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Abstract

We study the problem of identi�cation of measures of the extent of individual types

of downward wage rigidity from micro-level data on nominal wage growth rates, in

the context of a wage adjustment process that may feature any number such rigidity

types. For that purpose we develop a comprehensive framework for the modelling

and measurement of wage rigidities. We show that the presence of measurement

error does not alter fundamentally the nature of this identi�cation problem, and

develop an identi�cation strategy that is applicable with measurement-error-free

and measurement-error-contaminated data. This relies on weaker restrictions than

those usually employed in the literature, including being non-parametric.
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1 Introduction

Real wage in�exibility has important theoretical implications for the functioning of the

labour market and for macroeconomic outcomes. For example, �rms that �nd it di�cult

to cut real wages in the face of an adverse demand shock may end up downsizing their

workforce in order to reduce labour costs; accordingly, downward real wage in�exibility

is invoked by the (neo-)Keynesian macroeconomic theory to explain the failure of labour

markets to clear and the existence of (involuntary) unemployment. Also, as postulated

by the neoclassical general equilibrium theory, wage and price �exibility are necessary for

optimal resource allocation, including that for labour.

Given the theoretical importance of real wage �exibility, a corresponding empirical

literature has developed over time that aims at verifying the existence and measuring

the extent of wage (in-)�exibility. The oldest strand, which goes back to Dunlop (1938)

and Tarshis (1939), is concerned with the measurement of the degree of responsiveness

of the level of real wages to the cyclical variation in economic conditions. The methods

typically employed by those studies seek to estimate the elasticity of the (mean) real wage

with respect to some cyclical indicator, such as the unemployment rate and aggregate

measures of output, using macro- or micro-level data on wage rates (see, for example,

Abraham and Haltiwanger (1995) and Brandolini (1995) for an extensive survey of these

methods). Following the seminal paper by McLaughlin (1994), a second line of empirical

research uses micro-level data on nominal wage growth rates to investigate the nature

of the (micro-level) mechanisms that could induce real wage in�exibility. Knowledge

about such mechanisms can be particularly useful for the conduct of monetary policy,

as a higher in�ation level would �grease the wheels of the labour market� by allowing

�rms to implement larger real wage cuts when faced with resistance from workers to

implement nominal wage cuts, i.e., due to Downward Nominal Wage Rigidity (DNWR)1 �

see Tobin (1972) for a discussion of this idea, and Akerlof et al. (1996) for formalisation and

extensions to it. McLaughlin's approach hinges on that the existence of wage outcomes

1Note that pursuing such policy would, on the other hand, be ine�ective if downward real wage
in�exibility were instead induced directly, as a result of the workers' resistance to accept nominal wage
increases below the prevailing anticipated in�ation rate, i.e., due to Downward Real Wage Rigidity.
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(of individual wage adjustments) that are restricted by downward wage rigidities would

induce distortions to the shape of the distribution of the realised nominal wage growth

rates associated with those wage adjustments, relative to the shape which would prevail

in the absence of such rigidities. Accordingly, to the extent that di�erent combinations of

rigidity types distort di�erently the shape of that distribution, the existence and features of

such distortions could potentially provide information about the types of rigidity a�ecting

the wage outcomes; also, their size, about the extent of each individual rigidity type.

The identi�cation of such distortions given knowledge of the shape of the distribution

of the observed nominal wage growth rates, i.e., the factual distribution, can be par-

ticularly challenging, as is also the identi�cation of the rigidity measures from the size

of those distortions. Moreover, both tasks become harder when the data on the nom-

inal wage growth rates are contaminated with measurement error, as that would induce

additional distortions to the shape of the factual distribution that alter the distortions

generated by wage rigidities (which, by de�nition, contain identifying information about

the nature of those rigidities). The current literature views measurement error as noise,

whose usual treatment involves imposing stronger identifying restrictions than those typ-

ically employed to obtain identi�cation when there is no measurement error. Furthermore,

identi�cation results based on this approach are currently available only for measures of

the extent of two particular types of downward wage rigidity, namely DNWR and Down-

ward Real Wage Rigidity (DRWR), within two particular modelling contexts: one where

all wage adjustments are assumed to be negotiated under DNWR, and another where

DNWR is allowed to co-exist with DRWR.

In this paper we seek to generalise those results by considering the problem of identi-

�cation of rigidity measures in the context of a wage adjustment process that can feature

any number of downward rigidity types. Our key result is that, given data on nominal

wage growth rates that are contaminated with classical measurement error, the nature of

this problem is essentially the same as that given measurement-error-free data. Based on

this we are then able to develop a new identi�cation strategy that is applicable to both

types of data, i.e., there is no special treatment of the measurement-error-contaminated

3



data, involving additional restrictions, as in the existing literature. Speci�cally, this

uses information about the size of the distortions in the shape of the corresponding

(measurement-error-free or -contaminated) factual distribution relative to the shape of

the relevant counterfactual distribution, the latter de�ned as the factual distribution that

would prevail in the absence of rigidities. Using this strategy we are able to show that

it is possible to obtain the same identi�cation results from either type of data under the

same set of restrictions, for any number of admissible downward wage rigidity regimes;

furthermore these restrictions, which are non-parametric, are weaker than those employed

by the current literature, especially for the case of measurement-error-contaminated data.

In addition to establishing new identi�cation results, the work presented here contrib-

utes to this literature by developing a generic framework for the modelling and measure-

ment of wage rigidities. This framework enables us to present a rigorous identi�cation

analysis, which in turn helps to clarify the contribution of individual restrictions to the

process of obtaining identi�cation. It further helps to unify models and results in the

literature; for example to reconcile the alternative model-dependent rigidity measures

that have been considered so far by establishing their relation to the generic (model-

independent) measure proposed here.

The remainder of the paper is organised as follows: In Section 2 we provide a short

overview of the related literature. In Section 3 we specify our model for the process that

generates the observed nominal wage growth rates, and de�ne the measure of rigidity that

we seek to identify. Section 4 examines the e�ect of measurement error on the nature

of the identi�cation problem, and Section 5 presents our identi�cation results. Section

6 summarises and concludes. In Appendix A we demonstrate how our identi�cation

results specialise to the standard case considered by the literature, where any given wage

adjustment may be negotiated under DNWR, or DRWR, or the Flexible regime; we also

compare our results to those in the literature. Proofs for all reported results are provided

in Appendix B.
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2 Overview of the literature

McLaughlin (1994) was the �rst study to consider extracting information relating to the

existence of downward wage rigidities from features of the shape of the distribution of the

observed (annual) nominal wage growth rates of individual workers. Subsequent studies

that follow this approach2 may be assigned to one of two groups. The �rst includes

those concerned with establishing the existence of individual types of downward wage

rigidity; Christo�des and Stengos (2002) and Elsby (2009) are among those that focus on

DNWR, whereas Christo�des and Nearchou (2007, 2010) on DNWR and DRWR (NB:

Some of these studies have also examined the existence of rigidity generated by menu

costs). The second group includes studies that seek to estimate measures of the extent

of the individual types of downward wage rigidity. A subset of those assumes that all

wage adjustments are negotiated under DNWR, and in that context the only rigidity

measure to be speci�ed, identi�ed, and estimated concerns the extent of DNWR; Card

and Hyslop (1997), Kahn (1997), Altonji and Devereux (2000), Fehr and Goette (2005),

Knoppik (2006), and Holden and Wulfsberg (2008) are among the studies that develop

alternative methods for that purpose. Another subset assumes the co-existence of DNWR

with DRWR, and in that context the tasks of speci�cation, identi�cation, and estimation

concern measures for each of the two rigidity types; Dickens and Goette (2006), Dickens

et al. (2007), and Goette et al. (2007) describe the three methods currently available that

produce estimates of those measures.

Focusing next on the second group of studies, a notable feature of these is that di�erent

rigidity measures have been typically adopted in the two modelling contexts considered,

even though the way nominal wage growth rates are assumed to be restricted by a given

rigidity type, i.e., the �rigidity mechanisms�, are the same. With regard to the latter,

this mechanism is typically assumed to be a left-, partial-censoring mechanism, hereafter

referred to as the �Standard DWR Mechanism�.3 This speci�es that the realised nominal

wage growth rate associated with a given wage adjustment is constrained by the relevant

2See Kramarz (2001), Stiglbauer (2002) and Palenzuela et al. (2003) for a survey of its earlier part.
3NB: Notable exceptions are the mechanisms considered by Altonji and Devereux (2000), Holden

(2004), Dickens and Goette (2006) and Elsby (2009).
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rigidity type � with a certain (censoring) probability � only if its unconstrained value

lies below a threshold; that threshold, known as the �rigidity bound�, is also assumed

to be the constrained value of the realised nominal wage growth rate in the event that

rigidity is binding. In the case of DNWR the relevant rigidity bound is the value of zero,

whereas in the case of DRWR this is the in�ation rate that is anticipated � at the time of

wage bargaining � to prevail during the e�ective period of the associated wage agreement.

It therefore follows that, in both the cases of the �Standard DNWR Process� and the

�Standard D-NR-WR Process�,4 DNWR may prevent some of the nominal wage cuts that

would take place in its absence, inducing instead nominal wage freezes. Similarly, and

only in the context of the �Standard D-NR-WR Process�, DRWR could prevent some

of the anticipated real wage cuts that would take place in its absence, inducing instead

anticipated real wage freezes.

With regard to the rigidity measures typically adopted in the two modelling contexts,

in that of the Standard DNWR Process the measure for the extent of DNWR, given

observable characteristics, is the proportion of unful�lled nominal wage cuts; accordingly,

this measure relates to the incidence of constrained wage adjustments (by DNWR). On the

other hand, in the context of the Standard D-NR-WR Process the standard measure of the

extent of a given type of rigidity (DNWR or DRWR), given observable characteristics, is

the proportion of wage adjustments negotiated under that type, which is usually referred

to as its �coverage�. Accordingly in the latter context the measure for the extent of DNWR

is the proportion of wage adjustments negotiated under DNWR, which is conceptually

di�erent from the incidence-type measure speci�ed in the former modelling context.

The identi�cation of either type of rigidity measure is inherently challenging, as neither

the event of a wage adjustment being constrained nor the rigidity type under which a wage

adjustment is negotiated are observable � meaning that neither type is directly identi�able

from the available data. An indirect identi�cation approach is followed instead, which

relies on information derived from the discrepancies in the shape of the distribution of

4NB: The �Standard DNWR Process� refers to the wage adjustment process that features only DNWR
where this is also described by the Standard DWR Mechanism; the �Standard D-NR-WR Process� refers
to the wage adjustment process that features DNWR and DRWR where both are described by the
Standard DWR Mechanism (and also, possibly, the Flexible regime that precludes any form of rigidity).
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the realised nominal wage growth rates (the �actual distribution�) relative to the shape of

the notional distribution � of such wage growth rates � that would prevail in the absence

of rigidities (the ��exible� distribution). This approach is based on that the existence of

wage adjustments that are constrained by any one of the rigidity types admitted by the

postulated model would result to the relocation of some of the probability mass of the

�actual distribution�, inducing distortions to its shape whose size re�ect the incidence of

wage adjustments that are constrained. Accordingly that size could convey information

about incidence-type rigidity measures, such as the proportion of unrealised nominal wage

cuts adopted in the context of the Standard DNWR Process. At the same time, when

multiple rigidity types are admitted by the postulated model then that size would also

re�ect the prevalence of the wage adjustments negotiated under each rigidity type, and

therefore could also convey information about �coverage�-type measures, such as the one

considered in the context of the Standard D-NR-WR Process.

The implementation of this indirect identi�cation approach entails, on the one hand,

linking the unknown values of the rigidity measures to the distortions in the shape of the

�actual distribution� and, on the other, identifying those distortions from the information

provided by the data, i.e., from the knowledge of the distribution of the observed nominal

wage growth rates � the factual distribution. With regard to the �rst task one may have

to deal with that a particular distortion in the shape of the �actual distribution� is induced

by the existence of wage adjustments constrained by several co-existing types of rigidity,

and therefore not possible to associate its size to any particular one. Even if this is not

the case, there is also the possibility that a given distortion is the result of probability

mass being shifted to and from that part of the �actual distribution� by a given type of

rigidity, resulting to its size understating the incidence of wage adjustments constrained

by that.

The second task, i.e., of identifying the distortions in the shape of the �actual distri-

bution�, also poses challenges. In the case of measurement-error-free data there is the

issue of identifying the shape of the � unobservable � ��exible distribution� from the fac-

tual distribution, where the latter coincides with the �actual distribution�. Note that in
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that context the ��exible distribution� plays the role of the counterfactual. In the case of

measurement-error-contaminated data the factual distribution does not coincide with the

�actual distribution�, and as a result the identi�cation of the relevant distortions (in the

shape of the �actual� distribution) becomes much harder; speci�cally, it would require to

identify � parts of the � shapes of both the �actual� and ��exible� distributions from the

(measurement-error-contaminated) factual distribution.

There are currently two approaches in the literature that seek to address the additional

complications induced by the presence of measurement error (NB: Both share the same

assumption of a classical measurement error, i.e., one that is additive to the actual value

of the nominal wage growth rate variable, and stochastically independent of all variables

in the model). The �rst seeks to purge measurement error from the data in a preliminary

stage, followed by a second stage where the analysis of the �cleaned� data takes place

as if they were in fact error-free (even though these are estimates of the corresponding

error-free data that are produced under speci�c assumptions). There are two variants of

this approach: a non-parametric one, developed by Gottschalk (2005), and another which

is parametric, developed by Dickens et al. (2007). The second approach, on the other

hand, proceeds with the speci�cation of a fully parametric model of the wage adjustment

process that allows explicitly for the presence of measurement error (NB: Normality is the

typical assumption for all continuously distributed unobservable variables in the models

speci�ed). This works by imposing restrictions on the wage adjustment process that are

su�ciently strong to identify the measurement-error distribution along with the �actual�

and ��exible� distributions, the latter two jointly identifying the rigidity measures. This

method was originally developed by Altonji and Devereux (2000) for the case where only

DNWR is assumed to exist, and was later extended to the case where DNWR is allowed

to co-exist with DRWR � see Goette et al. (2007) and Bauer et al. (2007a).

3 The model and rigidity measures

Next we proceed with the description of our model for the process that generates the

observed nominal wage growth rates, and de�ne the measure of rigidity that we seek to
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identify.

3.1 The observed wage adjustment process

We consider wage rigidities to be a feature of the wage adjustments of �job stayers�.5 Such

(nominal) wage adjustments are typically observed to occur periodically over the course of

the occupation of the job position; accordingly, in this context, a given wage adjustment

is de�ned with respect to the relevant employer-employee-job combination and e�ective

period of the associated wage agreement. Here we assume that any such wage adjustment

may be negotiated under one of several wage adjustment regimes, which may feature some

form of rigidity that could lead to an incomplete adjustment of the nominal wage level

in response to changes in the economic conditions that are relevant for such employment

relationships. The �Flexible� regime, which allows for complete adjustment, could also be

among those regimes.

For our purposes, the outcome of interest from a given wage adjustment is the real-

ised nominal wage growth rate, here denoted by ẇ∗ ∈ R and referred to as the �actual

rate�.6 This may be measured with error and therefore may be di�erent from its observed

value, here denoted by ẇ ∈ R and referred to as the �observed rate�.7 Assumptions 1-5

describe the process that generates ẇ, i.e., the �observed (wage adjustment) process�. In

particular, Assumptions 1-4 describe the process that generates ẇ∗, i.e., the �actual (wage

adjustment) process�, and Assumption 5 the measurement error model that links ẇ to

ẇ∗.

5For our purposes, these are workers in �stable� employment relationships who occupy the same job
position over a substantial period of time during which they experience wage adjustments (NB: Here
these are equivalent to wage reviews, as the outcome could be to leave the (nominal) wage unchanged).
Accordingly our notion of rigidity is not associated with wage adjustments that might be incurred due
to job changes.

6NB: Our notation omits the observation unit identi�er since our analysis is restricted to the study of
the identi�cation problem.

7In practice the observed rate is constructed as the log-di�erence between the nominal wage rate
reported to apply during the e�ective period of the given wage agreement and the rate reported to apply
in the immediately preceding period. In practice the e�ective period typically lasts for a year, and
therefore the calculated nominal wage growth rates are annual.
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3.1.1 The modelling framework

Assumption 1. (a) The actual rate for a given wage adjustment is determined according

to the following mechanism:

ẇ∗ = δ · ẇc∗ + (1− δ) ẇN∗ , ẇc∗ 6= ẇN∗ (1)

where δ is a binary variable that indicates whether the wage adjustment is constrained

by rigidity or not, with δ = 1 corresponding to the event that the wage adjustment is

constrained. Accordingly, ẇN∗ ∈ R records the unconstrained value of ẇ∗ (the �(true)

�exible rate�), and ẇc∗ ∈ R its constrained value (the �(true) constrained rate�).

(b) ẇN∗, ẇc∗ and δ are unobservable; their joint probability distribution is described

by the probability density function (PDF) fẇN∗,ẇc∗,δ|R,x, where x ∈ X is a vector of ob-

served heterogeneity characteristics and R ∈ R a categorical variable that records the

unobservable wage adjustment regime that applies (given x).

