

obtain

(
1

n
X̂∗(γ)′X̂∗(γ))−1 = (

1

n
X̂∗(γ0)′X̂∗(γ0))−1 + op(1). (A.16)

and
1

n
(R′(X̂∗(γ)′X̂∗(γ))−1R)−1 =

1

n
(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1 + op(1). (A.17)

Note that SUn (γ)− SUn (γ0) = op(1). Then,

SRn (γ)− SRn (γ0)

= [SUn (γ)− SUn (γ0)]+

[(ϑ−R′β̂
∗
)′(R′(X̂∗(γ)′X̂∗(γ))−1R)−1(ϑ−R′β̂

∗
)−

(ϑ−R′β̂
∗
0)′(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(ϑ−R′β̂

∗
0)]

= [(ϑ−R′β̂
∗
)′((R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1 + op(1))(ϑ−R′β̂

∗
)−

(ϑ−R′β̂
∗
0)′(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1(ϑ−R′β̂

∗
)] + op(1)

= n1/2(β∗0−β̂
∗
)′((R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′n1/2(β∗0−β̂

∗
)

n1/2(β∗0−β̂
∗
0)′R(R′(X̂∗(γ0)′X̂∗(γ0))−1R)−1R′n1/2(β∗0−β̂

∗
0) + op(1)

= op(1) since n1/2(β̂
∗ − β∗0) = n1/2(β̂

∗
0 − β∗0) + op(1).

This completes the proof. �
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LEMMA 5. On [−v, v],

Qn(υ) = SUn (γ0) − SUn (γ0 + υ/an) =⇒
{
−µ1|υ|+ 2ζ

1/2
1 W1(υ), uniformly on υ ∈ [−v, 0]

−µ2|υ|+ 2ζ
1/2
2 W2(υ), uniformly on υ ∈ [0, υ]

,

where µi = c′Dicf and ζi = c′Ωicf , for i = 1, 2.

Proof of Lemma 5.

Proof: S∗Un (γ) = n−1+2α(n−αc′G0(γ0)′ + ê′)P∗ (γ) (G0(γ0)n−αc + ê)

Our proof strategy follows Caner and Hansen (2004). Let us reparameterize all functions of γ as

functions of υ. For example, X̂υ = X̂γ0+υ/an , P∗(υ) = P∗(γ0 + υ/an) and for ∆i(γ) = I(qi ≤
γ)− I(qi ≤ γ0) we have ∆i(υ) = ∆i(γ0 + υ/an). Then,

Qn(υ) = SUn (γ0)− SUn (γ0 + υ/an)

= (n−αc′G(γ0)′ + ê′)P∗(υ)(G(γ0)cn−α + ê)− (n−αc′G(γ0)′ + ê′)P∗(γ0)(G(γ0)cn−α + ê)

= n−2ac′G(γ0)′(P∗(υ)−P∗(γ0))G(γ0)c+ 2n−ac′G(γ0)′(P∗(υ)−P∗(γ0))ê + ê′(P∗(υ)−P∗(γ0))ê

We proceed by studying the behavior of each term: (i) n−2ac′G(γ0)′(P∗(υ)−P∗(γ0))G(γ0)c; (ii)

2n−ac′G(γ0)′(P∗(υ)−P∗(γ0))ê; (iii) ê′(P∗(υ)−P∗(γ0))ê

(i)

Define X̂γ(γ, γ0) = (X̂γ , Λ̂1,γ (γ0) , Λ̂2,γ (γ0)) and X̂γ(γ0) = X̂γ(γ0, γ0). Furthermore, recall that

1
nX̂γ(γ)′X̂γ(γ) = 1

nX̂γ(γ, γ0)′X̂γ(γ, γ0) + op(1)

n−2α| 1nX̂υ(υ)′X̂υ(υ)− 1
nX̂0(γ0)′X̂0(γ0)|

≤ n−2α
n∑
i=1
|gi(υ)|2∆i(υ) + 2n−2α

∣∣∣∣ n∑
i=1

gi(υ)ê′i∆i(υ)

∣∣∣∣
+n−2α

∣∣∣∣ n∑
i=1

êiê
′
i∆i(υ)

∣∣∣∣ =⇒
{
|D1f | |υ| , υ ∈ [−υ, 0]

|D2f | |υ| , υ ∈ [0, υ]

Therefore, n−2α sup
|υ|≤υ
|X̂υ(υ)′X̂υ(υ)− X̂0(γ0)′X̂0(γ0)| = Op(1)

We also know from Lemma 2 that

1

n
X̂υ(υ)′X̂υ(υ) =⇒M(γ0) (A.18)
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Our analysis below will be restricted to the region [γ0+υ/an ≤ γ ≤ γ0+B] for some constant B > 0,

which follows from Lemma 1. Note that this restriction implies that X̂′γGx,0 = X̂′
0
Gx,0, X̂

′
γX̂0 =

X̂′0X̂0,

The analysis for the case [γ0 − υ/an ≥ γ ≥ γ0 −B] is similar.

Then, by (A44), (A51), (A52), Lemma 2, (A40), 17, and Lemma A10 of Hansen (2000), we get

n−2ac′G(γ0)′(P∗(υ)−P∗(γ0))G(γ0)c = n−2ac′G(γ0)′(Pυ(υ)−P0(γ0))G(γ0)c

From equation A.44 of Caner and Hansen (2004) we can get

n−2ac′G(γ0)′(P∗(υ)−P∗(γ0))G(γ0)c

= n−2ac′G(γ0)′(Pυ(υ)−P0(γ0))G(γ0)c

=n−2ac′
(
X̂υ(υ)′X̂υ(υ)− X̂0(γ0)′X̂0(γ0)

)
c

−c′
(
X̂υ(υ)′X̂υ(υ)− X̂0(γ0)′X̂0(γ0)

)(
I− (X̂υ(υ)′X̂υ(υ))−1X̂0(γ0)′X̂0(γ0)

)
c

−c
(
I−G0(γ0)′X̂0(γ0)(X̂0(γ0)′X̂0(γ0))−1

)(
X̂υ(υ)′X̂υ(υ)− X̂0(γ0)′X̂0(γ0)

)
(X̂υ(υ)′X̂υ(υ))−1X̂0(γ0)′G0(γ0)c+

op(1)

=n−2α
n∑
i=1
|gi(υ)|2∆i(υ) + op(1) =⇒ µ2|υ|.

This establishes that uniformly on [γ0 + υ/an ≤ γ ≤ γ0 +B],

n−2ac′G(γ0)′(P∗(γ0)−P∗(υ))G(γ0)c =⇒ µ2|υ| (A.19)

(ii) From equation A.45 of Caner and Hansen (2004) we can get

n−ac′G0(γ0)′(P∗(γ0)−P∗(υ))ê

= n−ac′G(γ0)′(P0(γ0)−Pυ(υ))ê

=[
G0(γ0)′X̂0(γ0)(X̂0(γ0)′X̂0(γ0))−1

] [
n−2α(X̂υ(υ)′X̂υ(υ)− X̂0(γ0)′X̂0(γ0))

] [
nα(X̂υ(υ)′X̂υ(υ))−1X̂0(γ0)′ê

]
−
[
G0(γ0)′X̂0(γ0)(X̂υ(υ)′X̂υ(υ))−1

] [
n−a(X̂υ(υ)′ − X̂0(γ0)′)ê)

]
Note that by Lemma 2 and (A.18) we can get uniformly in υ ∈ [0, υ],

nα(X̂υ(υ)′X̂υ(υ))−1X̂0(γ0)′ê = (
1

n
X̂υ(υ)′X̂υ(υ))−1(

1

n1−α X̂0(γ0)′ê) = op(1) (A.20)
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and

n−a(X̂υ(υ)′ − X̂0(γ0)′)ê) = n−a
n∑
i=1

ĝi(υ)êi∆i(υ)

= n−a
n∑
i=1

ĝi(υ)r̂iβ∆i(υ) + n−a
n∑
i=1

gi(υ)eiβ∆i(υ)− n−a
n∑
i=1

r̂iei∆i(υ)

d−→ n−a
n∑
i=1

gi(υ)ei∆i(υ) + op(1) = B1(υ). (A.21)

Then, it follows that

n−ac′G0(γ0)′(P∗(γ0)−P∗(υ))ê =⇒ B1(υ).

where B1(υ) a vector Brownian motion with covariance matrix Ω1f and hence

n−ac′G(γ0)′(P∗(γ0)−P∗(υ))ê =⇒ ζ
1/2
1 W1(υ) (A.22)

(iii)