Assumption 1 provides a generic description of the actual wage adjustment process

that may feature rigidities. Assumption 1(a) simply allows for the possibility that the

wage adjustment is constrained; Assumption 1(b) speci�es that all right-hand-side (RHS)

variables in equation (1) are unobservable, with their joint distribution exhibiting het-

erogeneity with respect to observed characteristics, as well as additional unobservable

heterogeneity which we associate with the notion of the wage adjustment regime.

Given this setup, we can specify the features of a given actual wage adjustment process

starting from the speci�cation of the set of admissible wage adjustment regimes R and

the set of observable characteristics X . This de�nes a partition of the population into

heterogeneity groups, each one characterised by the values of R and x. We can then

specify the features of the wage adjustment mechanism associated with each such group by

imposing restrictions on the associated distribution of unobservables fẇN∗,ẇc∗,δ|R,x, which
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may be decomposed as follows:

fẇN∗,ẇc∗,δ|R,x
(
ẇN∗, ẇc∗, δ|R, x

)
= fẇN∗|R,x

(
ẇN∗|R, x

)
×

×fẇc∗|ẇN∗,R,x
(
ẇc∗|ẇN∗, R, x

)
(2)

×Pr
(
δ|ẇN∗, ẇc∗, R, x

)
The role of each of the RHS components in (2) becomes clear if we think of ẇ∗ (associated

with a given wage adjustment with characteristics x, that is negotiated under R) as being

determined in the following sequence of steps, given R and x:

Step 1: the value of ẇN∗ is drawn from fẇN∗|R,x,

Step 2: the value of ẇc∗ is drawn from fẇc∗|ẇN∗,R,x, which depends on the value of ẇN∗

drawn in Step 1,8

Step 3: the value of δ is drawn from a Bernoulli distribution with parameter:

ρR∗x
(
ẇN∗, ẇc∗

)
≡ Pr

(
δ = 1|ẇN∗, ẇc∗, R, x

)
(3)

which depends on the values of
(
ẇN∗, ẇc∗

)
drawn in Steps 1 and 2,9 here referred

to as the �intensity of rigidity� of type R at point
(
ẇN∗, ẇc∗

)
,

Step 4: ẇ∗ is determined according to (1) given the drawn values of
(
ẇN∗, ẇc∗, δ

)
.

3.1.2 The Standard DWR Process

Next using the above framework, we specify the features of the �Standard DWR Process�,

which encompasses the downward wage rigidity processes that feature the Standard DWR

Mechanism, considered in this literature. We leave R and X unspeci�ed, therefore allow

for any number of downward rigidity regimes. Assumptions 2-4 impose restrictions on the

distributions involved in Steps 1-3 of the above mechanism:

8NB: Taken together, Steps 1 and 2 are equivalent to drawing a pair of values
(
ẇN∗, ẇc∗

)
from

fẇN∗,ẇc∗|R,x.
9We further note that this is treated as a function of ẇN∗ and ẇc∗, whose domain is the support of

fẇN∗,ẇc∗|R,x, and also that it may be heterogeneous across R and x.
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Assumption 2. fẇN∗|R,x satis�es the following set of restrictions:

(a) ẇN∗ and R are conditionally independent given x; therefore fẇN∗|R,x is identical to

fẇN∗|x and has support WN∗
Rx =WN∗

x , where WN∗
x ≡

[
ẇN∗x0 , ẇ

N∗
x1

]
is the support of fẇN∗|x.

(b) fẇN∗|R,x (therefore, also, fẇN∗|x) is continuous.

(c) fẇN∗|R,x (therefore, also, fẇN∗|x) is symmetric.

Assumption 3. (a) Given R and x, the constrained rate ẇc∗ may be either known or

unknown:

If unknown then this is treated as a random variable; its conditional distribution fẇc∗|ẇN∗,R,x

is continuous and has the same support as fẇc∗|R,x for all values of ẇN∗, denoted by

Wc∗
Rx ≡ [ẇc∗Rx0, ẇ

c∗
Rx1].

If known then this is treated as �xed with value denoted by ẇc∗Rx1, i.e., ẇ
c∗ = ẇc∗Rx1 for

all values of ẇN∗, and therefore Wc∗
Rx ≡ {ẇc∗Rx1}; for practical purposes we also de�ne

ẇc∗Rx0= ẇc∗Rx1.

(b) There may be only two con�gurations with regard to the relative position of WN∗
Rx and

Wc∗
Rx: in the �rst Wc∗

Rx lies to the left of WN∗
Rx , i.e., ẇ

c∗
Rx1 < ẇN∗x0 , and in the second Wc∗

Rx

is a proper subset of WN∗
Rx (i.e., Wc∗

Rx ⊂ WN∗
Rx ).

Assumption 4. LetWNc∗
Rx =

[
ẇN∗x0 , ẇ

N∗
x1

]
× [ẇc∗Rx0, ẇc∗Rx1] denote the support of fẇN∗,ẇc∗|R,x.

Given R and x, the intensity of rigidity at point
(
ẇN∗, ẇc∗

)
∈ WNc∗

Rx satis�es the following

restrictions:

(a) ρR∗x
(
ẇN∗, ẇc∗

)
is positive only if ẇN∗ < ẇc∗, and

(b) if positive then ρR∗x
(
ẇN∗, ẇc∗

)
is �xed and equal to %Rx .

Accordingly:

ρR∗x
(
ẇN∗, ẇc∗

)
=


%Rx ≥ 0 , ẇN∗ < ẇc∗

0 , o/w

(4)

Under this speci�cation the admissible wage adjustment regimes may only di�er with

respect to the distribution of constrained rates fẇc∗|R,x and the value of %Rx . At the same
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time all are described by the same structural equation:10

ẇ∗ =


ẇN∗ , ẇN∗ ≥ ẇc∗

δ · ẇc∗ + (1− δ) ẇN∗ , ẇN∗ < ẇc∗
(5)

which we refer to as the �Standard DWR Mechanism� due to its prevalence in the liter-

ature. Also, they share the same distribution of �exible (unconstrained) rates.

We further note that Assumptions 2-3 impose relatively mild restrictions on the joint

distribution of the �exible and constrained rates. In particular, these are nonparametric

and permit any form of dependence between the �exible and constrained rates. The

�exible distribution fẇN∗|R,x is continuous and symmetric, while if non-degenerate (i.e.,

the case of variable constrained rate) fẇc∗|ẇN∗,R,x is only restricted to be continuous.11

As we discuss further below, Assumption 2(a) is essential for obtaining our identi�cation

results when R includes more than one regimes, Assumption 2(b) simpli�es the notation

and also provides additional identifying relationships when we work with error-free and

there are case of �xed ẇc∗ , while Assumption 2(c) contributes to the identi�cation the

features of the counterfactual distribution although other types of shape restrictions on

fẇN∗|R,x could also be used. Assumption 4(b) can be viewed as a generalisation of the

�Proportionality� assumption used in the context of the Standard DNWR Process.

In Figures 1a and 1b we depict examples of the support of fẇN∗,ẇc∗|R,x, i.e., WNc∗
Rx ,

for the cases of ẇc∗ variable and �xed, respectively. In the former case this specialises to

WNc∗
Rx =

[
ẇN∗x0 , ẇ

N∗
x1

]
× [ẇc∗Rx0, ẇ

c∗
Rx1] (from Assumptions 2 and 3), which corresponds to the

rectangle ABB
′
A
′
; in the latter case toWNc∗

Rx =
[
ẇN∗x0 , ẇ

N∗
x1

]
×{ẇc∗Rx1}, which corresponds

to the line segment AB.

Based on the de�nition of ρRx (·, ·) we consider a wage adjustment with characteristics(
ẇN∗, ẇc∗, R, x

)
to be a candidate to be constrained (by R) if ρRx

(
ẇN∗, ẇc∗

)
> 0. Accord-

10This follows from incorporating the restrictions of Assumption 4(a) onto equation (1).
11NB: In Assumption 3(a), and without loss of generality, we restrict the support of fẇc∗|ẇN∗,R,x to be

the same as that of fẇc∗|R,x in order to simplify notation. In general, the support of fẇc∗|R,x is given by
the union of the supports of fẇc∗|ẇN∗,R,x across all values of ẇN∗.
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ingly, the set:

C∗Rx ≡
{(
ẇN∗, ẇc∗

)
∈ WNc∗

Rx : ρRx
(
ẇN∗, ẇc∗

)
> 0
}

(6)

is the subset of the support of fẇN∗,ẇc∗|R,x that includes the pairs of values of �exible and

constrained rates associated with the wage adjustments (with characteristics x) that are

candidates to be constrained (by R). Under Assumption 4 this specialises to:

C∗Rx ≡
{(
ẇN∗, ẇc∗

)
∈ WNc∗

Rx : ẇN∗ < ẇc∗, %Rx > 0
}

(7)

Geometrically, and given %Rx > 0, this set includes the subset of values ofWNc∗
Rx that lie to

the left of the 45° line. For the case depicted in Figure 1a (variable ẇc∗) this corresponds

to the trapezoid ACC
′
A
′
excluding the line segment CC

′
, and for that depicted in Figure

1b (�xed ẇc∗) to the line segment AC excluding point C; for all those values ρRx
(
ẇN∗, ẇc∗

)
is equal to %Rx , and equal zero everywhere else.

3.1.3 The measurement error model

Assumption 5 completes our speci�cation of the observed process by allowing for the

possibility that the observed rate is contaminated with classical measurement error:

Assumption 5. (Measurement error model)

The observed rate relates to the actual rate as follows:

ẇ = ẇ∗ + ε̇ (8)

where ε̇ denotes measurement error. This is distributed independently of all the unobserv-

ables in the model and the vector of observable characteristics; its PDF, denoted by fε̇, is

symmetric around point zero and has support [−ε̇1, ε̇1].

It follows that for fε̇ non-degenerate, i.e., the case of error-contaminated observed

rates, ε̇ has zero mean and can take equally likely positive and negative values of the

same absolute size. In the case of error-free data (ε̇ = 0) then fε̇ is degenerate, with all

its probability mass concentrated at point zero.
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3.2 Rigidity measure

We adopt as measure of (the extent of) the rigidity associated with the wage adjustment

regime R, within the sub-population of wage adjustments with observable characteristics

x, the proportion of wage adjustments constrained among those that are candidates to be

constrained (by R). We denote this measure by %Rx .

Formally, let Rx be the subset of the admissible wage adjustment regimes under which

there exist � with non-zero probability � negotiated wage adjustments, with characteristics

x, that are candidates to be constrained:

Rx ≡
{
R ∈ R : Pr

((
ẇN∗, ẇc∗

)
∈ C∗Rx|R, x

)
> 0
}

(9)

We note that from the earlier discussion follows that if Wc∗
Rx ⊂ WN∗

Rx then R ∈ Rx, while

if Wc∗
Rx lies to the left of WN∗

Rx (i.e., ẇc∗Rx1 < ẇN∗x0 ) then R /∈ Rx. Then, for each R ∈ Rx:
12

%Rx ≡ Pr
(
δ = 1|

(
ẇN∗, ẇc∗

)
∈ C∗Rx, R, x

)
(10)

=
Pr (δ = 1|R, x)

Pr ((ẇN∗, ẇc∗) ∈ C∗Rx|R, x)
(11)

We observe that this de�nition is generic in the sense that it does not depend on the

postulated features of the underlying wage adjustment process, such as the number of

admissible wage adjustment regimes and the particular features of the corresponding dis-

tributions of the unobservables. Furthermore that %Rx is a conditional incidence measure

as it records the incidence of the wage adjustments constrained among those that are

candidates to be constrained (conditional on R and x); accordingly it has the advantage

of being independent of the �size� of the set of candidates associated with R and x, meas-

ured by Pr
((
ẇN∗, ẇc∗

)
∈ C∗Rx|R, x

)
, and therefore its values are comparable across R and

x even when this �size� varies.

12Note that (11) follows from writing Pr
(
δ = 1|

(
ẇN∗, ẇc∗

)
∈ C∗Rx, R, x

)
=

Pr(δ=1,(ẇN∗,ẇc∗)∈C∗Rx|R,x)
Pr((ẇN∗,ẇc∗)∈C∗Rx|R,x)

,

and using that Pr
(
δ = 1,

(
ẇN∗, ẇc∗

)
∈ C∗Rx|R, x

)
= Pr (δ = 1|R, x) since by de�nition, and given R and x,

the set of constrained wage adjustments (δ = 1) is a subset of those that are candidates to be constrained
(
(
ẇN∗, ẇc∗

)
∈ C∗Rx). We further note that, for R ∈ R \ Rx the denominator in (11) is equal to zero.
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The following results hold under our assumptions:

Lemma 1. (a) Under Assumption 4(a) Rx =
{
R ∈ R : Pr

(
ẇN∗ < ẇc∗|R, x

)
> 0
}
. Fur-

thermore, %Rx specialises as follows for each R ∈ Rx :

%Rx = Pr
(
δ = 1|ẇN∗ < ẇc∗, R, x

)
(12)

=
Pr (δ = 1|R, x)

Pr (ẇN∗ < ẇc∗|R, x)
(13)

which is the proportion of unrealised wage adjustments with actual rate below ẇc∗, given

R and x.

(b) Under Assumptions 1 and 4, %Rx is equal to %Rx . Accordingly, for the process considered

here, the rigidity measure coincides with a key model parameter.

4 Nature of the identi�cation problem

We assume that we have data on (ẇ, x), where x ∈ X , and ẇ generated by the observed

wage adjustment process described by Assumptions 1-5, thus possibly error-contaminated.

Given such data the identi�cation problem associated with the heterogeneity group with

characteristics x is that of learning about the value of %Rx for each R ∈ Rx based on the

knowledge of fẇ|x for all x ∈ X , where fẇ|x is the factual distribution associated with

heterogeneity group x.

In this section we explore the impact of measurement error on the nature of this

problem: �rst we examine its impact on the properties of the observed process, and then

on the interpretation of the rigidity measure.

4.1 Properties of the observed wage adjustment processes

Let ẇN ≡ ẇN∗ + ε̇ and ẇc ≡ ẇc∗ + ε̇ be the (possibly) error-contaminated unconstrained

and constrained values of the observed rate, respectively.

Lemma 2. Under Assumptions 1 and 5 the observed rate is given by the following ex-
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pression:

ẇ = δ · ẇc + (1− δ) ẇN , ẇc 6= ẇN (14)

This result follows from the additivity of the rigidity mechanism equation (1) and of

the measurement error model in (8).13 By construction, ẇN , ẇc and δ are unobservable;

like in the error-free case the PDF of their joint distribution, conditional on R and x, may

be decomposed as follows:

fẇN ,ẇc,δ|R,x
(
ẇN , ẇc, δ|R, x

)
= fẇN |R,x

(
ẇN |R, x

)
×

×fẇc|ẇN ,R,x
(
ẇc|ẇN , R, x

)
× (15)

×Pr
(
δ|ẇN , ẇc, R, x

)
where:

ρRx
(
ẇN , ẇc

)
≡ Pr

(
δ = 1|ẇN , ẇc, R, x

)
(16)

is the intensity of rigidity of type R at point
(
ẇN , ẇc

)
in the support of fẇN ,ẇc|R,x, denoted

by WNc
Rx and given by:

WNc
Rx =

{(
ẇN∗ + ε̇, ẇc∗ + ε̇

)
:
(
ẇN∗, ẇc∗

)
∈ WNc∗

Rx , ε̇ ∈ [−ε̇1, ε̇1]
}

Lemma 3 summarises the properties of the RHS terms in (15):

Lemma 3. Under Assumptions 1-5 the following results hold:

(a) ẇN is conditionally independent of R given x, therefore fẇN |R,x coincides with fẇN |x;

the latter is the error-contaminated fẇN∗|x, and its value is given by:

fẇN |x (ẇ|x) =
ˆ ε̇1

−ε̇1
fẇN∗|x (ẇ − ε|x) fε̇ (ε) dε (17)

Accordingly, fẇN |x is continuous, symmetric, and with support WN
x ≡

[
ẇNx0, ẇ

N
x1

]
=

13Clearly, in the absence of measurement error (14) reduces to (1).