ê′(P∗(γ0)−P∗(υ))ê =[
nαê′X̂0(γ0)(X̂0(γ0)′X̂0(γ0))−1

] [
n−2α(X̂υ(υ)′X̂υ(υ)− X̂0(γ0)′X̂0(γ0))

] [
nα(X̂υ(υ)′X̂υ(υ))−1X̂0(γ0)′ê

]
= op(1). Hence,

ê′(P∗(γ0)−P∗(υ))ê =⇒ 0. (A.23)

Using equation (A.10) and (A.19)-(A.23) we get

Qn(υ) = Sn(γ0)− Sn(γ0 + υ/an)

= (n−αc′G(γ0)′ + ê′)P∗(υ)(G(γ0)cn−α + ê)− (n−αc′G(γ0)′ + ê′)P∗(γ0)(G(γ0)cn−α + r̂)

= n−2ac′G(γ0)′(P∗(γ0)−P∗(υ))G(γ0)c+ 2n−ac′G(γ0)′(P∗(γ0)−P∗(υ))ê + ê′(P∗(γ0)−P∗(υ))ê

=⇒ −µ1|υ|+ 2ζ
1/2
1 W1(υ), uniformly on υ ∈ [−ε, 0]

Similarly, we can show that uniformly on υ ∈ [0, ε], Qn(υ) =⇒ −µ2|υ| + 2ζ
1/2
2 W2(υ), where W2 is

a Wiener process on [0,∞) independent of W1.

�

Proof of Theorem 4.1
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By Lemma 3, an(γ̂ − γ0) = arg maxυ Qn(υ) = Op(1) and by Lemma 4,

QRn (υ) =⇒
{
−µ1|υ|+ 2ζ

1/2
1 W1(υ), uniformly on υ ∈ [−υ, 0]

−µ2|υ|+ 2ζ
1/2
2 W2(υ), uniformly on υ ∈ [0, υ]

Then, by Theorem 2.7 of Kim and Pollard (1990) and Theorem 1 of Hansen (2000) we can get

n1−2α(γ̂ − γ0)
d−→ arg max
−∞<υ<∞

Qn(υ).

Set ω = ζ1/µ
2
1 and recall that Wi(b

2υ) = bWi(υ). By making the change of variables υ = (ζ1/µ
2
1)s

we can rewrite the asymptotic distribution as follows. For s ∈ [−υ, 0],

arg max
−∞<υ<∞

Qn(υ)

=


arg max
−∞<υ<∞

(
− ζ1
µ21
µ1|s|+ 2ζ

1/2
1 W1((ζ1/µ

2
1)s)

)
= ω arg max

−∞<s<∞

(
−1

2 |s|+W1(s)
)
, if s ∈ [−υ, 0]

arg max
−∞<υ<∞

(
− ζ1
µ21
µ2|s|+ 2ζ

1/2
2 W1((ζ1/µ

2
1)s)

)
= ω arg max

−∞<s<∞

(
−1

2ξ|s|+
√
ϕW2(s)

)
, if s ∈ [0, υ]

where ξ = µ2/µ1 and ϕ = ζ2/ζ1. Hence, n
1−2α(γ̂ − γ0)

d−→ arg max
−∞<υ<∞

ωT (s), where

T (s) =

{
−1

2 |s|+W1(−s), if s ∈ [−υ, 0]

−1
2ξ|s|+

√
ϕW2(s), if s ∈ [0, υ]

�

Proof of Theorem 4.2

From Theorem 2 of Hansen (2000) we have σ̂2LRn (γ0)−Qn(υ)
p→ 0. Then,

LRn (γ) = Qn(υ)

σ̂2
+ op(1) = 1

σ̂2
sup

−∞<υ<∞
Qn(υ) + op(1)

d−→ 1
σ2

sup
−∞<υ<∞

Q(υ)

= 1
σ2

sup
−∞<υ<∞

((
−µ1|υ|+ 2ζ

1/2
1 W1(υ)

)
I(υ < 0) +

(
−µ2|υ|+ 2ζ

1/2
2 W2(υ)

)
I(υ > 0)

)

By the change of variables υ = (ζ1/µ
2
1)s the limiting distribution takes the form

1
σ2

sup
−∞<υ<∞

Q(υ)

= 1
σ2

sup
−∞<υ<∞

((
−µ1|

ζ1
µ21
s|+ 2ζ

1/2
1 W1( ζ1

µ21
s)
)
I(υ < 0) +

(
−µ2|

ζ1
µ21
s|+ 2ζ

1/2
2 W2( ζ1

µ21
s)
)
I(υ > 0)

)
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= ζ1
σ2µ1

sup
−∞<υ<∞

(
(−|s|+ 2W1(s)) I(υ < 0) +

(
−ξ|s|+ 2

√
ϕW2(s)

)
I(υ > 0)

)
=η2ψ, where η2 = ζ1

σ2µ1
.