18



[
ẇN∗x0 − ε̇1, ẇN∗x1 + ε̇1

]
. Also its mean and variance are given by:

E
(
ẇN |x

)
= E

(
ẇN∗|x

)
(18)

V ar
(
ẇN |x

)
= V ar

(
ẇN∗|x

)
+ V ar (ε̇) ≥ V ar

(
ẇN∗|x

)
(19)

(b-1) Given R and x, let ẇc∗ = ẇc∗Rx1 for all values of ẇ
N∗, i.e., �xed. Then ẇc = ẇc∗Rx1+ ε̇,

therefore fẇc|ẇN ,R,x coincides with fẇc|R,x which is the location-shifted measurement-error

distribution. Its value is given by:

fẇc|R,x (ẇ|R, x) = fε̇ (ẇ − ẇc∗Rx1) (20)

Accordingly fẇc|R,x is continuous, with supportWc
Rx ≡ [ẇcRx0, ẇ

c
Rx1] = [ẇc∗Rx1 − ε̇1, ẇc∗Rx1 + ε̇],

and mean and variance given by:

E (ẇc|R, x) = ẇc∗Rx1 (21)

V ar (ẇc|R, x) = V ar (ε̇) ≥ 0 (22)

(b-2) Given R, x, and ẇN , let ẇc∗ be variable. Then ẇc = ẇc∗+ε̇ and distributed according

to fẇc|ẇN ,R,x, which is the error-contaminated fẇc∗|ẇN∗,R,x. Its value is given by:

fẇc|ẇN ,R,x
(
ẇ|ẇN , R, x

)
=

ˆ ε̇1

−ε̇1
fẇc∗|ẇN∗,R,x

(
ẇ − ε|ẇN∗ − ε, R, x

)
fε̇ (ε) dε (23)

Accordingly fẇc|ẇN ,R,x is continuous, with support Wc
Rx ≡ [ẇcRx0, ẇ

c
Rx1] =

[ẇc∗Rx0 − ε̇1, ẇc∗Rx1 + ε̇1], and mean and variance given by:

E
(
ẇc|ẇN , R, x

)
= E

(
ẇc∗|ẇN∗, R, x

)
(24)
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V ar
(
ẇc|ẇN , R, x

)
= V ar

(
ẇc∗|ẇN∗, R, x

)
+ V ar (ε̇) (25)

≥ V ar
(
ẇc∗|ẇN∗, R, x

)

(c) ρRx
(
ẇN , ẇc

)
is positive only if ẇN < ẇc and, if so, equal to %Rx , i.e.:

ρRx
(
ẇN , ẇc

)
=


%Rx ≥ 0 , ẇN < ẇc

0 , o/w

(26)

Accordingly, (14) is restricted as follows:

ẇ =


ẇN , ẇN ≥ ẇc

δ · ẇc + (1− δ) ẇN , ẇN < ẇc
(27)

Taken together Lemmas 2 and 3 describe the properties of the observed wage adjust-

ment process that may be error-contaminated.14 From these follows that the only e�ect

that measurement error has on the features of the observed wage adjustment process (for

given x) is the increase in the spreads of fẇN |x and fẇc|ẇN ,R,x relative to those of fẇN∗|x

and fẇc∗|ẇN∗,R,x, respectively. By construction this, also, implies an increase in the spread

of the support of fẇN ,ẇc|R,x (i.e., WNc
Rx ) relative to that of fẇN∗,ẇc∗|R,x (i.e., WNc∗

Rx ) in both

directions of ẇN and ẇc.15

We depict these e�ects in Figures 2 and 3 for the cases of �xed and variable constrained

rates, respectively. In Figure 2a, forWNc
Rx in the error-free case (i.e.,WNc∗

Rx ) corresponding

to the line segment AB, then with the introduction of measurement error this expands

into to the area of the parallelogram abb
′
a
′
.16 In Figure 3a), for WNc∗

Rx corresponding to

14It is easy to verify that in the error-free case (i.e., fε̇ degenerate) these properties coincide with
the restrictions on the actual wage adjustment process that follow from Assumptions 1-4. Speci�cally,
setting ε̇ = 0 then (14) in Lemma 2 reduces to equation (1) in Assumption 1. Also the results given in
Lemma 3, parts (a), (b) and (c), give the restrictions on fẇN∗,ẇc∗|R,x imposed by Assumptions 2, 3 and
4, respectively.

15 Accordingly it has no e�ect on the respective location of these distributions, nor on ρRx
(
ẇN , ẇc

)
relative to ρR∗x

(
ẇN∗, ẇc∗

)
.

16This result follows from that the error-contaminated values of
(
ẇN , ẇc

)
that correspond to a partic-

ular pair of error-free values of
(
ẇN∗, ẇc∗

)
belong to the set

{(
ẇN∗ + ε̇, ẇc∗ + ε̇

)
: ε̇ ∈ [−ε̇1, ε̇1]

}
. Geo-
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the area of the rectangle ABB
′
A
′
, then with measurement errorWNc

Rx expands to the area

of acbb
′
c
′
a
′
. Also in Figures 2b (�xed constrained rate) and 3b (variable constrained rate)

we can see the change (increase) in the spread of the corresponding graphs of fẇc|R,x for

the cases of error-free and error-contaminated data, and similarly in Figure 2c for fẇN |x.

In all these cases the location of the distributions remains unchanged.

From the de�nition of ρRx (·, ·) given in equation (16) follows that we can characterise

wage adjustments as candidates to be constrained according to their associated values of(
ẇN , ẇc

)
in the same spirit as wage adjustments were be characterised (in Section 3) as

candidates to be constrained according to the sign of ρR∗x (·, ·) given their associated values

of
(
ẇN∗, ẇc∗

)
. Speci�cally, a wage adjustment � with characteristics x that is negotiated

under R � is a candidate to be constrained (by R) if, and only if the associated values(
ẇN , ẇc

)
are such that ρRx

(
ẇN , ẇc

)
> 0. From (26) follows that under our assumptions

this is equivalent to the pair
(
ẇN , ẇc

)
satisfying the condition ẇN < ẇc. Accordingly:

CRx ≡
{(
ẇN , ẇc

)
∈ WNc

Rx : ẇN < ẇc
}

(28)

is the subset of the support of fẇN ,ẇc|R,x that includes the pairs of unconstrained and

constrained values of the observed rate associated with the wage adjustments with char-

acteristics x that are candidates to be constrained by R.17 Geometrically, this is the

subset of the support fẇN ,ẇc|R,x that lies to the left of the 45° line. In the example de-

picted in Figure 2a (�xed constrained rate) this corresponds to the area of the trapezoid

acc
′
a
′
, excluding the points along cc

′
. Also, in the example depicted in Figure 3a (variable

constrained rate) this corresponds to the area of add
′
c
′
a
′
, excluding the points along dd

′
.

By construction, ρRx
(
ẇN , ẇc

)
is equal to %Rx at each point in CRx, and zero everywhere

else.

metrically this is the segment of the 45° line that goes through point
(
ẇN∗, ẇc∗

)
and has end-points(

ẇN∗ − ε̇1, ẇc∗ − ε̇1
)
and

(
ẇN∗ + ε̇1, ẇ

c∗ + ε̇1
)
. For example, in the case of point A =

(
ẇN∗x0 , ẇ

c∗
Rx1

)
, the

corresponding pairs of error-contaminated values
(
ẇN , ẇc

)
will lie on the line segment aa

′
. Taking the

union of the sets of points that lie along such line segments, corresponding to each point on AB, gives
the area of abb

′
a
′
. Using similar arguments we can derive the shape of WNc

Rx in the case of a variable
constrained rate, as in Figure 3a.

17NB: This specialises to C∗Rx in the error-free case.
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4.2 Generalisation of the de�nition of the rigidity measure

Since ẇN∗ < ẇc∗ implies, and is implied by, ẇN∗ + ε̇ < ẇc∗ + ε̇ for any value of ε̇, i.e.,

ẇN < ẇc, it follows that Pr
(
ẇN < ẇc|R, x

)
= Pr

(
ẇN∗ < ẇc∗|R, x

)
. Substituting this into

the denominator of (13) leads to the generalisation of the de�nition of %Rx , now stated

in terms of the constrained and unconstrained values of the observed rate that might be

error-contaminated:18

Lemma 4. Under Assumptions 1-5 the rigidity measure associated with R and x satis�es

the following:

%Rx = Pr
(
δ = 1|ẇN < ẇc, R, x

)
(29)

=
Pr (δ = 1|R, x)

Pr (ẇN < ẇc|R, x)
(30)

Given all the above, we can recast the identi�cation problem as follows:

Proposition 1. Given data on (ẇ, x), where x ∈ X , and ẇ generated by the observed wage

adjustment process described by Assumptions 1-5, the identi�cation problem associated

with the heterogeneity group with characteristics x is that of learning about the value of

%Rx described in (29), for each R ∈ Rx, based on the knowledge of fẇ|x whose properties

follow from the results reported in Lemmas 2 and 3.

We observe that for this identi�cation problem the presence of measurement error has

the same relevance as would have an increase in the spread of fẇN∗,ẇc∗|R,x if working with

error-free data.

5 Identi�cation results

From Proposition 1 follows that the same identi�cation strategy could be e�ective in both

cases of error-free and error-contaminated data. Next we consider such strategy. This

exploits the information that can be derived from the distortions in the shape of the

18NB: This simpli�es to the original de�nition of %Rx if no measurement error, i.e., ẇN = ẇN∗ and
ẇc = ẇc∗.
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factual distribution fẇ|x relative to that of fẇN |x, which is the factual distribution that

would prevail in the absence of rigidities and here plays the role of the counterfactual

distribution. In the case of error-free data this strategy specialises to that also used in

the existing literature, i.e., it exploits the information from the distortions in the shape of

the actual distribution (fẇ∗|x) relative to that of the �exible distribution (fẇN∗|x). In the

case of error-contaminated data this specialises to that which uses the information from

the distortions in the shape of the error-contaminated actual distribution relative to that

of the error-contaminated �exible distribution.

5.1 Factual Vs counterfactual distributions

5.1.1 Decomposition of the factual distribution

From the Law of Total Probability follows that we can write:19

fẇ|x (ẇ|x) =
∑
ϑ∈R

Pr (R = ϑ|x) fẇ|R,x (ẇ|ϑ, x) (31)

Lemma 5 presents the decomposition of fẇ|R,x:

Lemma 5. Under Assumptions 1 and 5, and for any R ∈ R, fẇ|R,x may be decomposed

as follows:

fẇ|R,x (ẇ|R, x) = fẇN |R,x (ẇ|R, x) + LRx (ẇ) +GR
x (ẇ) (32)

where:

LRx (ẇ) ≡ −fẇN ,δ|R,x (ẇ, 1|R, x) ≤ 0 (33)

GR
x (ẇ) ≡ fẇc,δ|R,x (ẇ, 1|R, x) ≥ 0 (34)

From the above follows that LRx (ẇ) is the decrease (�loss�) and GR
x (ẇ) the increase

(�gain�) in the value of fẇ|R,x relative to that of fẇN |R,x, at point ẇ, caused by the existence

of wage adjustments (with characteristics x) that are constrained (by R).

19NB: The analysis in this section applies to both cases of error-free and error-contaminated data.
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Lemma 6 links LRx (·) and GR
x (·) to CRx and fẇN ,ẇc,δ|R,x, i.e., the distribution of unob-

servables:20

Lemma 6. Let LRx and GRx be subsets of WN
Rx and Wc

Rx, respectively, de�ned as follows:

LRx ≡
{
ẇN ∈ WN

Rx :
(
ẇN , ẇc

)
∈ CRx

}
(35)

GRx ≡
{
ẇc ∈ Wc

Rx :
(
ẇN , ẇc

)
∈ CRx

}
(36)

i.e., LRx is the projection of CRx on WN
Rx, and GRx the projection of CRx on Wc

Rx. Also

let LRx (ẇ) and GRx (ẇ) be the subsets of LRx and GRx, respectively, de�ned as follows:

LRx (ẇ) ≡
{
ẇN ∈ LRx :

(
ẇN , ẇ

)
∈ CRx

}
(37)

GRx (ẇ) ≡ {ẇc ∈ GRx : (ẇ, ẇc) ∈ CRx} (38)

Then, under Assumptions 1 and 5, LRx (·) and GR
x (·) are given by:

LRx (ẇ) =


−
´
v∈GRx(ẇ)

ρRx (ẇ, v) fẇN ,ẇc|R,x (ẇ, v|R, x) dv ≤ 0 , ẇ ∈ LRx

0 , o/w

(39)

GR
x (ẇ) =


´
$∈LRx(ẇ)

ρRx ($, ẇ) fẇN ,ẇc|R,x ($, ẇ|R, x) d$ ≤ 0 , ẇ ∈ GRx

0 , o/w

(40)

Corollary 1. (a) LRx (ẇ) 6= 0 only if ẇ ∈ LRx, and GR
x (ẇ) 6= 0 only if ẇ ∈ GRx.

(b) If CRx = ∅ then LRx = GRx = ∅, and LRx (ẇ) = GR
x (ẇ) = 0 everywhere.

(c) If Wc
Rx is located to the left of WN

Rx, therefore R /∈ Rx, then LRx (ẇ) = GR
x (ẇ) = 0

everywhere. If Wc
Rx ⊂ WN

Rx, therefore R ∈ Rx, then L
R
x (ẇ) ≥ 0 and GR

x (ẇ) ≥ 0.

From (39) and (40) further follows that LRx is the subset of WN
Rx from which there is

relocation of probability mass of fẇ|R,x (as loss) to GRx (as gain). We observe that the

20NB: The results reported in Lemma 5, as well as those in Lemmas 6 and 7, and in Corollary 1, all
rely on Assumptions 1 and 5 only, and therefore apply for any speci�cation of the distribution of the
unobservables fẇN∗,ẇc∗,δ|R,x.
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direction of this relocation is always to the right since the constrained rate ẇc is always

larger than the corresponding unconstrained rate ẇN .

Combining all the above provides the following link between the factual and counter-

factual distributions:

Lemma 7. Under Assumptions 1 and 5 the factual distribution may be decomposed as

follows:

fẇ|x (ẇ|x) = fẇN |x (ẇ|x) +
∑
ϑ∈Rx

Pr (R = ϑ|x)
[
Lϑx (ẇ) +Gϑ

x (ẇ)
]

(41)

5.1.2 Distortions in the shape of the factual distribution

Lemma 8. Let fẇ|x (ẇ|x) − fẇN |x (ẇ|x) be the �distortion� in the shape of the factual

distribution (relative to that of the counterfactual) at point ẇ. Under Assumptions 1 and

5 this satis�es:

fẇ|x (ẇ|x)− fẇN |x (ẇ|x) =

=
∑
ϑ∈Rx

Pr (R = ϑ|x)
[
fẇ|R,x (ẇ|R, x)− fẇN |R,x (ẇ|R, x)

]
(42)

=
∑
ϑ∈Rx

Pr (R = ϑ|x)
[
Lϑx (ẇ) +Gϑ

x (ẇ)
]

(43)

Let fẇ|R,x (ẇ|R, x)− fẇN |R,x (ẇ|R, x) be the distortion in the shape of fẇ|R,x at point

ẇ. From (42) follows that the distortion in the shape of fẇ|x at point ẇ is the weighted

average, across R ∈ R, of the distortions in fẇ|R,x at the same point.21 Furthermore

from (43) follows that the size of this distortion will re�ect the �loss� (= LRx (ẇ)) and

�gain� (= GR
x (ẇ)) in the value of fẇ|R,x at that point for each R ∈ Rx, as well as the

prevalence of wage adjustments negotiated under each R ∈ R given x, which is measured

by Pr (R|x).

Next we examine how LRx (·) and GR
x (·) specialise under our modelling assumptions:

Lemma 9. LRx (·) and GR
x (·) specialise as follows under Assumptions 1-5:

21Note that, for each R ∈ R \ Rx, the distortion in the shape of fẇ|R,x at each point in its support is
equal to zero.
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(a) LetWc
Rx be located to the left ofWN

Rx. Then LRx = GRx = ∅, and LRx (ẇ) = GR
x (ẇ) = 0

everywhere.

(b-1) Let Wc
Rx ⊂ WN

Rx and ẇc variable, i.e., ẇc ∈ Wc
Rx = [ẇcRx0, ẇ

c
Rx1]. Then:

LRx (ẇ) =


−%Rx

´
v∈GRx(ẇ)

fẇN ,ẇc|R,x (ẇ, v|R, x) dv , ẇ ∈ LRx

0 , o/w

(44)

GR
x (ẇ) =


%Rx
´
$∈LRx(ẇ)

fẇN ,ẇc|R,x ($, ẇ|R, x) d$ , ẇ ∈ GRx

0 , o/w

(45)

where LRx =
[
ẇNx0, ẇ

c
Rx1

)
and GRx = [ẇcRx0, ẇ

c
Rx1], and therefore LRx∩GRx = [ẇcRx0, ẇ

c
Rx1).

(b-2) Let Wc
Rx ⊂ WN

Rx and ẇc �xed, i.e., ẇc ∈ Wc
Rx = {ẇcRx1}. Then:

LRx (ẇ) =


−%Rx fẇN |x (ẇ|x) , ẇ ∈ LRx

0 , o/w

(46)

GR
x (ẇ) =


%RxFẇN |x (ẇRx1|x) , ẇ ∈ GRx

0 , o/w

(47)

where LRx =
[
ẇNx0, ẇ

c
Rx1

)
and GRx = {ẇcRx1}, and therefore LRx ∩ GRx = ∅.

Accordingly, ifWc
Rx ⊂ WN

Rx (and %
R
x > 0) then LRx (ẇ) is non-zero at all values ofWN

Rx

smaller than ẇcRx1. Furthermore it is proportional to the probability mass allocated to

the wage adjustments that that satisfy ẇN = ẇ and are candidates to be constrained.

Also GR
x (ẇ) is non-zero at all values of Wc

Rx, and proportional to the probability mass

allocated to the wage adjustments that satisfy the condition ẇc = ẇ and are candidates

to be constrained.

In Figures 4 and 5 we provide examples of LRx (ẇ) and GR
x (ẇ) based on the expressions

given in Lemma 9(b-1, b-2), for ẇc variable and �xed, respectively. In Figure 4 we
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have WN
Rx =

[
ẇNx0, ẇ

N
x1

]
and Wc

Rx = [ẇcRx0, ẇ
c
Rx1] such that ẇNx0 < ẇcRx0 < ẇcRx1 < ẇNx1,

and WNc
Rx = WN

Rx × Wc
Rx that corresponds to the area of the rectangle AA

′
B
′
B (top

diagram).22 The value of LRx (·) at a given point ẇ ∈ LRx =
[
ẇNx0, ẇ

c
Rx1

)
corresponds to

the thickness of the light-grey-shaded area (middle diagram) located beneath the graph

of fẇN |R,x (depicted by the dotted line).23 Furthermore, the value of GR
x (·) at a given

point ẇ ∈ GRx = [ẇcRx0, ẇ
c
Rx1] corresponds to the thickness of the dark-grey-shaded area

located above the graph of fẇN |R,x.
24 It can be easily shown that the (total) light-grey-

and dark-grey-shaded areas have the same size that is equal to Pr (δ = 1|R, x), i.e., to the

total probability mass of fẇ|R,x that is relocated due to the existence of constrained wage

adjustments.

In Figure 5 we haveWN
Rx =

[
ẇNx0, ẇ

N
x1

]
andWc

Rx = {ẇcRx1} such that ẇNx0 < ẇcRx1 < ẇNx1,

and WNc
Rx =WN

Rx ×Wc
Rx that corresponds to the line segment AB (top diagram).25 Here

too the value of LRx (·) at a given point ẇ ∈ LRx =
[
ẇNx0, ẇ

c
Rx1

)
corresponds to the

thickness of the light-grey-shaded area (middle diagram) located beneath the graph of

fẇN |R,x (depicted by the dotted line).26 Furthermore GR
x (ẇcRx1) corresponds to the height

of the bullet point located above the graph of fẇN |R,x at ẇc = ẇcRx1.
27

From (32) follows that we can derive the graph of fẇ|R,x by adding the thickness of the

22Given our earlier discussion, this is clearly the case where ẇc∗ is variable such thatWc∗
Rx ⊂ WN∗

Rx , and
where also the data are free from measurement error. We note that the same qualitative results can be
reached for the other two cases that can arise under our modelling assumptions, where ẇc is variable and
Wc
Rx ⊂ WN

Rx: the �rst, when ẇ
c∗ is variable such thatWc∗

Rx ⊂ WN∗
Rx and working with error-contaminated

data, and the second when ẇc∗ is �xed such that Wc∗
Rx ⊂ WN∗

Rx and working with error-contaminated
data.

23For example in the case of point ẇ
′
that lies in GRx, therefore also in the overlap of LRx and GRx,

then GRx
(
ẇ
′
)
=
(
ẇ
′
, ẇcRx1

]
, corresponding to the line segment βγ excluding point β (see top diagram).

From (44) follows that LRx

(
ẇ
′
)
is the value of the de�nite integral of fẇN ,ẇc|R,x

(
ẇ
′
, ·|R, x

)
evaluated

over those points, scaled by −%Rx .
24For example, in the case of point ẇ

′
, then LRx

(
ẇ
′
)
=
[
ẇNx0, ẇ

′
)
, corresponding to the line segment

αβ excluding point β (see top diagram). From (45) follows that GRx

(
ẇ
′
)
is the value of the de�nite

integral of fẇN ,ẇc|R,x

(
·, ẇ′ |R, x

)
evaluated over those points, scaled by %Rx .

25From our earlier discussion it follows that this is the case where ẇc∗ is �xed, Wc∗
Rx ⊂ WN∗

Rx , and
working with error-free data.

26For example, in the case of point ẇ
′
that lies in LRx, then GRx

(
ẇ
′
)
= {ẇcRx1}, corresponding to

point α (see top diagram). From (46) follows that LRx

(
ẇ
′
)
is equal to fẇN |R,x

(
ẇ
′ |R, x

)
, scaled by −%Rx .

27Note that LRx (ẇcRx1) =
[
ẇNx0, ẇ

c
Rx1

)
, corresponding to the line segment AC excluding point C

(see top diagram). From (47) follows that GRx (ẇcRx1) is given by the value of the de�nite integral of
fẇN |R,x (·|R, x) evaluated over those points, scaled by %Rx .
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dark-grey-shaded area at any given point to the corresponding height of fẇN |R,x, and then

subtracting from it the corresponding thickness of the light-grey-shaded area. Doing so

for the cases considered in Figures 4 and 5 gives the solid lines depicted in their respective

bottom diagrams. In the case of ẇc being variable (Figure 4) fẇ|R,x features a �de�cit�

(i.e., negative distortion) at each point in the interval to the left of point ẇcRx0 (i.e., in

LRx\GRx), resulting to a �cumulative de�cit� in that interval. This is coupled with a

�cumulative surplus� (i.e., positive distortion) of equal size in GRx = [ẇcRx0, ẇ
c
Rx1],

28 which

appears as a �hump� in the shape of fẇ|R,x in that interval. In the case of ẇc being �xed

(Figure 5) fẇ|R,x also features a de�cit at each point in the interval to the left of point

ẇcRx0 = ẇcRx1 (i.e., in LRx, in this case), which results to a cumulative de�cit in that

interval; this is coupled with a surplus of equal size at point ẇcRx1, which manifests itself

as a spike.

Lemma 10 provides results about the support of fẇ|R,x:

Lemma 10. LetWRx denote the support of fẇ|R,x. The following hold under Assumptions

1-5:

(a) if Wc
Rx is located to the left of WN

Rx then WRx is equal to WN
x =

[
ẇNx0, ẇ

N
x1

]
.

(b) if Wc
Rx ⊂ WN

Rx then, for both cases of ẇc variable and �xed WRx is equal to

WN
x =

[
ẇNx0, ẇ

N
x1

]
if %Rx < 1, and equal to WN

x \
[
ẇNx0, ẇ

c
Rx1

)
=
[
ẇNRx0, ẇ

N
x1

]
if %Rx = 1.

From (31) follows, further, that we can derive the graph of fẇ|x by adding vertically

the scaled graphs of fẇ|R,x, R ∈ R, where the mixing probabilities Pr (R|x) are the

corresponding scale factors. The graph of fẇN |x can be derived in a similar way using the

graphs of fẇN |R,x, R ∈ R (NB: See examples in Section 5 for a particular speci�cation of

R).29

Lemma 11 provides results about the support of fẇ|x:

Lemma 11. Let Wx denote the support of fẇ|x. The following hold under Assumptions

1-5:

28This follows from probability accounting since there are no distortions elsewhere other than in LRx∪
GRx. From where exactly in LRx the probability mass is re-allocated to where exactly in GRx depends
on fẇN ,ẇc|R,x.

29NB: In our case this is simpler as fẇN |R,x is assumed to be the same as fẇN |x (Assumption 2(a)).
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(a) if Rx ⊂ R then Wx is equal to WN
x .

(b) if Rx = R then Wx is equal to WN
x i� %Rx < 1 for some R ∈ R.

5.2 Measures Vs distortions

Given that the proportionality parameter %Rx that appears in the expressions for Lϑx (·)

and Gϑ
x (·) that are given in Lemma 9 is equal to the rigidity measure %Rx (from Lemma

1), it follows that (43) can be used to examine how the latter relates to the distortions in

the shape of the factual distribution.

5.2.1 Measures Vs spikes

Proposition 2 focuses on the case of spikes:

Proposition 2. Given x, let Rx be non-empty. Furthermore let Rx be the non-empty

subset of Rx such that for each R ∈ Rx the associated constrained rate ẇc∗ is �xed and

equal to ẇc∗Rx1, where ẇ
c∗
Rx1 6= ẇc∗

R′x1
for all R

′ ∈ Rx, R
′ 6= R. If fε is degenerate (error-

free data) then, under Assumptions 1-5, fẇ|x features a mass point at each value ẇc∗Rx1,

R ∈ Rx, which attracts probability mass equal to:

Pr (ẇ = ẇc∗Rx1|x) = %RRx FẇN |x (ẇ
c∗
Rx1|x) (48)

where:

%RRx ≡ Pr (R|x) %Rx (49)

is the scaled rigidity measure associated with wage adjustment regime R.

We observe that the height of the spike at a given point ẇc∗Rx1 is proportional to the

probability mass of the counterfactual distribution (here this is fẇN∗|x) that lies to the

left of it: speci�cally, if R admits a single wage adjustment regime then the scale factor

is %Rx , whereas if it a admits several regimes then this is %RRx . This result re�ects the

fact demonstrated in equation (42) that, given x, the size of the distortion in the shape of

factual distribution at a given point re�ects the size of the distortion in the shape of fẇ|R,x
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at the same point, which depends on %Rx ,
30 as well as the prevalence of wage adjustments

negotiated under R, measured by Pr (R|x).

Also from (48) follows that, given error-free data, knowledge of the height of the spike

at point ẇc∗Rx1, Pr (ẇ = ẇc∗Rx1|x), and of the amount of probability mass of the counter-

factual distribution that lies to the left of it, FẇN |x (ẇ
c∗
Rx1|x), would be su�cient to point

identify %Rx in the case of a single wage adjustment regime, and %RRx in the case of multiple

wage adjustment regimes.

5.2.2 Measures Vs cumulative distortions

Lemma 12 gives the expression for the cumulative distortion in the shape of the factual

distribution to the left of any given point in its support:

Lemma 12. Given x, let Rx be non-empty. Under Assumptions 1-5 the cumulative

distortion in the shape of the factual distribution to the left of, and including, any point

ẇ ∈ Wx is given by:

Fẇ|x (ẇ|x)− FẇN |x (ẇ|x) = −
∑
ϑ∈Rx

%ϑϑx c
ϑ
x (ẇ) (50)

where:

cRx (ẇ) ≡
¨

($,v)∈CRx:$<ẇ,v>ẇ

fẇN ,ẇc|R,x ($, v|R, x) dvd$ ≥ 0 (51)

is the probability mass of fẇN ,ẇc|R,x allocated to the points in the locus of CRx that lie to

the left and above of ẇ.

Corollary 2. (a) If Wc
Rx ⊂ WN

Rx and ẇc is variable then cRx (ẇ) is given by:

cRx (ẇ) =


FẇN |x (ẇ|x) , ẇNx0 ≤ ẇ < ẇcRx0

´ ẇ
ẇNx0

´ maxGRx($)

ẇ
fẇN ,ẇc|R,x ($, v|R, x) dvd$ , ẇcRx0 ≤ ẇ < ẇcRx1

0 , ẇcRx1 ≤ ẇ ≤ ẇNx1

(52)

30As shown in Lemma 9.
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where minLRx (ẇ) is the minimum value in LRx (ẇ) and maxGRx (ẇ) is the maximum

value in GRx (ẇ).

(b) If Wc
Rx ⊂ WN

Rx and ẇc is �xed then cRx (ẇ) is given by:

cRx (ẇ) =


FẇN |x (ẇ|x) , ẇNx0 ≤ ẇ < ẇcRx1

0 , ẇcRx1 ≤ ẇ ≤ ẇNx1

(53)

We observe that the cumulative distortion to the left of a given point is negative,

indicating a de�cit, if this is located to the left of the maximum of ẇcRx1 across all R ∈ Rx,

and equal to zero elsewhere. The fact that, if non-zero, this can only be negative re�ects

that the direction of relocation of probability mass is always to the right.

The RHS of (50) is a linear combination of %RRx for those values of R ∈ Rx that

the corresponding coe�cients cRx
(
ẇ
′)

are non-zero; from (52) and (53) follows further

that this is the case for R such that ẇ
′
< ẇcRx1. It follows that with the appropriate

choice of points ẇ
′
in Wx we can derive a set of relationships that link di�erent linear

combinations of %RRx to the cumulative distortion to the left of those points. For this

purpose we de�ne Kx ≥ 0 to be the number of elements of Rx. Furthermore, if Kx > 1

we write Rx = {Rk : k = 1, . . . , Kx} such that for {Rk−1, Rk} ⊆ Rx, k = 2, . . . , Kx, holds

that ẇcRk−1x1
≤ ẇcRkx1; if Kx = 1 then Rx = {R1}.31

Proposition 3. Given x let Kx ≥ 1, therefore Rx = {R1, . . . , RKx} non-empty, where

R ∈ Rx ⇔ Wc
Rx ⊂ WN

Rx. Furthermore if Kx > 1 we assume that for k = 2, . . . , Kx and

{Rk−1, Rk} ⊆ Rx that ẇcRkx1 6= ẇcRk−1x1
. Then under Assumptions 1-5, and given that

Wx = WN
x , there exist points ẇ

′
1, . . . , ẇ

′
Kx

such that ẇx0 < ẇ
′
1 < ẇcR1x1

, and ẇcRk−1x1
<

ẇ
′

k < ẇcRkx1 for 2 ≤ k ≤ Kx, for which the cumulative distortion in the shape of fẇ|x to

31Accordingly, the values of k indicate the relative position of the right limits of Wc
Rx, R ∈ Rx.
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the left of, and including, each one of them is given by the following expressions:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)

= −
Kx∑
j=1

%RjRjx cRjx

(
ẇ
′

1

)
Fẇ|x

(
ẇ
′

2|x
)
− FẇN |x

(
ẇ
′

2|x
)

= −
Kx∑
j=2

%RjRjx cRjx

(
ẇ
′

2

)
(54)

. . .

Fẇ|x

(
ẇ
′

Kx|x
)
− FẇN |x

(
ẇ
′

Kx|x
)

= −%RKxRKxx cRKxx

(
ẇ
′

Kx

)

The above is a triangular system of equations with respect to %RRx , R ∈ Rx, therefore

can be solved for these parameters in terms of the values of cRx (·), Fẇ|x (·) and FẇN |x (·) at

points ẇ
′
1, . . . , ẇ

′
K . Accordingly, under Assumptions 1-5, knowledge of those values would

be su�cient to point identify %RRx for all R ∈ Rx.

For the special case where the supports of the distributions of constrained rates (i.e.,

Wc
Rx) associated with R ∈ Rx do not overlap, choosing points ẇ

′
1, . . . , ẇ

′
Kx

to be located

in the �gaps� between those distributions would lead to solutions for %RRx , R ∈ Rx, that

only depend on the values of Fẇ|x (·) and FẇN |x (·) at points ẇ
′
1, . . . , ẇ

′
K :

Proposition 4. Given x let Kx ≥ 1, therefore Rx = {R1, . . . , RKx} non-empty, where

R ∈ Rx ⇔Wc
Rx ⊂ WN

Rx. Furthermore if Kx > 1 then for k = 2, . . . , Kx and {Rk−1, Rk} ⊆

Rx holds that ẇcRk−1x1
< ẇcRkx0, i.e., W

c
Rk−1x

∩Wc
Rkx

= ∅. Then under Assumptions 1-5

there exist points ẇ
′
1, . . . , ẇ

′
Kx

such that ẇx0 < ẇ
′
1 < ẇcR1x0

, and ẇcRk−1x1
< ẇ

′

k < ẇcRkx0 for

2 ≤ k ≤ Kx, for which the cumulative distortion in the shape of fẇ|x to the left of, and

including, each one of them is given by the following expressions:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)

= −

(
Kx∑
j=1

%RjRjx

)
FẇN |x

(
ẇ
′

1|x
)

Fẇ|x

(
ẇ
′

2|x
)
− FẇN |x

(
ẇ
′

2|x
)

= −

(
Kx∑
j=2

%RjRjx

)
FẇN |x

(
ẇ
′

2|x
)

(55)

. . .

Fẇ|x

(
ẇ
′

Kx|x
)
− FẇN |x

(
ẇ
′

Kx|x
)

= −%RKxRKxx FẇN |x

(
ẇ
′

Kx|x
)

Accordingly, under , Assumptions 1-5, knowledge of the values of Fẇ|x and FẇN |x at
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points ẇ
′
1, . . . , ẇ

′
K as speci�ed is su�cient to point identify %RRx for all R ∈ Rx.

The width of the support of the measurement error distribution � thus the value

of ε̇1, � determines which gaps, among those that exist in the case of error-free data,

are preserved in the presence of measurement error. This is because the limits of such

gaps move towards each other as ε̇1 increases, allowing for the possibility that any given

gap to be eliminated for su�ciently large values of ε̇1. In such case also the identifying

relationship associated with the point located in that gap would seize to hold. This

also means that for su�ciently small values of ε̇1 all identifying relationships that hold

in the absence of measurement error are preserved in its presence under no additional

assumptions, allowing the same identi�cation results to be derived.