Note that ψ = 2 max(ψ1, ψ2), where ψ1 = sup
s≤0

(−|s|+ 2W1(s)) and ψ2 = sup
s>0

(
−ξ|s|+ 2

√
ϕW2(s)

)
.

Note that while ψ1 and ψ2 are independent, they are not identical. ψ1 is an exponential distribution

while ψ2 is a generalized distribution that depends on the parameters ξ and ϕ.

P (ψ ≤ x) = P (2 max(ψ1, ψ2) ≤ x) = P (ψ1 ≤ x/2)P (ψ2 ≤ x/2) = (1− e−x/2)(1− e−ξx/2)
√
ϕ.

�

Lemma 6 We prove the consistency of β̂1. The consistency of β̂2 can be shown similarly.

Proof of Lemma 6.

β̂1 =
(
X̂′1Ẑ1Ŵ1Ẑ

′
1X̂1

)−1
X̂′1Ẑ1Ŵ1Ẑ

′
1(X1β10 + X2β20 + e) =(

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X̂1)
)−1

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X1)β10+(
( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X̂1)
)−1

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X2)β20+(
( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X̂1)
)−1

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1e)

Given Ŵ1 −→W1 > 0, the first term goes to zero by a Glivenko-Cantelli theorem and the second

term goes to zero since P (γ̂ < γ0)→ 0. Similarly we can show that(
( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X̂1)
)−1

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X2)
p→ 0 and(

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X̂1)
)−1

( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1e)
p→ 0.

The proof is completed by showing that

||( 1
nX1(γ̂)′Z1I(q ≤ γ̂))Ŵ1(γ̂)( 1

nZ′1I(q ≤ γ̂)X1(γ̂))−

E(z1ix1i(γ0)′I(qi ≤ γ0)W1(γ0)E(x1i(γ0)′z1iI(qi ≤ γ0)|| =

||( 1
nX̂′1Ẑ1)Ŵ1( 1

n Ẑ′1X̂1)−

E(z1ix1i(γ0)′I(qi ≤ γ0)W1(γ0)E(x1i(γ0)′z1iI(qi ≤ γ0)|| ≤

sup
γ∈(γ0−ε,γ0+ε)

||( 1
nX1(γ)′Z1I(q ≤ γ))Ŵ1(γ)( 1

nZ′1X1(γ)I(q ≤ γ))−

E(zix
′
iI(qi ≤ γ)W1(γ)E(x′iziI(qi ≤ γ)||+
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||E(z1ix1i(γ̂)I(qi ≤ γ̂)W1(γ̂)E(x1i(γ̂)′z1iI(qi ≤ γ̂)−

E(z1ix1i(γ0)I(qi ≤ γ0)W1(γ0)E(x1i(γ0)z1iI(qi ≤ γ0)||

�

LEMMA 7 Consider the unrestricted threshold model in equation (3.21) and recall that xi(γ) =

(xi, λ1(γ), λ2(γ))′. If Ŵj
p→ Wj> 0 for j = 1, 2 then the unconstrained minimum distance

class estimators defined by equation (2.19) are asymptotically Normal:

√
n(β̂j (υ̂)− βj)

d−→ N(0,Vj) (A.24)

where Vj = (S′jWjSj)
−1(S′jWjQjWjSj)(S

′
jWjSj)

−1.

Proof of Lemma 7

We show that the unconstrained estimators are asymptotically Normal.

Let Xυ (υ),X⊥ (υ),∆Xυ (υ),Zυ denote the matrices obtained by stacking the following unrestricted

vectors

xi(γ0 + n−(1−2α)υ)′I(qi ≤ γ0 + n−(1−2α)υ),

xi(γ0 + n−(1−2α)υ)′I(qi > γ0 + n−(1−2α)υ),

xi(γ0 + n−(1−2α)υ)′I(qi ≤ γ0 + n−(1−2α)υ)− xi(γ0 + n−(1−2α)υ)I(qi > γ0),

zi
′I(qi ≤ γ0 + n−(1−2α)υ).