5.3 Implementation issues

5.3.1 Extraneous information

Given data on (ẇ, x) additional knowledge of the limits ofW c
Rx would be required in order

to select points ẇ
′
1, . . . , ẇ

′
Kx
, which are needed to specify the equations (i.e., identifying

relationships) given in Propositions 3 and 4. As can be easily veri�ed, knowledge of the

bounds of W c
Rx would also be su�cient for that purpose, given that the results stated in

those Propositions would hold if ẇcRx0 were substituted with a corresponding lower and

ẇcRx1 with a corresponding upper bound. Using bounds instead of the exact limits of

W c
Rx can be useful in practice as obtaining the former is likely to be much easier than

obtaining the latter. In such case one should, however, use the greatest lower bound of

ẇcRx0 and least upper bound of ẇcRx1 available in order to avoid eliminating any of the

gaps that may exist between adjacent distributions of constrained rates � and in doing

so, avoid eliminating any of the identifying relationships that follow from Proposition 4

given knowledge of the actual limits of W c
Rx.

5.3.2 Identi�cation of counterfactual CDF values

The identifying relationships stated in Propositions 2-4 can only be applied in practice if

the values of the CDF of the counterfactual distribution that appear in those relationships
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can be identi�ed from the available data. That might be possible by imposing restrictions

on the shape of the counterfactual distribution fẇN |x (through restrictions on the shape of

the �exible distribution fẇN∗|x) such that knowledge of the shape of the part of fẇN |x that

can be identi�ed from the undistorted part of the factual distribution fẇ|x is su�cient for

that purpose. Here we assume that fẇN∗|x is symmetric, which implies that fẇN |x is also

symmetric irrespective of the presence of measurement error � see Lemma 3(a). As stated

below, if the upper half of the factual distribution is not distorted by rigidities then this is

su�cient to ensure identi�cation of the relevant values of FẇN |x from the data on (ẇ, x):

Lemma 13. Given x, let Rx be non-empty. Furthermore let ẇcRKxx1 < mx where mx

denotes the median of fẇ|x. Then, under Assumption 2(c) the following result holds for

any point ẇ < ẇcRKxx1:

FẇN |x (ẇ|x) = 1− Fẇ|x (2mx − ẇ|x) (56)

Shape homogeneity of fẇN∗|x across heterogeneity groups (x) is another non-parametric

restriction that has been used in the literature, e.g. by Kahn (1997) and Holden and

Wulfsberg (2008, 2009) (in the latter case, only up to scale). The typical parametric

restriction is Normality, used among others by Fehr and Goette (2005) and Bauer et

al. (2007b). Another parametric restriction is the Generalised Hyperbolic distribution,

considered by Behr and Pötter (2010).

5.4 Set identi�cation results

From the previous discussion follows that obtaining point identi�cation of %Rx would require

�rst to point identify Pr (R|x). On the other hand %RRx can be informative as a measure

of the �signi�cance� of regime R among wage adjustments with characteristics x, since

it combines the incidence of constrained wage adjustments by R among those negotiated

under R (i.e., %Rx ) and the prevalence of wage adjustments negotiated under R among x

(i.e., Pr (R|x)).

Nevertheless, it is possible to derive set identi�cation results for %Rx � as well as for
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Pr (R|x) � based on the knowledge of the identi�ed values of %RRx by exploiting the re-

strictions that follow from the fact that these parameters are probabilities:

Proposition 5. Given x, let Rx be non-empty and assume knowledge of %RRx for all

R ∈ Rx. Then:

%Rx ∈

[
%RRx

1−
∑

ϑ∈Rx\{R} %
ϑϑ
x

, 1

]
, R ∈ Rx (57)

Pr (R|x) ∈


[
%RRx , 1−

∑
ϑ∈Rx\{R} %

ϑϑ
x

]
, R ∈ Rx[

0, 1−
∑

ϑ∈Rx\{R} %
ϑϑ
x

]
, R ∈ R \ Rx

(58)

Accordingly from (57) follows that knowledge of %RRx , for all R ∈ Rx, reduces the

uncertainty about the lower bound of %Rx for R inRx. Also, from (58), that this knowledge

provides information about the lower and upper bounds of Pr (R|x) for R in Rx, but only

for its upper bound for R not in Rx.

6 Summary and conclusion

In this paper we study the problem of identi�cation of measures of the extent of indi-

vidual types of downward wage rigidity from micro-level data on nominal wage growth

rates. This is undertaken within the context of a wage adjustment process that can feature

any number of downward wage rigidity types. It therefore encompasses the models con-

sidered by the literature, which only allow for Downward Nominal Wage Rigidity and/or

Downward Real Wage Rigidity.

A key �nding of our analysis is that the existence of classical measurement error in

the observed nominal wage growth rates does not alter fundamentally the nature of the

identi�cation problem. In turn, this allows to develop a common identi�cation strategy

for both the cases of measurement-error-free and measurement-error-contaminated data,

which seeks to identify the rigidity measures from the size of the distortions in the shape

of the corresponding factual distribution relative to the shape of the (rigidity-free) coun-

terfactual distribution. Using this strategy we are then able to show that identi�cation

of the rigidity measures can be achieved under weaker restrictions than those employed
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by the existing literature, especially in the case of measurement-error-contaminated data.

These restrictions are non-parametric, and su�cient to produce the same identi�cation

results in both cases if the support of the measurement error distribution is su�ciently

narrow.

The work presented here also makes broader methodological contributions by devel-

oping a generic framework for the modelling and measurement of wage rigidities. This

allows us to undertake a rigorous identi�cation analysis, which provides new insights on

the nature of the identi�cation problem and its solution; also, to unify seemingly di�erent

models, types of rigidity measures, and identi�cation results in the existing literature.

As much as enhancing our understanding of how the identi�cation of measures of ri-

gidity can be achieved, the identi�cation results reported here could also be of practical

use by providing the basis for the development of new estimation methods for such meas-

ures. As these identi�cation results rely on weaker restrictions than those in the existing

literature, that could potentially lead to estimation methods that also rely on weaker

restrictions than the existing ones.
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A Example: the D-NR-WR process

A.1 Set up

In this appendix we examine how the generic identi�cation results discussed in the main

text specialise to the case of the Standard D-NR-WR process. This process allows for

any given wage adjustment to be negotiated under one of three wage adjustment regimes,

namely DNWR, DRWR, and the Flexible regime, where the �rst two regimes are described

by the Standard DWR Mechanism.

Assumptions 6 and 7 stated below complement Assumptions 1-5 to provide a full

description of that process:32

Assumption 6. (Admissible wage adjustment regimes)

Given observed characteristics x, a wage adjustment may be negotiated under one of

three wage adjustment regimes: DNWR (R = n), DRWR (R = r), and the Flexible regime

(R = f); accordingly, R = {n, r, f}.

Assumption 7. (Constrained rates, by wage adjustment regime)

(a) If R = n (DNWR) then ẇc∗ is equal to zero. Accordingly fẇc∗|ẇN∗,R=n,x is degen-

erate, with all its probability mass concentrated at point zero (see also Assumption 3b);

furthermore, Wc∗
Rx =Wc∗

nx = {0}.

(b) If R = r (DRWR) then ẇc∗ is equal to the anticipated in�ation rate Ṗ e∗. Accord-

ingly fẇc∗|ẇN∗,R=r,x specialises to fṖ e∗|ẇN∗,R=r,x, whose properties are described in Assump-

tion 3a; furthermore, Wc∗
Rx =Wc∗

rx =
[
Ṗ e∗
x0 , Ṗ

e∗
x1

]
.

(c) If R = f (Flexible) then ẇc∗ is, conventionally, set equal to −∞. Accordingly,

fẇc∗|ẇN∗,R=f,x is unde�ned.

By de�nition, there are no wage adjustments that are candidates to be constrained

under the Flexible regime, therefore, given x, only n (DNWR) and r (DRWR) can be

the elements of Rx. Here we consider three cases of anticipated in�ation regimes that

determine the composition of Rx:
33

32Note that X is left unspeci�ed.
33These de�nitions are consistent with the relationship ẇN∗ = Ṗ e∗ + τ̇ , where τ̇ is the cumulative
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HIGH Anticipated In�ation Regime (x ∈ XH): This is the case where the mean an-

ticipated in�ation rate is high enough so that all �exible rates and all anticipate

in�ation rates are positive:

0 < ẇN∗x0 < Ṗ e∗
x0 ≤ Ṗ e∗

x1 < ẇN∗x1 (59)

It follows that Rx = {r}.34

MODERATE Anticipated In�ation Regime (x ∈ XM): This is the case where the

mean anticipated in�ation rate is positive but at moderate levels so that there exist

positive as well as negative �exible rates, although only positive anticipate in�ation

rates:

ẇN∗x0 < 0 < Ṗ e∗
x0 ≤ Ṗ e∗

x1 < ẇN∗x1 (60)

It follows that Rx = {n, r}.35

LOW Anticipated In�ation Regime (x ∈ X L): This is the case where the mean an-

ticipated in�ation rate is close enough to zero, being either positive or negative, so

that there exist positive as well as negative �exible rates and anticipated in�ation

rates:

ẇN∗x0 < Ṗ e∗
x0 < 0 < Ṗ e∗

x1 < ẇN∗x1 (61)

It follows that Rx = {n, r}.

Given that r ∈ Rx, which is true for all three anticipated in�ation regimes (i.e., for

x ∈ XH ∪ XM ∪ X L), the measure of the extent of DRWR is de�ned as follows:

%rx ≡
Pr (δ = 1|R = r, x)

Pr
(
ẇN∗ < Ṗ e∗|R = r, x

) (62)

e�ect of the changes in all factors a�ecting ẇN∗, other than expected in�ation. Furthermore, in all
anticipated in�ation regimes the support of the anticipated in�ation distribution is a subset of the support

of the �exible distribution, i.e.,
[
Ṗ e∗x0 , Ṗ

e∗
x1

]
⊂
[
ẇN∗x0 , ẇ

N∗
x1

]
, which is consistent with Ṗ e∗ and τ̇ being

non-negatively correlated. (NB: Using US data, Christo�des and Mamuneas (2003) �nd these to be
independent.)

34Since Wc∗
nx = {0} lies to the left of WN∗

nx =
[
ẇN∗x0 , ẇ

N∗
x1

]
and Wc∗

rx =
[
Ṗ e∗x0 , Ṗ

e∗
x1

]
⊂ WN∗

nx .
35Since, as also in the case of the LOW Anticipated In�ation Regime discussed below, Wc∗

nx ⊂ WN∗
nx

and Wc∗
rx ⊂ WN∗

rx .
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i.e., it is the proportion of unrealised anticipated real wage cuts among the wage adjust-

ments with characteristics x that are candidates to be constrained by DRWR. For the

MODERATE and LOW anticipated in�ation regimes (i.e., for x ∈ XM∪X L), the measure

of the extent of DNWR is de�ned as follows:

%nx ≡
Pr (δ = 1|R = n, x)

Pr (ẇN∗ < 0|R = n, x)
(63)

i.e., it is the proportion of unrealised nominal wage cuts among the wage adjustments

with characteristics x that are candidates to be constrained by DNWR.

A.2 Results

In Figures 6-8 we depict the graphs of the PDFs of the factual and counterfactual dis-

tributions for each of the three anticipated in�ation regimes, for the cases of error-free

and error-contaminated data. Propositions 6-8 give the corresponding identifying rela-

tionships:

x
¤Nw

|
1
'w_0 0x

¤Nw_ 0x
¤eP_ 1x

¤eP_ 1x
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xjNw_f
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(a) Error-free data

1
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¤Nw

|

(b) Error-contaminated data

Figure 6: Factual Vs counterfactual distributions, HIGH anticipated in�ation regime
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Proposition 6. (HIGH Anticipated In�ation regime)

(a) Let x ∈ XH and fε̇ degenerate (error-free data). Furthermore, consider point ẇ
′
1 ∈

(ẇx0, ẇ
c
rx0) =

(
ẇN∗x0 , Ṗ

e∗
x0

)
� see example in Figure 6a. From Proposition 4 we get the

following relationship:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)
= −%rrx FẇN |x

(
ẇ
′

1|x
)

(64)

(b) Let x ∈ XH and fε̇ non-degenerate (error-contaminated data). Furthermore, consider

point ẇ
′
1 ∈ (ẇx0, ẇ

c
rx0) =

(
ẇNx0, Ṗ

e
x0

)
where Wc

rx =
[
Ṗ e
x0, Ṗ

e
x1

]
=
[
Ṗ e∗
x0 − ε̇1, Ṗ e∗

x1 + ε̇1

]
is the

support of fṖ e∗|ẇN∗,R=r,x, i.e., of fṖ e∗|R=r,x
36 � see example in Figure 6b. From Proposition

4 we get the following relationship:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)
= −%rrx FẇN |x

(
ẇ
′

1|x
)

(65)
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(b) Error-contaminated data

Figure 7: Factual Vs counterfactual distributions, MODERATE anticipated in�ation re-
gime

36See Lemma 3(b-2).
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Proposition 7. (MODERATE Anticipated In�ation regime)

(a) Let x ∈ XM and fε̇ degenerate (error-free data). Furthermore, consider points ẇ
′
1 ∈

(ẇx0, ẇ
c
nx0) =

(
ẇN∗x0 , 0

)
and ẇ

′
2 ∈ (ẇcnx1, ẇ

c
rx0) =

(
0, Ṗ e∗

x0

)
� see example in Figure 7a.

From Proposition 4 we get the following relationships:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)

= − (%nnx + %rrx )FẇN |x

(
ẇ
′

1|x
)

(66)

Fẇ|x

(
ẇ
′

2|x
)
− FẇN |x

(
ẇ
′

2|x
)

= −%rrx FẇN |x
(
ẇ
′

2|x
)

(67)

Furthermore, from Proposition 2 we get the following:

Pr (ẇ = 0|x) = %nnx FẇN |x (0|x) (68)

(b) Let x ∈ XM and fε̇ non-degenerate (error-contaminated data). Furthermore, consider

points ẇ
′
1 ∈ (ẇx0, ẇ

c
nx0) =

(
ẇNx0,−ε̇1

)
and ẇ

′
2 ∈ (ẇcnx1, ẇ

c
rx0) =

(
ε̇1, Ṗ

e
x0

)
assuming that

Ṗ e
x0 > ε̇1 ⇔ Ṗ e∗

x0 > 2ε̇1 � see example in Figure 7b. From Proposition 4 we get the following

relationships:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)

= − (%nnx + %rrx )FẇN |x

(
ẇ
′

1|x
)

(69)

Fẇ|x

(
ẇ
′

2|x
)
− FẇN |x

(
ẇ
′

2|x
)

= −%rrx FẇN |x
(
ẇ
′

2|x
)

(70)

Proposition 8. (LOW Anticipated In�ation regime)

(a) Let x ∈ X L and fε̇ degenerate (error-free data). Furthermore, consider point ẇ
′
1 ∈

(ẇx0, ẇ
c
rx0) =

(
ẇN∗x0 , Ṗ

e∗
x0

)
� see example in Figure 8a. From Proposition 3 we get the

following relationship:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)

= − (%nnx + %rrx )FẇN |x

(
ẇ
′

1|x
)

(71)

Furthermore, from Proposition 2 we get the following:

Pr (ẇ = 0|x) = %nnx FẇN |x (0|x) (72)
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Figure 8: Factual Vs counterfactual distributions, LOW anticipated in�ation regime

(b) Let x ∈ X L and fε̇ non-degenerate (error-contaminated data). Furthermore, consider

point ẇ
′
1 ∈ (ẇx0, ẇ

c
rx0) =

(
ẇNx0, Ṗ

e
x0

)
� see example in Figure 8b. From Proposition 3 we

get the following relationship:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)

= − (%nnx + %rrx )FẇN |x

(
ẇ
′

1|x
)

(73)

A.3 Discussion of results in relation to Dickens et al. (2007)

We observe that for the case of error-free data there exist enough identifying relationships

under Assumptions 1-5 to point identify the scaled rigidity measures that are relevant for

each anticipated in�ation regime. In the case of the MODERATE regime there are more

than enough relationships. This would require knowledge of the value of the factual and

counterfactual CDFs at certain points of their support, and also of Ṗ e∗
x0 or a lower bound

of it, and of Ṗ e∗
x1 or an upper bounds of it.37

These results (error-free case) are directly comparable to the results reported in Dick-

37If more than one bounds are known, then any statements about Ṗ e∗x0 and Ṗ e∗x1 in Propositions 6-8
apply for their respective lower and upper bounds.
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ens et al. (2007). First we note that setting %Rx = 1, as it is assumed there, then %RRx

reduces to Pr (R|x), which is their adopted rigidity measure.

Furthermore, in their case the identi�cation of Pr (R = n|x), i.e., of %nnx , for the MOD-

ERATE regime is based on (68).38 On the other hand, the identi�cation of Pr (R = r|x),

i.e., of %rrx , for the HIGH and MODERATE regimes is based on the following relation-

ship:39

FẇN |x

(
P
e∗
rx|x

)
− Fẇ|x

(
P
e∗
rx|x

)
= %rrx

FẇN |x

(
P
e∗
rx|x

)
2

(74)

which can be derived from (50) setting ẇ
′
= P

e∗
rx ≡ E

(
Ṗ e∗|R = r, x

)
.40 This result

would require, in addition to Assumptions 1-5, to assume conditional independence of

the �exible rate ẇN∗ and anticipated in�ation rate Ṗ e∗ given R and x, and symmetry of

the anticipated in�ation distribution fṖ e∗|R=r,x.