From Theorem 2 of Hansen (1996), Lemma 1, and Lemma A.10 of Hansen (2000) we can deduce

that uniformly on υ ∈ [−υ, υ]

1

n
Z′υXυ (υ)

p→ S1 (A.25)

1√
n

Z′υXυ (γ)
p→ N(0,Σ1) (A.26)

1

n2α
Z′υ∆Xυ

p→ Op(1) (A.27)

Following Hansen and Caner (2004) let

β̂1 (υ) =
(
X′υẐυŴ1Ẑ

′
υXυ

)−1
X̂′υẐυŴ1Ẑ

′
υY, j = 1, 2.
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and write the unrestricted model as

Y = Xυ (υ)β1 + X⊥ (υ)β2 −∆Xυ (υ) δn + u

Then,
√
n(β̂1 (υ)− β1) =(

( 1
nXυ (υ)′ Zυ)Ŵ1( 1

nZ′υXυ (υ))
)−1 (

1
nXυ (υ)′ ZυŴ1

(
1√
n
Zυ
′u− 1√

n
Z′υ∆Xυ (υ) δn

))
=⇒ (S′1W1S1)−1 S′1W1N(0,Σ1).

Since υ̂ = n1−2α (γ̂ − γ0) = Op(1),

√
n(β̂1 (υ̂)− β1)

d−→ N(0,V1)

where V1 = (S′1W1S1)−1(S′1W1Q1W1S1)(S
′
1W1S1)−1.

Similarly we can get
√
n(β̂1 (υ)− β2) =⇒ N(0,V2) as stated.

�

LEMMA 8 The restricted estimators defined in equation (2.19) are asymptotically Normal.

√
n(β̃ − β)

d−→ N(0, Ṽ)

where

Ṽ = V − ŴR
(
R′ŴR

)−1
R′V −VR

(
R′ŴR

)−1
R′Ŵ

+ŴR
(
R′ŴR

)−1
R′VR

(
R′ŴR

)−1
R′Ŵ. (A.28)

Proof of Lemma 8

Let β̃
∗

= (β̃1, β̃2)′ and β = (β1,β2)′,Ŵ = diag(Ŵ1,Ŵ2), V = diag(V1,V2)

Recalling that R′β̂ = ϑ the restricted estimator of the STR model can be written as

β̃ = β̂ − ŴR
(
R′ŴR

)−1 (
R′β̂ − ϑ

)
(A.29)

then using Lemma 7 we get

√
n(β̃ − β)

d−→
(
I− ŴR

(
R′VR

)−1
R′
)√

n(β̂ − β) = N(0,Ṽ) (A.30)

as stated.�
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Proof of Theorem 4.3

The 2SLS estimators β̃2SLS fall in the class of estimators (2.19) with Ŵ = diag(Ŵ1,Ŵ2)

Ŵ1 =
1

n

n∑
i=1

ziz
′
iI(qi ≤ γ̂)

Ŵ2 =
1

n

n∑
i=1

ziz
′
iI(qi > γ̂)

The proof for (a) follows Theorem 2 of Caner and Hansen (2004). For the 2SLS estimator, we

appeal to Lemma 1 of Hansen (1996), the consistency of γ̂, Ŵ1
p→ Q1 and Ŵ2

p→ Q2. Therefore,

β̃2SLS is asymptotically Normal with covariance matrix as stated in (A.28) with Q =diag(Q1,Q2)

replacing Ŵ = diag(Ŵ1,Ŵ2).

The proof for (b) follows Theorem 3 of Caner and Hansen (2004), which is used to establish that

Σ̂1 (γ)
p−→ E (ziz

′
iuiI(qi ≤ γ) uniformly in γ ∈ Γ. Then, by the consistency of γ̂, the fact that

n−1Σ̂1 = n−1Σ̂1 (γ)
p−→ Σ1, and Lemmas 7 and 8 we obtain Theorem 4.3 (b).

�
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Figure 1: MC kernel densities of the threshold estimate for different sample sizes

DGP: Model 1 - endogeneity only in the threshold variable, δ2 = 2

(a) n = 100 (b) n = 250 (c) n = 500 (d) n = 1000
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DGP: Model 2 - endogeneity in both the threshold and slope variables, δ3 = 2

(e) n = 100 (f) n = 250 (g) n = 500 (h) n = 1000

1 2 3
0

0.5

1

1.5

2

2.5

1.5 2 2.5
0

1

2

3

4

5

6

1.75 2 2.25
0

2

4

6

8

10

12

1.9 2 2.1
0

5

10

15

20

25

Note: The solid red line represents the MC kernel density of the STR threshold estimate while the black dashed line represents the
corresponding densities for the TR of Hansen (2000) and IVTR of Caner and Hansen(2004).
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Figure 2: MC kernel densities of the threshold estimate for different threshold effects

DGP: Model 1 - endogeneity only in the threshold variable, n = 1000

(a) δ2 = 1 (b) δ2 = 2 (c) δ2 = 3 (d) δ2 = 4 (e) δ2 = 5
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DGP: Model 2 - endogeneity in both the threshold and slope variables, n = 1000

(f) δ3 = 1 (g) δ3 = 2 (h) δ3 = 3 (i) δ3 = 4 (j) δ3 = 5
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Note: The solid red line represents the MC kernel density of the STR threshold estimate while the black dashed line represents the
corresponding densities for the TR of Hansen (2000) and IVTR of Caner and Hansen(2004).
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Table 1: Quantiles of the distribution of γ̂

DGP: Model 1 DGP: Model 2
endogeneity only in the threshold variable endogeneity in both the threshold and slope variables

TR STR IVTR STR
Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

Sample size
δ2 = 1.00 δ3 = 1.00

100 1.321 1.936 2.328 1.607 1.983 2.340 0.373 1.886 3.146 1.081 1.914 2.770
250 1.657 1.973 2.162 1.800 1.993 2.148 0.862 1.933 2.603 1.192 1.960 2.600
500 1.810 1.986 2.084 1.906 1.997 2.092 1.217 1.953 2.311 1.408 1.962 2.413
1000 1.893 1.994 2.039 1.954 1.999 2.042 1.515 1.966 2.132 1.534 1.964 2.192

δ2 = 2.00 δ3 = 2.00
100 1.761 1.973 2.116 1.820 1.982 2.153 1.246 1.958 2.428 1.345 1.959 2.437
250 1.918 1.990 2.053 1.933 1.993 2.061 1.744 1.984 2.168 1.735 1.984 2.183
500 1.955 1.995 2.023 1.960 1.996 2.023 1.861 1.992 2.068 1.855 1.992 2.076
1000 1.978 1.998 2.013 1.982 1.998 2.014 1.938 1.997 2.033 1.933 1.996 2.038

δ2 = 3.00 δ3 = 3.00
100 1.851 1.976 2.065 1.861 1.978 2.073 1.682 1.974 2.17 1.686 1.974 2.194
250 1.944 1.992 2.031 1.947 1.992 2.032 1.88 1.988 2.078 1.874 1.988 2.078
500 1.972 1.995 2.013 1.972 1.996 2.016 1.936 1.994 2.034 1.935 1.994 2.041
1000 1.984 1.998 2.007 1.985 1.998 2.008 1.967 1.998 2.02 1.967 1.997 2.021

δ2 = 4.00 δ3 = 4.00
100 1.873 1.976 2.045 1.877 1.978 2.056 1.789 1.976 2.12 1.793 1.977 2.137
250 1.951 1.992 2.026 1.95 1.992 2.024 1.915 1.989 2.049 1.919 1.99 2.052
500 1.976 1.995 2.009 1.976 1.995 2.012 1.956 1.995 2.023 1.955 1.995 2.024
1000 1.986 1.998 2.004 1.987 1.998 2.006 1.979 1.998 2.011 1.98 1.998 2.013

δ2 = 5.00 δ3 = 5.00
100 1.879 1.976 2.036 1.887 1.977 2.039 1.822 1.977 2.092 1.823 1.977 2.105
250 1.955 1.992 2.018 1.955 1.992 2.017 1.934 1.99 2.039 1.934 1.99 2.041
500 1.977 1.995 2.007 1.977 1.995 2.008 1.965 1.996 2.017 1.964 1.996 2.017
1000 1.987 1.998 2.004 1.988 1.998 2.004 1.984 1.998 2.01 1.984 1.998 2.01
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Table 2: Bootstrap confidence interval for γ for 90% nominal coverage