In the case of error-contaminated data there exist enough identifying relationships to

point identify the relevant scaled rigidity measures only for the HIGH and MODERATE

anticipated in�ation regimes. In the latter case this would require small measurement

error sizes, speci�cally ε̇1 < Ṗ e
x0 ⇔ ε̇1 >

Ṗ e∗x0
2
. In the case of the LOW anticipated in�ation

regime there is only one identifying relationship while two unknown measures, %nnx and

%rrx , which is only su�cient to identify their sum. If ε̇1 < P
e∗
rx then (74) could be the

second identifying relationships, leading to point identi�cation of both scaled measures,

but only at the cost of making the additional assumptions which underlie this result.41

In contrast, for the case of error-contaminated data, Dickens et al. (2007) propose

cleaning them from measurement error in a preliminary stage, and then proceeding as if

these were error-free. Compared to our approach, this would require additional assump-

38Using that Pr (ẇ = 0|x) and fẇN |x are the same as Pr (ẇ∗ = 0|x) and fẇN∗|x, respectively, due to

working with error-free data, then rearranging (68) gives %nnx = Pr(ẇ=0|x)
FẇN |x(0|x)

= Pr (R = n|x), which is the

formula they use.
39Using that fẇ|x and fẇN |x are the same as fẇ∗|x and fẇN∗|x, respectively, due to working with

error-free data, then rearranging (74) gives %rrx =
2[FẇN |x(P

e∗
rx|x)−Fẇ|x(P

e∗
rx|x)]

FẇN |x(P
e∗
rx|x)

= Pr (R = r|x), which is

the formula they use.
40I.e., P

e∗
rx is the mean anticipated in�ation rate given R = r and x. Under our assumptions it is also

true that P
e∗
rx = E

(
Ṗ e|R = r, x

)
(see Lemma 3(b-2)).

41The same could also be applied in the case of the MODERATE anticipated in�ation regime to provide

an additional relationship when ε̇1 is large, i.e., ε̇1 > Ṗ ex0 ⇔ ε̇1 >
Ṗ e∗

x0

2 .
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tions to implement this preliminary stage. Furthermore the data produced in such a way

are, in fact, estimates of the error-free data and are therefore contaminated with estima-

tion error whose magnitude will depend on the validity of those additional assumptions.

B Proofs

B.1 Proof of Lemma 1

Starting from the RHS of the de�nition of %Rx in (12) we can write:

%Rx =
Pr
(
δ = 1, ẇN∗ < ẇc∗|R, x

)
Pr (ẇN∗ < ẇc∗|R, x)

(75)

where the numerator can be further expanded as follows:

Pr
(
δ = 1, ẇN∗ < ẇc∗|R, x

)
=

¨

($,v):$<v

fẇN∗,ẇc∗,δ|R,x ($, v, 1|R, x) dvd$ (76)

=

¨

($,v):$<v

ρRx ($, v)×

×fẇN∗,ẇc∗|R,x ($, v|R, x) dvd$
(77)

Given the limits of integration, and using (4), we can further write:

Pr
(
δ = 1, ẇN∗ < ẇc∗|R, x

)
=

¨

($,v):$<v

%Rx fẇN∗,ẇc∗|R,x ($, v|R, x) dvd$ (78)

= %Rx Pr
(
ẇN∗ < ẇc∗|R, x

)
(79)

Substituting the result into the numerator of (75) and simplifying completes the proof.

B.2 Proof of Lemma 2

Adding ε̇ to both sides of equation (1) preserves the equality. Therefore we can write:

ẇ∗ + ε̇ =
[
δ · ẇc∗ + (1− δ) ẇN∗

]
+ ε̇ = δ · (ẇc∗ + ε̇) + (1− δ)

(
ẇN∗ + ε̇

)
(80)
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or:

ẇ = δ · ẇc + (1− δ) ẇN (81)

Also, since ẇc∗ 6= ẇN∗ then also ẇc∗ + ε̇ 6= ẇN∗ + ε̇⇔ ẇc 6= ẇN .

B.3 Proof of Lemma 3

(a) Conditional independence of ẇN and R given x: Given the de�nition of ẇN and that

ε̇ is independent of all other variables in the model we can write fẇN |R,x (ẇ|R, x) =

=
´ ε̇1
−ε̇1 fẇN∗|R,x (ẇ − ε|R, x) fε̇ (ε) dε, therefore from Assumption 2(a):

fẇN |R,x (ẇ|R, x) =

ˆ ε̇1

−ε̇1
fẇN∗|x (ẇ − ε|x) fε̇ (ε) dε (82)

= fẇN |x (ẇ|x) (83)

which also gives (17).

Continuity of fẇN |x: By assumption fẇN∗|x and fε̇ are continuous. From (17) follows that

fẇN |x is the sum of products of continuous functions, therefore itself also continuous.

Symmetry of fẇN |x: We need to show that fẇN |x
(
wN∗x − c|x

)
= fẇN |x

(
wN∗x + c|x

)
where

wN∗x ≡ E
(
ẇN∗|x

)
and therefore, also, wN∗x ≡ E

(
ẇN |x

)
. Starting from (17) we can write:

fẇN |x
(
wN∗x − c|x

)
=

ˆ ε̇1

−ε̇1
fẇN∗|x

(
wN∗x − c− ε|x

)
fε̇ (ε) dε (84)

We note that fẇN∗|x
(
wN∗x − c− ε|x

)
= fẇN∗|x

(
wN∗x + c+ ε|x

)
due to the symmetry of

fẇN∗|x around wN∗x , and that fε̇ (ε) = fε̇ (−ε) due to the symmetry of fε̇ around 0. Sub-

stituting to the RHS above gives:

fẇN |x
(
wN∗x − c|x

)
=

ˆ ε̇1

−ε̇1
fẇN∗|x

(
wN∗x + c+ ε|x

)
fε̇ (−ε) dε (85)

= fẇN |x
(
wN∗x + c|x

)
(86)

Support of fẇN |x: Since ẇN ≡ ẇN∗ + ε̇, where ẇN∗ ∈
[
ẇN∗x0 , ẇ

N∗
x1

]
(from Assumption
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2(a)), it follows that ẇNx0 ≡ min
(
ẇN |x

)
= min

(
ẇN∗ + ε̇|x

)
= min

(
ẇN∗|x

)
+min (ε̇|x) =

ẇN∗x0 − ε̇1. Also, that ẇNx1 ≡ max
(
ẇN |x

)
= max

(
ẇN∗ + ε̇|x

)
= max

(
ẇN∗|x

)
+max (ε̇|x) =

ẇN∗x1 + ε̇1.

Conditional Mean of fẇN |x: E
(
ẇN |x

)
= E

(
ẇN∗ + ε̇|x

)
= E

(
ẇN∗|x

)
+E (ε̇|x) = E

(
ẇN∗|x

)
since fε̇ has zero mean.

Conditional Variance of fẇN |x: V ar
(
ẇN |x

)
= V ar

(
ẇN∗ + ε̇|x

)
= V ar

(
ẇN∗|x

)
+V ar (ε̇|x)+

2Cov
(
ẇN∗, ε̇|x

)
= V ar

(
ẇN∗|x

)
+V ar (ε̇) since, by de�nition, ε̇ is independent of all other

variables in the model.

(b-1) Derivation of (20): This follows immediately from that ẇc = ẇc∗Rx1 + ε̇ and the

de�nition of and ε̇.

Continuity of fẇc|R,x: By assumption, fε̇ is continuous.

Support of fẇc|R,x: Since ẇc ≡ ẇc∗ + ε̇, where ẇc∗ ∈ [ẇc∗Rx0, ẇ
c∗
Rx1] (from Assumption

3(a)), it follows that ẇcRx0 ≡ min (ẇc|R, x) = min (ẇc∗Rx1 + ε̇|R, x) = min (ẇc∗Rx1|R, x) +

min (ε̇|R, x) = ẇc∗Rx1 − ε̇1. Also, that ẇcx1 ≡ max (ẇc|R, x) = max (ẇc∗Rx1 + ε̇|R, x) =

max (ẇc∗Rx1|R, x) + max (ε̇|R, x) = ẇc∗Rx1 + ε̇1.

Conditional Mean of fẇc|R,x: E (ẇc|R, x) = E (ẇc∗Rx1 + ε̇|R, x) = ẇc∗Rx1 + E (ε̇|R, x) =

ẇc∗Rx1 + E (ε̇) = ẇc∗Rx1 since fε̇ has zero mean.

Conditional Variance of fẇc|R,x: V ar (ẇ
c|R, x) = V ar (ẇc∗Rx1 + ε̇|R, x) = V ar (ε̇)

(b-2) Derivation of (23): This follows immediately from the de�nitions of ẇc and ẇN ,

and that ε̇ is independent of all other variables in the model.

Continuity of fẇc|ẇN ,R,x: By assumption, fẇc∗|ẇN∗,R,x and fε̇ are continuous. From (23)

follows that fẇc|ẇN ,R,x is the sum of products of continuous functions, therefore itself also

continuous.

Support of fẇc|ẇN ,R,x: Since ẇc ≡ ẇc∗ + ε̇, where ẇc∗ ∈ [ẇc∗Rx0, ẇ
c∗
Rx1] (from Assump-

tion 3(a)), it follows that ẇcRx0 ≡ min (ẇc|R, x) = min (ẇc∗ + ε̇|R, x) = min (ẇc∗|R, x) +

min (ε̇|R, x) = ẇc∗Rx0 − ε̇1. Also, that ẇcx1 ≡ max (ẇc|R, x) = max (ẇc∗ + ε̇|R, x) =

max (ẇc∗|R, x) + max (ε̇|R, x) = ẇc∗Rx1 + ε̇1.
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Conditional Mean of fẇc|ẇN ,R,x: E
(
ẇc|ẇN , R, x

)
= E

(
ẇc∗ + ε̇|ẇN , R, x

)
=

= E
(
ẇc∗|ẇN , R, x

)
+E

(
ε̇|ẇN , R, x

)
= E

(
ẇc∗|ẇN , R, x

)
+E (ε̇) = E

(
ẇc∗|ẇN , R, x

)
since

fε̇ has zero mean.

Conditional Variance of fẇc|ẇN ,R,x: V ar
(
ẇc|ẇN , R, x

)
= V ar

(
ẇc∗ + ε̇|ẇN , R, x

)
=

= V ar
(
ẇc∗|ẇN , R, x

)
+V ar

(
ε̇|ẇN , R, x

)
+2Cov

(
ẇc∗, ε̇|ẇN , R, x

)
= V ar

(
ẇc∗|ẇN , R, x

)
+

V ar (ε̇) since, by de�nition, ε̇ is independent of all other variables in the model.

(c) Derivation of (26): The starting point is the de�nition of ρRx
(
ẇN , ẇc

)
given in (16).

Given the de�nitions of ẇN and ẇc, and that ε̇ is independence of all other variables in

the model, it follows that we can write:

ρRx
(
ẇN , ẇc

)
= Pr

(
δ = 1|ẇN , ẇc, R, x

)
(87)

=

ˆ ε̇1

−ε̇1
Pr
(
δ = 1|ẇN∗ = ẇN − ε, ẇc∗ = ẇc − ε, R, x

)
fε̇ (ε) dε (88)

=

ˆ ε̇1

−ε̇1
ρR∗x

(
ẇN − ε, ẇc − ε

)
fε̇ (ε) dε (89)

where (89) follows from (3). Also from (4) follows that:

ρR∗x
(
ẇN − ε, ẇc − ε

)
=


%Rx , ẇN − ε < ẇc − ε

0 , o/w

(90)

or, equivalently:

ρR∗x
(
ẇN − ε, ẇc − ε

)
=


%Rx , ẇN < ẇc

0 , o/w

(91)

i.e., the value of ρR∗x
(
ẇN − ε, ẇc − ε

)
is determined solely by the relative size of ẇN and

ẇc. Combining (91) with (89) then gives (26).

Derivation of (27): This follows immediately from combining (26) with (14).
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B.4 Proof of Lemma 4

This result lies on the fact that, given R and x, the set of wage adjustments that satisfy

the condition ẇN∗ < ẇc∗, i.e., those that are candidates to be constrained (by R), is equal

to the set of those that satisfy ẇN∗ + ε̇ < ẇc∗ + ε̇⇔ ẇN < ẇc.

Starting from (12) we can write %Rx =
Pr(δ=1,ẇN∗<ẇc∗|R,x)

Pr(ẇN∗<ẇc∗|R,x) . We observe that

Pr
(
δ = 1, ẇN∗ < ẇc∗|R, x

)
= Pr

(
δ = 1, ẇN∗ + ε̇ < ẇc∗ + ε̇|R, x

)
=

= Pr
(
δ = 1, ẇN < ẇc|R, x

)
. Also Pr

(
ẇN∗ < ẇc∗|R, x

)
= Pr

(
ẇN∗ + ε̇ < ẇc∗ + ε̇|R, x

)
=

= Pr
(
ẇN < ẇc|R, x

)
. Therefore %Rx =

Pr(δ=1,ẇN<ẇc|R,x)
Pr(ẇN<ẇc|R,x) = Pr

(
δ = 1|ẇN < ẇc, R, x

)
.

Furthermore Pr
(
δ = 1, ẇN < ẇc|R, x

)
= Pr (δ = 1|R, x) since, given R and x, the set

of wage adjustments that are constrained (δ = 1) is a subset of those that are candidates

to be constrained (ẇN < ẇc). This leads to (30).

B.5 Proof of Proposition 1

This follows from Lemmas 2-4.

B.6 Proof of Lemma 5

From (14), given in Lemma 2,42 follows that the observed rate for any given wage ad-

justment with characteristics x, which is negotiated under R, takes a given value ẇ if

either its unconstrained value is equal to ẇ and the wage adjustment is not constrained

(ẇN = ẇ and δ = 0), or its constrained value is equal to ẇ and the wage adjustment is

constrained (ẇc = ẇ and δ = 1). Accordingly fẇ|R,x may be decomposed as follows:

fẇ|R,x (ẇ|R, x) = fẇN ,δ|R,x (ẇ, 0|R, x) + fẇc,δ|R,x (ẇ, 1|R, x) (92)

=
[
fẇN |R,x (ẇ|R, x)− fẇN ,δ|R,x (ẇ, 1|R, x)

]
+

+fẇc,δ|R,x (ẇ, 1|R, x) (93)

Given the de�nitions of LRx (·) and GR
x (·) given in (33) and (34), respectively, (32) follows

immediately.

42NB: This result follows from Assumptions 1 and 5 only.
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B.7 Proof of Lemma 6

Proof of (39): Starting from the de�nition of LRx (·) given in (33), and using the Law of

Total Probability, we can write:

LRx (ẇ) = −
ˆ
v∈Wc

Rx

fẇN ,ẇc,δ|R,x (ẇ, v, 1|R, x) dv (94)

= −
ˆ
v∈Wc

Rx

ρRx (ẇ, v) fẇN ,ẇc|R,x (ẇ, v|R, x) dv (95)

where ρRx
(
ẇN , ẇc

)
≡ Pr

(
δ = 1|ẇN , ẇc, R, x

)
(as de�ned in (16)). From the de�nition of

CRx follows that ρRx (ẇ, v) is non-zero i� (ẇ, v) ∈ CRx. From the de�nitions of LRx and

GRx (ẇ) given in (35) and (38), respectively, follows that (ẇ, v) ∈ CRx is equivalent to ẇ

belonging to LRx and, for any such value, v belonging to GRx (ẇ) � which gives the RHS

of (39).

Proof of (40): Starting from the de�nition of GR
x (·) given in (34), and using the Law of

Total Probability, we can write:

GR
x (ẇ) =

ˆ
$∈WN

Rx

fẇN ,ẇc,δ|R,x ($, ẇ, 1|R, x) d$ (96)

=

ˆ
$∈WN

Rx

ρRx ($, ẇ) fẇN ,ẇc|R,x ($, ẇ|R, x) d$ (97)

From the de�nition of CRx follows that ρRx ($, ẇ) is non-zero i� ($, ẇ) ∈ CRx. From the

de�nitions of GRx and LRx (ẇ) given in (36) and (37), respectively, follows that ($, ẇ) ∈

CRx is equivalent to ẇ belonging to GRx and, for any such value, $ belonging to LRx (ẇ)

� which gives the RHS of (40).

B.8 Proof of Corollary 1

(a) This follows immediately from the de�nitions given in (35) and (36).

(b) From the de�nition of Rx follows that if R /∈ Rx then CRx = ∅ and therefore, from

part (a), that LRx = GRx = ∅. Given that this is the case then from (39) and (40) follows,

respectively, that Lϑx (·) and Gϑ
x (·) are everywhere zero.

56



B.9 Proof of Lemma 7

Substituting (32) into (31), and using that (Law of Total Probability):

fẇN |x (ẇ|x) =
∑
ϑ∈R

Pr (R = ϑ|x) fẇN |R,x (ẇ|ϑ, x) (98)

we can write:

fẇ|x (ẇ|x) = fẇN |x (ẇ|x) +
∑
ϑ∈R

Pr (R = ϑ|x)
[
Lϑx (ẇ) +Gϑ

x (ẇ)
]

(99)

This simpli�es to (41) since LRx (·) and GR
x (·) are everywhere zero if R /∈ Rx (Corollary

1(b)).