DGP: Model 1 - endogeneity only in the threshold variable

δ2 = 1 δ2 = 2 δ2 = 3 δ2 = 4 δ2 = 5
sample size

100 68 84 89 90 91
250 68 89 94 96 97
500 74 91 95 96 97
1000 72 89 94 96 98

DGP: Model 2 - endogeneity in both the threshold and slope variables

δ3 = 1 δ3 = 2 δ3 = 3 δ3 = 4 δ3 = 5
sample size

100 70 86 90 92 93
250 71 90 95 96 97
500 71 93 97 99 99
1000 71 95 98 99 99
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Table 3: Quantiles of the distributions of slope coefficients

Panel A, DGP: Model 1 - endogeneity only in the threshold variable

Quantiles of Slope Coefficient of the slope β2 Quantiles of Slope Coefficient of the slope δ3
TR STR TR STR

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
Sample size

δ3 = 1.00
100 0.539 0.765 1.074 0.752 1.009 1.342 0.573 0.936 1.282 0.642 0.953 1.225
250 0.623 0.760 0.935 0.847 1.006 1.189 0.753 0.973 1.159 0.803 0.980 1.146
500 0.659 0.751 0.866 0.887 1.000 1.129 0.836 0.978 1.114 0.877 0.983 1.100
1000 0.682 0.748 0.824 0.913 1.000 1.084 0.895 0.995 1.082 0.920 0.994 1.076

δ3 = 2.00
100 0.546 0.740 0.975 0.739 0.994 1.321 1.669 1.985 2.284 1.719 1.985 2.269
250 0.622 0.744 0.868 0.843 0.999 1.173 1.820 1.995 2.175 1.840 1.997 2.159
500 0.658 0.744 0.831 0.884 0.997 1.130 1.877 1.992 2.122 1.886 1.994 2.108
1000 0.681 0.744 0.809 0.913 0.998 1.083 1.918 2.002 2.090 1.927 1.999 2.080

δ3 = 3.00
100 0.546 0.734 0.962 0.739 0.989 1.316 2.697 2.992 3.289 2.734 3.000 3.271
250 0.622 0.744 0.865 0.843 0.999 1.173 2.828 3.000 3.175 2.846 3.001 3.160
500 0.658 0.744 0.829 0.886 0.997 1.128 2.880 2.993 3.123 2.890 2.995 3.109
1000 0.681 0.744 0.808 0.914 0.998 1.082 2.918 3.003 3.089 2.930 3.000 3.081

δ3 = 4.00
100 0.544 0.734 0.961 0.736 0.989 1.315 3.701 3.994 4.289 3.742 4.002 4.273
250 0.622 0.744 0.865 0.843 0.999 1.176 3.828 4.001 4.175 3.850 4.004 4.160
500 0.658 0.744 0.829 0.886 0.997 1.123 3.880 3.993 4.123 3.889 3.996 4.109
1000 0.681 0.744 0.809 0.914 0.998 1.082 3.918 4.003 4.090 3.931 4.000 4.081

δ3 = 5.00
100 0.543 0.734 0.958 0.737 0.988 1.315 4.707 4.991 5.289 4.743 5.004 5.273
250 0.623 0.745 0.866 0.842 0.999 1.176 4.828 5.001 5.175 4.850 5.004 5.160
500 0.658 0.743 0.829 0.886 0.997 1.123 4.880 4.994 5.123 4.892 4.997 5.109
1000 0.681 0.743 0.809 0.914 0.998 1.082 4.918 5.003 5.090 4.931 5.001 5.081

Table continued on next page ...
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Table 3 continued

Panel B, DGP: Model 2 - endogeneity in both the threshold and slope variables

Quantiles of Slope Coefficient of the slope β2 Quantiles of Slope Coefficient of the slope δ2

TR STR TR STR

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

Sample size

δ3 = 1.00

100 0.452 0.860 1.350 0.702 1.067 1.449 0.161 0.912 1.393 0.428 0.912 1.318

250 0.630 0.840 1.204 0.827 1.053 1.294 0.495 0.941 1.204 0.609 0.935 1.190

500 0.689 0.840 1.112 0.875 1.036 1.235 0.667 0.955 1.131 0.737 0.955 1.119

1000 0.741 0.829 1.016 0.920 1.025 1.183 0.751 0.967 1.094 0.792 0.966 1.086

δ3 = 2.00

100 0.535 0.833 1.297 0.707 1.033 1.453 1.440 1.958 2.354 1.469 1.955 2.335

250 0.655 0.822 1.036 0.822 1.013 1.242 1.698 1.988 2.211 1.723 1.983 2.198

500 0.697 0.820 0.948 0.875 1.014 1.159 1.835 1.988 2.144 1.835 1.987 2.134

1000 0.740 0.813 0.897 0.914 1.004 1.101 1.879 1.995 2.098 1.884 1.993 2.093

δ3 = 3.00

100 0.561 0.831 1.142 0.706 1.011 1.382 2.583 2.972 3.363 2.585 2.982 3.340

250 0.662 0.818 0.992 0.823 1.007 1.218 2.745 3.001 3.211 2.751 2.996 3.205

500 0.702 0.816 0.924 0.867 1.007 1.143 2.849 2.996 3.146 2.855 2.991 3.142

1000 0.740 0.811 0.887 0.914 1.000 1.095 2.887 2.996 3.099 2.894 2.998 3.098

δ3 = 4.00

100 0.566 0.823 1.078 0.710 1.000 1.347 3.628 3.987 4.363 3.634 3.994 4.339

250 0.662 0.817 0.974 0.824 1.004 1.198 3.763 4.001 4.211 3.774 4.001 4.205

500 0.699 0.815 0.919 0.868 1.004 1.140 3.852 3.999 4.149 3.857 3.996 4.145

1000 0.740 0.810 0.882 0.914 0.999 1.093 3.891 3.999 4.100 3.895 3.999 4.098

δ3 = 5.00

100 0.570 0.821 1.068 0.712 0.995 1.322 4.639 4.991 5.362 4.651 4.998 5.336

250 0.663 0.817 0.964 0.819 1.002 1.188 4.772 5.004 5.215 4.776 5.003 5.209

500 0.699 0.814 0.916 0.866 1.004 1.137 4.854 5.000 5.148 4.863 4.998 5.146

1000 0.741 0.810 0.882 0.911 1.001 1.088 4.898 5.002 5.101 4.901 5.002 5.098
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Table 4: Quantiles of the coefficient of the inverse Mills ratio

DGP: Model 1 - endogeneity only in the threshold variable

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
Sample size

δ2 = 1.00 δ2 = 2.00 δ2 = 3.00 δ2 = 4.00 δ2 = 5.00
100 0.457 0.936 1.515 0.514 0.960 1.53 0.516 0.965 1.53 0.522 0.966 1.524 0.532 0.967 1.528
250 0.635 0.941 1.276 0.665 0.955 1.295 0.665 0.955 1.297 0.672 0.955 1.297 0.672 0.958 1.311
500 0.736 0.940 1.183 0.744 0.949 1.193 0.743 0.951 1.192 0.743 0.951 1.191 0.743 0.95 1.19
1000 0.799 0.950 1.11 0.804 0.952 1.112 0.801 0.953 1.113 0.801 0.953 1.113 0.803 0.953 1.112

DGP: Model 2 - endogeneity in both the threshold and slope variables

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th
Sample size

δ3 = 1.00 δ2 = 3.00 δ2 = 3.00 δ3 = 4.00 δ3 = 5.00
5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

100 0.201 0.784 1.442 0.133 0.751 1.415 0.164 0.730 1.364 0.173 0.723 1.333 0.186 0.718 1.315
250 0.42 0.739 1.126 0.392 0.713 1.064 0.377 0.700 1.051 0.388 0.695 1.038 0.394 0.696 1.053
500 0.504 0.734 0.999 0.473 0.714 0.968 0.469 0.710 0.951 0.468 0.705 0.952 0.469 0.704 0.945
1000 0.557 0.716 0.897 0.549 0.704 0.883 0.549 0.702 0.884 0.547 0.702 0.879 0.541 0.703 0.862
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Table 5: Nominal 95% confidence interval coverage for the threshold effect parameter

DGP: Model 1 - endogeneity only in the threshold variable

Nominal 95% confidence interval coverage for δ2

δ2 = 1 δ2 = 2 δ2 = 3 δ2 = 4 δ2 = 5
Sample Size

100 88 92 93 93 93
250 92 94 94 94 95
500 95 96 96 96 96
1000 95 95 95 95 95

DGP: Model 2 - endogeneity in both the threshold and slope variables

Nominal 95% confidence interval coverage for δ3

δ3 = 1 δ3 = 2 δ3 = 3 δ3 = 4 δ3 = 5
Sample Size

100 81 86 90 92 92
250 82 90 92 93 93
500 82 93 94 94 94
1000 82 93 94 94 95
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