B.10 Proof of Lemma 8

Equation (42) follows from that fẇ|x and fẇN |x are, respectively, the mixtures of fẇ|R,x

and fẇN |R,x. Equation (43) follows from rearranging terms in (41).

B.11 Proof of Lemma 9

(a) When Wc
Rx is located to the left of WN

Rx then CRx = ∅. Using Corollary 1(a) then

gives our result.

(b-1) Proof of (44): Starting from (39), and focusing on its �rst line, we note that ρRx (ẇ, v)

is evaluated at points (ẇ, v) ∈ CRx, therefore ẇ < v. From Lemma 3(c)43 follows that

ρRx (ẇ, v) is equal to %Rx at each such point; substituting into (39) gives (44).

Proof of (45): Starting from (40), and focusing on its �rst line, we note that ρRx ($, ẇ)

is evaluated at points ($, ẇ) ∈ CRx, therefore $ < ẇ. As above follows that ρRx ($, ẇ) is

equal to %Rx at each such point; substituting into (40) gives (45).

Derivation of LRx and GRx: From the discussion in Section 4 and using Figure 3a follows

that, in this particular case, CRx corresponds to the area of add
′
c
′
a
′
, excluding the points

43NB: This follows from Assumption 4.

57



along dd
′
.44 As can be seen, the projection of CRx on WN

Rx =
[
ẇNx0, ẇ

N
x1

]
, i.e., LRx, is the

set
[
ẇNx0, ẇ

c
Rx1

)
. Also, the projection of CRx on Wc

Rx = [ẇcRx0, ẇ
c
Rx1], i.e., GRx, is the set

[ẇcRx0, ẇ
c
Rx1].

(b-2) Proof of (46): Since ẇc is �xed, rather than variable, it follows that fẇN ,ẇc|R,x

reduces to fẇN |R,x, therefore also to fẇN |x (see Lemma 3(a)). Accordingly, (44) reduces

to (46).

Proof of (47): Similarly, (45) reduces to:

GR
x (ẇ) =


%Rx
´
$∈LRx(ẇ)

fẇN |x ($|R, x) d$ , ẇ ∈ GRx

0 , o/w

(100)

Furthermore since GRx = {ẇcRx1} and LRx =
[
ẇNx0, ẇ

c
Rx1

)
(see below), then for ẇ ∈ GRx ⇔

ẇ = ẇcRx1 we have LRx (ẇ) = LRx (ẇcRx1) =
[
ẇNx0, ẇ

c
Rx1

)
, which is the subset of the support

of fẇN |x that lies to the left of ẇ. Accordingly, the de�nite integral in expression above is

equal to FẇN |x (ẇRx1|x), which gives (47).

Derivation of LRx and GRx: From the discussion in Section 4 and using Figure 2a follows

that, in this particular case, CRx corresponds to the line segment AC, excluding point

C. As can be seen, the projection of CRx on WN
Rx =

[
ẇNx0, ẇ

N
x1

]
, i.e., LRx, is the set[

ẇNx0, ẇ
c
Rx1

)
. Also, the projection of CRx on Wc

Rx = {ẇcRx1}, i.e., GRx, is the set {ẇcRx1}.

(NB: This corresponds to the case where ẇc∗ is �xed and fε degenerate (error-free data)).

B.12 Proof of Lemma 10

(a) From Lemma 9(a) follows that in this case fẇ|R,x is identical to fẇN |R,x and therefore

have identical supports, i.e., WRx = WN
Rx. Furthermore, from Lemma 3(a) we have that

fẇN |R,x is identical to fẇN |x that has support WN
x ; combining gives WRx =WN

x .

44This refers to the case where ẇc∗ is variable and fε non-degenerate (error-contaminated data), which
gives ẇc variable. If fε is instead degenerate (error-free data), which also gives ẇc variable, then CRx
corresponds to the area of the trapezoid ACC

′
A
′
, excluding the points along CC

′
. In the case where ẇc∗

is �xed and fε non-degenerate, which is another case where ẇc is variable, then CRx corresponds to the
area of the parallelogram acc

′
a
′
excluding the points along cc

′
, depicted in Figure 2a. For the latter two

cases the same expressions for LRx and GRx hold as in the former case.
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(b) From (32), (39) and (40) follows that:

fẇ|R,x (ẇ|R, x) =



fẇN |R,x (ẇ|R, x) + LRx (ẇ) , ẇ ∈ LRx\GRx

fẇN |R,x (ẇ|R, x) +GR
x (ẇ) , ẇ ∈ GRx\LRx

fẇN |R,x (ẇ|R, x) + LRx (ẇ) +GR
x (ẇ) , ẇ ∈ LRx ∩ GRx

fẇN |R,x (ẇ|R, x) , o/w

(101)

Using the results from Lemma 3(a) regarding the properties of fẇN |R,x, and Lemma 9(b-1,

b-2) with regard to the nature of LRx and GRx, it follows that the above specialises to

the following for both cases of ẇc variable and �xed (setting ẇcRx0 = ẇcRx1 for the latter

case):45

fẇ|R,x (ẇ|R, x) =



fẇN |x (ẇ|x) + LRx (ẇ) , ẇNx0 ≤ ẇ < ẇcRx0

fẇN |x (ẇ|x) + LRx (ẇ) +GR
x (ẇ) , ẇcRx0 ≤ ẇ < ẇcRx1

fẇN |x (ẇ|x) +GR
x (ẇ) , ẇ = {ẇcRx1}

fẇN |x (ẇ|x) , ẇcRx1 < ẇ ≤ ẇNx1

(102)

It follows that WRx ⊆ WN
x =

[
ẇNx0, ẇ

N
x1

]
.

Furthermore from Line 1 of (102) follows that
[
ẇNx0, ẇ

c
Rx0

)
⊂ WRx if 0 ≤ %Rx < 1, and[

ẇNx0, ẇ
c
Rx0

)
∩ WRx = ∅ if %Rx = 1, as in the latter case LRx (ẇ) = −fẇN |x (ẇ|x) for ẇ ∈[

ẇNx0, ẇ
c
Rx0

)
� see (44) and (46).

Also from Line 2 (and only for the case of ẇc variable) that [ẇcRx0, ẇ
c
Rx1) ⊂ WN

x since,

for ẇ ∈ [ẇcRx0, ẇ
c
Rx1),

∣∣LRx (ẇ)
∣∣ < fẇN |x (ẇ|x) and GR

x (ẇ) ≥ 0 � see (44)-(47).

Furthermore, from Lines 3 and 4 follows that
[
ẇcRx1, ẇ

N
x1

]
⊂ WRx since GR

x (ẇ) ≥ 0,

and fẇN |x (ẇ|x) > 0 when evaluated in that interval given that
[
ẇcRx0, ẇ

N
x1

]
⊂ WN

x .

We conclude that i� %Rx = 1 then WRx = WN
x \
[
ẇNx0, ẇ

c
Rx0

)
=
[
ẇNRx0, ẇ

N
x1

]
, otherwise

WRx =WN
x =

[
ẇNx0, ẇ

N
x1

]
.

45Then, for ẇc �xed, line 2 of (102) becomes obsolete as the relevant condition is never satis�ed.
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B.13 Proof of Lemma 11

(a) From (31) follows that Wx =
⋃
R∈RWRx, assuming that Pr (R|x) 6= 0 for all R ∈ R.

Combining with that WRx ⊆ WN
x for each R ∈ R (from Lemma 10 ), follows that

Wx ⊆ WN
x . Moreover Wx =WN

x unless WRx ⊂ WN
x for all R ∈ R.

If Rx ⊂ R then fẇ|R,x is undistorted for R ∈ R\Rx, therefore WRx = WN
x for

R ∈ R\Rx (see Lemma 10). It follows that Wx =WN
x .

(b) We assume that R ∈ Rx ⇔ Wc
Rx ⊂ WN

Rx. From 10 follows that WRx = WN
Rx i�

%Rx < 1. Given that Wx =
⋃
R∈RWRx it follows that Wx is equal to WN

x if %Rx < 1 for at

least one case of R ∈ R.

B.14 Proof of Proposition 2

If fε is degenerate then ẇ = ẇc∗Rx1, i.e., �xed, for each R ∈ Rx. Then combining (32)

with the expressions for LRx (ẇ) and GR
x (ẇ) from Lemma 9(b-2) gives that fẇ|R,x, for

each R ∈ Rx, exhibits a mass point at ẇ = ẇc∗Rx1 which attracts probability mass

equal to Pr (ẇ = ẇc∗Rx1|R, x) = GR
x (ẇc∗Rx1) = %RxFẇN |x (ẇ

c∗
Rx1|x), where %Rx = %Rx (NB:

Pr
(
ẇN = ẇc∗Rx1|R, x

)
= Pr

(
ẇN = ẇc∗Rx1|x

)
= 0 due the continuity of fẇN |x, while L

R
x (ẇc∗Rx1) =

0.) At the same time Pr (ẇ = ẇc∗Rx1|R, x) = 0 for all R ∈ R\Rx since in those cases LRx (·)

and GR
x (·) are continuous in ẇ � see Lemma 9(b-1).

Combining these results with (31) then gives that fẇ|x exhibits mass points at each

(distinct) value ẇc∗Rx1, R ∈ Rx, which attract probability mass equal to:

Pr (ẇ = ẇc∗Rx1|x) = Pr (R|x) %Rx FẇN |x (ẇc∗Rx1|x) (103)

= %RRx FẇN |x (ẇ
c∗
Rx1|x) (104)

where %RRx ≡ Pr (R|x) %Rx .
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B.15 Proof of Lemma 12

Staring from (43) we can write:

Fẇ|x (ẇ|x)− FẇN |x (ẇ|x) =

=

ˆ ẇ

wNx0

{∑
ϑ∈Rx

Pr (R = ϑ|x)
[
Lϑx ($) +Gϑ

x ($)
]}

d$ (105)

=
∑
ϑ∈Rx

Pr (R = ϑ|x)

[ˆ ẇ

wNx0

Lϑx ($) d$ +

ˆ ẇ

wNx0

Gϑ
x (v) dv

]
(106)

noting that wNx0 (the lower limit of the integral in (105) and 106, and left limit of WN
x ) is

less than or equal to wx0 (the left limit of Wx) � see Lemma 11.

Using (44) we can write:

ˆ ẇ

wNx0

Lϑx ($) d$ = −%RxAR (ẇ) (107)

where:

ARx (ẇ) =

ˆ min(ẇ,ẇcR1x1
)

wNx0

ˆ

v∈GRx($)

fẇN ,ẇc|R,x ($, v|R, x) dvd$ (108)

is the probability mass of fẇN ,ẇc|R,x allocated to the points in the locus of CRx that lie to

the left of point ẇ (NB: Lϑx ($) = 0 for $ > maxLRx = ẇcR1x1
, thus the limits in the �rst

integral above).

Similarly, using (45) we can write:

ˆ ẇ

wNx0

Gϑ
x (v) dv = %RxB

R (ẇ) (109)

where:

BR
x (ẇ) =


0 , ẇ < minGRx
´ min(ẇ,ẇcR1x1

)
wNx0

´
$∈LRx(v)

fẇN ,ẇc|R,x ($, v|R, x) d$dv , ẇ ≥ minGRx
(110)
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is the probability mass of fẇN ,ẇc|R,x allocated to the points in the locus of CRx that lie

below point ẇ. (NB: Gϑ
x (v) = 0 for v < minGRx (see (40)), where minGRx = ẇcR1x0

if

ẇc is variable and minGRx = ẇcR1x1
if ẇc is �xed, which gives the �rst line above. Also,

Gϑ
x (v) = 0 for v > maxGRx, where maxGRx = ẇcR1x1

for both cases of ẇc being variable

and variable, thus the limits for the �rst integral in the second line above).

Let and cRx
(
ẇ
′) ≡ ARx (ẇ) − BR

x (ẇ). Substituting (107) and (109) into (106), and

using that %Rx = %Rx (from Lemma 1), gives:

Fẇ|x (ẇ|x)− FẇN |x (ẇ|x) =
∑
ϑ∈Rx

Pr (R = ϑ|x)
[
−%Rx cRx (ẇ)

]
(111)

= −
∑
ϑ∈Rx

Pr (R = ϑ|x) %Rx cRx (ẇ) (112)

= −
∑
ϑ∈Rx

%ϑϑx c
ϑ
x (ẇ) (113)

where %ϑϑx ≡ Pr (R = ϑ|x) %ϑx. Furthermore, from the discussion above follows that cRx (ẇ)

is equal to the probability mass of fẇN ,ẇc|R,x that is allocated to the points in the locus

of CRx that lie to the left and above point ẇ, which is formally described by(51).

B.16 Proof of Corollary 2

(a) In this case ẇc ∈ Wc
Rx = [ẇcRx0, ẇ

c
Rx1], where ẇ

N
x0 < ẇcRx0 < ẇcRx1 < ẇNx1.

First we note that for ẇ ≥ ẇcRx1 the set
{(
ẇN , ẇc

)
∈ CRx : ẇN < ẇ, ẇc > ẇ

}
is empty

since ẇc ≤ ẇcRx1; this gives Line 3 of (52).

On the other hand for any point ẇ such that ẇNx0 ≤ ẇ < ẇcRx1, and assuming that

%Rx > 0, then this set is non-empty and (51) specialises to the following:

cRx (ẇ) =

ˆ ẇ

minLRx

ˆ maxGRx($)

max(ẇ,minGRx($))

fẇN ,ẇc|R,x ($, v|R, x) dvd$ (114)

=

ˆ ẇ

ẇNx0

ˆ maxGRx($)

max(ẇ,minGRx($))

fẇN ,ẇc|R,x ($, v|R, x) dvd$ (115)

where the proof of minLRx = ẇNx0 is given in Lemma 9.

For the case of points ẇ such that ẇNx0 ≤ ẇ < ẇcRx0 (the case considered in Line 1 of
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(52)), we have that max (ẇ,minGRx ($)) = minGRx ($) since minGRx ($) ≥ minGRx =

ẇcRxo (see Lemma 9). Accordingly we can write:

cRx (ẇ) =

ˆ ẇ

ẇNx0

ˆ maxGRx($)

minGRx($)

fẇN ,ẇc|R,x ($, v|R, x) dvd$ (116)

=

ˆ ẇ

ẇNx0

ˆ
v∈GRx($)

fẇN ,ẇc|R,x ($, v|R, x) dvd$ (117)

i.e., the points in the locus of CRx that lie to the left and above of point ẇ are also

the points in the locus of CRx that lie to the left of point ẇ. Furthermore from the

depictions of CRx for the three cases that under our assumptions ẇc can be variable

(i.e., when ẇc∗ is �xed and the data are error-contaminated (Figure 2a), or when ẇc∗ is

variable and the data are error-free or error-contaminated data (Figure 3a)) it is appar-

ent that these are also the points in the locus of WNc
Rx that lie to the left of point ẇ.

From the latter follows that, for any point ẇ such that ẇNx0 ≤ ẇ < ẇcRx0, equation (51)

simpli�es to cRx (ẇ) =
´
$<ẇ

fẇN |R,x ($|R, x) d$ = FẇN |R,x (ẇ|R, x); using further that

FẇN |R,x (ẇ|R, x) = FẇN |x (ẇ|x) (from Lemma 3(a)) gives the result in Line 1 of (52).

On the other hand for ẇcRx0 ≤ ẇ < ẇcRx1 (the case considered in Line 2 of (52)) we

have that max (ẇ,minGRx ($)) = ẇ, given that minGRx ($) = ẇcRxo. Substituting into

the lower limit in the second integral of (115) gives the result in Line 2 of (52).

(b) In this case ẇc ∈ Wc
Rx = {ẇcRx1}, where ẇNx0 < ẇcRx1 < ẇNx1.

First we note that for ẇ ≥ ẇcRx1 the set
{(
ẇN , ẇc

)
∈ CRx : ẇN < ẇ, ẇc > ẇ

}
is empty

since ẇc = ẇcRx1; this gives Line 2 of (53).

On the other hand for any point ẇ such that ẇNx0 ≤ ẇ < ẇcRx1, and assuming that

%Rx > 0, then this set is non-empty and (51) specialises to the following:

cRx (ẇ) =

ˆ ẇ

minLRx
fẇN |R,x ($|R, x) d$ (118)

=

ˆ ẇ

ẇNx0

fẇN |R,x ($|R, x) d$ = (119)

= FẇN |x (ẇ|x) (120)

which gives Line 1 of (53).
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B.17 Proof of Proposition 3

First consider R1 ∈ Rx. Since Wc
R1x
⊂ WN

R1x
where WN

R1x
= WN

x =
[
ẇNx0, ẇ

N
x1

]
(from

Lemma 3(a)) it follows that ẇNx0 < ẇcR1x1
. Furthermore since, by assumption, Wx =WN

x ,

i.e., [ẇx0, ẇx1] =
[
ẇNx0, ẇ

N
x1

]
, then ẇx0 < ẇcR1x1

. Accordingly there exists a point ẇ
′
1 such

that ẇx0 < ẇ
′
1 < ẇcR1x1

. Given that46 ẇcR1x1
< ẇcRkx1 for all k > 1, it follows that

ẇ
′
1 < ẇcRkx1 for all k ≥ 1. From (52) and (53) then follows that cRkx

(
ẇ
′
1

)
6= 0 for all k ≥ 1,

and therefore using (50) we can write:

Fẇ|x

(
ẇ
′

1|x
)
− FẇN |x

(
ẇ
′

1|x
)
= −

Kx∑
j=1

%RjRjx cRjx

(
ẇ
′

1

)
(121)

Also for each k = 2, . . . , Kx there exists point ẇ
′

k such that ẇcRk−1x1
< ẇ

′

k < ẇcRkx1

since ẇcRkx1 < ẇcRk−1x1
(see Footnote 46). From this follows that, given k, ẇ

′

k < ẇcRκx1 for

all κ ≥ k. From (52) and (53) then follows that cRκx
(
ẇ
′

k

)
6= 0 for all κ ≥ k, and using

(50) we can write:

Fẇ|x

(
ẇ
′

k|x
)
− FẇN |x

(
ẇ
′

k|x
)
= −

Kx∑
j=k

%RjRjx cRjx

(
ẇ
′

k

)
, 1 < k ≤ Kx (122)

B.18 Proof of Proposition 4

First we note that the restrictions set by Proposition 4 also imply the restrictions that

underlie the results of Proposition 3. In particular, for k = 2, . . . , Kx and {Rk−1, Rk} ⊆

Rx, if ẇ
c
Rk−1x1

< ẇcRkx0 then also ẇcRkx1 6= ẇcRk−1x1
since ẇcRkx0 ≤ ẇcRkx1. Also for the same

reason, ẇx0 < ẇ
′
1 < ẇcR1x0

implies that ẇx0 < ẇ
′
1 < ẇcR1x1

, and ẇcRk−1x1
< ẇ

′

k < ẇcRkx0

implies that ẇcRk−1x1
< ẇ

′

k < ẇcRkx1 for 2 ≤ k ≤ Kx. Accordingly equations (54) given

in Proposition 3 also hold for points ẇ
′
1, . . . , ẇ

′
Kx

de�ned in Proposition 4, i.e., for k =

1, . . . , Kx:

Fẇ|x

(
ẇ
′

k|x
)
− FẇN |x

(
ẇ
′

k|x
)
= −

Kx∑
j=k

%RjRjx cRjx

(
ẇ
′

k

)
(123)

From Corollary 2 holds that cRx
(
ẇ
′)

= FẇN |x
(
ẇ
′|x
)
for R s.t. ẇ

′
< ẇcRx0. Setting

46This follows from that ẇcRkx1
≤ ẇcRk−1x1

(by construction of the index k) and ẇcRkx1
6= ẇcRk−1x1

(by

assumption).
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ẇ
′
= ẇ

′

k then c
Rj
x

(
ẇ
′

k

)
= FẇN |x

(
ẇ
′

k|x
)
for Rj, j ≥ k, since (by assumption) ẇ

′

k < ẇcRkx0 ≤

ẇcRkx1 < ẇcRjx0 for j > k. Therefore (123) becomes:

Fẇ|x

(
ẇ
′

k|x
)
− FẇN |x

(
ẇ
′

k|x
)

= −
Kx∑
j=k

%RjRjx FẇN |x

(
ẇ
′

k|x
)

(124)

= −

(
Kx∑
j=k

%RjRjx

)
FẇN |x

(
ẇ
′

k|x
)

(125)

which is the generic form of the equations given in (55).

B.19 Proof of Lemma 13

From Lemma 3(a) we have that fẇN |x is symmetric. Therefore for points ẇ and
(
2mN

x − ẇ
)

� which are symmetrically located on either side of the medianmN
x of fẇN |x � we can write:

FẇN |x (ẇ|x) = 1− FẇN |x
(
2mN

x − ẇ|x
)

(126)

From (43) and Lemma 9 follows that fẇ|x may be distorted only to the left of and

including point ẇcRKxx1; this is because LRx (ẇ) and GR
x (ẇ), for R = Rk ∈ Rx, may be

non-zero only if ẇ < ẇcRx1, where ẇ
c
RKxx1

≥ ẇcRkx1 among all Rk ∈ Rx. Accordingly:

Fẇ|x (ẇ|x) = FẇN |x (ẇ|x) , ẇ ≥ ẇcRKxx1 (127)

Furthermore, since the of relocation of probability mass in the distorted part of fẇ|x (i.e.,

to the left of point ẇcRKxx1) is only directed to the right it follows that:

Fẇ|x (ẇ|x) ≤ FẇN |x (ẇ|x) , ẇ < ẇcRKxx1 (128)

Let qαx and qNαx be the α'th percentiles of fẇ|x and fẇN |x, respectively (thus also mN
x =
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qN50x); then from (127) and (128) follows that:

qNαx < qαx , qαx < ẇcRKxx1 (129)

qNαx = qαx , qαx ≥ ẇcRKxx1 (130)

Let ẇcRKxx1 < mx where mx ≡ q50x is the median of fẇ|x, and consider a particular

value of α such that qαx > ẇcRKxx1; then from (130) follows that qαx = qNαx, which therefore

must also be true for α = 50, i.e., mx = mN
x . Furthermore, consider point ẇ such that

ẇ < ẇcRKxx1 < mx, i.e., ẇ lies in the distorted part of (the lower tail of) fẇ|x while its

symmetrically located point
(
2mN

x − ẇ
)
in the (undistorted) upper tail. Combining (126)

and (127) gives FẇN |x (ẇ|x) = 1 − Fẇ|x
(
2mN

x − ẇ|x
)
. Furthermore since mx = mN

x this

becomes FẇN |x (ẇ|x) = 1− Fẇ|x (2mx − ẇ|x).

B.20 Proof of Proposition 5

Given that %Rx = Pr
(
δ = 1|ẇN < ẇc∗, R, x

)
, R ∈ Rx, are probabilities, the following must

hold:

%Rx ≥ 0 (131)

%Rx ≤ 1 (132)

Similarly, for πRx ≡ Pr (R|x), R ∈ R:

πRx ≥ 0 (133)

πRx ≤ 1 (134)

In this case, also: ∑
ϑ∈R

πϑx = 1 (135)
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Combining (132) with (49) gives that %RRx is a lower bound for %Rx , R ∈ Rx:

%Rx ≥ %RRx ≥ 0 , R ∈ Rx (136)

Similarly, combining (134) with (49) gives that %RRx is a also a lower bound for πRx ,

R ∈ Rx:

πRx ≥ %RRx ≥ 0 , R ∈ Rx (137)

Noting that (137) adds no information about the values of πRx ∈ [0, 1] for R ∈ R\Rx,

when combined with (133) allows to update the known lower bounds of πRx as follows:

πRx ≥


%RRx ≥ 0 , R ∈ Rx

0 , R ∈ R\Rx

(138)

Furthermore, from (135) follows that:

πRx = 1−
∑

ϑ∈R\{R}

πϑx (139)

Substituting πϑx , ϑ ∈ R\{R}, on the RHS above with their lower bounds from (138)

allows to update the upper bound of each πRx , R ∈ R, as follows:

πRx ≤ 1−
∑

ϑ∈Rx\{R}

%ϑϑx ≤ 1 , R ∈ R (140)

Combining (138) and (140) then gives (58).

Also combining (140) with (49) gives:

%Rx ≥
%RRx

1−
∑

ϑ∈Rx\{R} %
ϑϑ
x

≥ %RRx ≥ 0 , R ∈ Rx (141)

which updates the lower bounds of %Rx given in (136). Combined with (132) they give

(57).
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B.21 Proof of Proposition 6

In this case Kx = 1 and Rx = {r} (see de�nition of this regime), therefore the unknown

parameter be identi�ed is %rx.

(a) Proof of (64): In this case Rx ⊂ R. Accordingly, from Lemma 11(a) follows that

Wx =WN
x , thus ẇx0 = ẇNx0. Given that fε is degenerate it follows that ẇx0 = ẇN∗x0 .

Furthermore, by assumption, if R = r then ẇc∗rx0 = Ṗ e∗
x0 . Given that fε is degenerate it

follows that ẇcrx0 = Ṗ e∗
x0 .

From the de�nition of the HIGH regime we have 0 < ẇN∗x0 < Ṗ e∗
x0 . Writing Rx = {R1}

where R1 = r, then ẇx0 < ẇcrx0 ⇔ ẇx0 < ẇcR1x0
thus the conditions for Proposition 4

are ful�lled. Accordingly for ẇ
′
1 ∈

(
ẇx0, ẇ

c
R1x0

)
= (ẇx0, ẇ

c
rx0) =

(
ẇN∗x0 , Ṗ

e∗
x0

)
equation (64)

follows immediately from equation (55).

(b) Proof of (65): In this case Rx ⊂ R therefore Wx =WN
x , thus ẇx0 = ẇNx0. Given that

fε is degenerate it follows that ẇx0 = ẇN∗x0 − ε̇1.

Furthermore that ẇcrx0 = ẇc∗rx0 − ε̇1 = Ṗ e∗
x0 − ε̇1.

From the de�nition of the HIGH regime we have 0 < ẇN∗x0 < Ṗ e∗
x0 . Writing Rx = {R1}

where R1 = r, then ẇx0 < ẇcrx0 ⇔ ẇx0 < ẇcR1x0
thus the conditions for Proposition 4 are

ful�lled.

Then for ẇ
′
1 ∈ (ẇx0, ẇ

c
rx0) =

(
ẇNx0, Ṗ

e
x0

)
equation (65) follows immediately from equation

(55).

B.22 Proof of Proposition 7

In this case Kx = 2 and Rx = {n, r} (see de�nition of this regime), therefore the unknown

parameters to be identi�ed are %nx and %rx.

(a) Proof of (66) and (67): In this case Rx ⊂ R therefore Wx = WN
x , thus ẇx0 = ẇNx0.

Given that fε is degenerate it follows that ẇx0 = ẇN∗x0 .

Furthermore, by assumption, if R = n then ẇc∗nx1 = ẇc∗nx0 = 0, and if R = r then

ẇc∗rx0 = Ṗ e∗
x0 and ẇc∗rx1 = Ṗ e∗

x1 . Given that fε is degenerate it follows that ẇ
c
nx0 = ẇcnx1 = 0,

ẇcrx0 = Ṗ e∗
x0and ẇ

c
rx1 = Ṗ e∗

x1 .

68



From the de�nition of the MODERATE regime we have ẇN∗x0 < 0 < Ṗ e∗
x0 < Ṗ e∗

x1 .

It follows that ẇcnx1 < ẇcrx1, therefore we can write Rx = {R1, R2} where R1 = n and

R2 = r.

Furthermore, ẇx0 < ẇcnx0 ⇔ ẇx0 < ẇcR1x0
and ẇcnx1 < ẇcrx0 ⇔ ẇcR1x1

< ẇcR2x0
there-

fore the conditions for Proposition 4 are ful�lled. Accordingly for ẇ
′
1 ∈

(
ẇx0, ẇ

c
R1x0

)
=

(ẇx0, ẇ
c
nx0) =

(
ẇN∗x0 , 0

)
and ẇ

′
2 ∈

(
ẇcR1x1

, ẇcR2x0

)
= (ẇcnx1, ẇ

c
rx0) =

(
0, Ṗ e∗

x0

)
, equations (66)

and (67) follow immediately from equation (55).

Proof of (68): By assumption, if R = n then ẇc∗ = 0, i.e., �xed, whereas if R = r

then ẇc∗ = Ṗ e∗ which is variable, therefore Rx = {n}. Furthermore, if R = n then

ẇc∗Rx1 = ẇc∗nx1 = 0. Substituting into (48) in Proposition 2 gives (68).

(b) Proof of (69) and (70): In this case Rx ⊂ R therefore Wx = WN
x , thus ẇx0 = ẇNx0.

Given that fε is degenerate it follows that ẇx0 = ẇN∗x0 − ε̇1.

Furthermore that ẇcnx0 = ẇc∗nx0 − ε̇1 = −ε̇1, ẇcnx1 = ẇc∗nx1 + ε̇1 = ε̇1, ẇ
c
rx0 = ẇc∗rx0 − ε̇1 =

Ṗ e∗
x0 − ε̇1 and ẇcrx1 = ẇc∗rx1 + ε̇1 = Ṗ e∗

x1 + ε̇1.

Given that ẇN∗x0 < 0 < Ṗ e∗
x0 < Ṗ e∗

x1 (from the de�nition of the MODERATE regime)

it follows that ẇcnx1 < ẇcrx1, therefore we can write Rx = {R1, R2} where R1 = n and

R2 = r.

Furthermore, ẇx0 < ẇcnx0 ⇔ ẇx0 < ẇcR1x0
and ẇcnx1 < ẇcrx0 ⇔ ẇcR1x1

< ẇcR2x0
if Ṗ e

x0 >

ε̇1 ⇔ Ṗ e∗
x0 > 2ε̇1 therefore the conditions for Proposition 4 are ful�lled. Accordingly for

ẇ
′
1 ∈

(
ẇx0, ẇ

c
R1x0

)
= (ẇx0, ẇ

c
nx0) =

(
ẇNx0,−ε̇1

)
and ẇ

′
2 ∈

(
ẇcR1x1

, ẇcR2x0

)
= (ẇcnx1, ẇ

c
rx0) =(

ε̇1, Ṗ
e
x0

)
, equations (69) and (70) follow immediately from equation (55).

B.23 Proof of Proposition 8

In this case Kx = 2 and Rx = {n, r} (see de�nition of this regime), therefore the unknown

parameters to be identi�ed are %nx and %rx.

(a) Proof of (71): In this case Rx ⊂ R therefore Wx =WN
x , thus ẇx0 = ẇNx0. Given that

fε is degenerate it follows that ẇx0 = ẇN∗x0 .

Furthermore, by assumption, if R = n then ẇc∗nx1 = ẇc∗nx0 = 0, and if R = r then
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ẇc∗rx0 = Ṗ e∗
x0 and ẇc∗rx1 = Ṗ e∗

x1 . Given that fε is degenerate it follows that ẇ
c
nx0 = ẇcnx1 = 0,

ẇcrx0 = Ṗ e∗
x0and ẇ

c
rx1 = Ṗ e∗

x1 .

From the de�nition of the LOW regime we have ẇN∗x0 < Ṗ e∗
x0 < 0 < Ṗ e∗

x1 .

It follows that ẇcnx1 < ẇcrx1, therefore we can write Rx = {R1, R2} where R1 = n and

R2 = r.

Furthermore, ẇx0 < ẇcnx0 ⇔ ẇx0 < ẇcR1x0
but ẇcnx1 ≮ ẇcrx0 ⇔ ẇcR1x1

≮ ẇcR2x0
therefore

the conditions for Proposition 4 are not ful�lled.

However, for ẇ
′
1 ∈

(
ẇN∗x0 , Ṗ

e∗
x0

)
holds that ẇ

′
1 < ẇcnx0 ⇔ ẇ

′
1 < ẇcR1x0

and ẇ
′
1 < ẇcrx0 ⇔

ẇ
′
1 < ẇcR2x0

therefore from Lemma 12 and Corollary 2 follows equation (71).

Proof of (72): By assumption, if R = n then ẇc∗ = 0, i.e., �xed, whereas if R = r

then ẇc∗ = Ṗ e∗ which is variable, therefore Rx = {n}. Furthermore, if R = n then

ẇc∗Rx1 = ẇc∗nx1 = 0. Substituting into (48) in Proposition 2 gives (72).

(b) Proof of (73): In this case Rx ⊂ R therefore Wx =WN
x , thus ẇx0 = ẇNx0. Given that

fε is degenerate it follows that ẇx0 = ẇN∗x0 − ε̇1.

Furthermore that ẇcnx0 = ẇc∗nx0 − ε̇1 = −ε̇1, ẇcnx1 = ẇc∗nx1 + ε̇1 = ε̇1, ẇ
c
rx0 = ẇc∗rx0 − ε̇1 =

Ṗ e∗
x0 − ε̇1 and ẇcrx1 = ẇc∗rx1 + ε̇1 = Ṗ e∗

x1 + ε̇1.

Given that ẇN∗x0 < Ṗ e∗
x0 < 0 < Ṗ e∗

x1 (from the de�nition of the LOW regime) it follows

that ε̇1 < Ṗ e∗
x1 + ε̇1 ⇔ ẇcnx1 < ẇcrx1, therefore we can write Rx = {R1, R2} where R1 = n

and R2 = r.

Furthermore, ẇx0 < ẇcnx0 ⇔ ẇx0 < ẇcR1x0
but ẇcnx1 ≮ ẇcrx0 ⇔ ẇcR1x1

≮ ẇcR2x0
therefore

the conditions for Proposition 4 are not ful�lled.

However, for ẇ
′
1 ∈

(
ẇNx0, Ṗ

e
x0

)
holds that ẇ

′
1 < ẇcnx0 ⇔ ẇ

′
1 < ẇcR1x0

and ẇ
′
1 < ẇcrx0 ⇔

ẇ
′
1 < ẇcR2x0

therefore from Lemma 12 and Corollary 2 follows equation (73).
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