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Abstract

We derive general distribution tests based on the method of Maximum Entropy

density. The proposed tests are derived from maximizing the differential entropy sub-

ject to moment constraints. By exploiting the equivalence between the Maximum

Entropy and Maximum Likelihood estimates of the general exponential family, we can

use the conventional Likelihood Ratio, Wald and Lagrange Multiplier testing princi-

ples in the maximum entropy framework. In particular, we use the Lagrange Mul-

tiplier method to derive tests for normality and their asymptotic properties. Monte

Carlo evidence suggests that the proposed tests have desirable small sample proper-

ties and often outperform commonly used tests such as the Jarque-Bera test and the

Komogorov-Smirnov-Lillie test for normality. We show that the proposed tests can be

extended to tests based on regression residuals and non-iid data in a straightforward

manner. We apply the proposed tests to the residuals from a stochastic production

frontier model and reject the normality hypothesis.
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1 Introduction

Testing that a given sample comes from a particular distribution is one of the most important

topics in inferential statistics and can be dated back to as early as Pearson (1900)’s χ2

goodness-of-fit test. In particular, testing for normality, thanks to the prominent role of

the central limit theorem in statistics, has received an extensive treatment in the literature,

see Thode (2002) who provides a comprehensive review on this topic. In this paper we

present alternative tests for a given distribution, in particular the normal distribution, based

on the method of maximum entropy (ME) density. They are derived from maximizing

differential entropy subject to known moment constraints. By exploiting the equivalence

between ME and maximum likelihood estimates for the exponential family, we can use the

conventional likelihood ratio (LR), Wald and Lagrange Multiplier (LM) testing principles in

the maximum entropy framework. Hence, our tests share the optimality properties of the

standard maximum likelihood based tests. Using the LM method, we show that the ME

approach leads to simple yet powerful tests for normality. Our Monte Carlo simulations

show that the proposed tests compare favorably and often outperform the commonly used

tests in the literature, such as the Jarque-Bera test and the Kolmogorov-Smirnov-Lillie test

for normality, especially when the sample size is small. In addition, we show that the

proposed method can be easily extended to: i) other distributions in addition to the normal;

ii) regression residuals; iii) dependent and/or heteroskedastic data. We apply the proposed

tests to test the normality of residuals from a stochastic production frontier model using a

benchmark dataset.

The paper is organized as follows. In the next section we present the information theoretic

framework on which we base our analysis. We then proceed to derive our normality tests and

discuss their properties. In the following section we present some simulation results. Finally,

before we conclude, we discuss some possible extensions and an empirical application. The

appendix collects the proofs of the main results.
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2 Information-theoretic distribution test

The information entropy, the central concept of the information theory, was introduced

by Shannon (1949). Entropy is an index of disorder and uncertainty. The maximum en-

tropy (ME) principle states that among all the distributions that satisfy certain information

constraints, one should choose the one that maximizes Shannon’s information entropy. Ac-

cording to Jaynes (1957), the ME distribution is “uniquely determined as the one which is

maximally noncommittal with regard to missing information, and that it agrees with what

is known, but expresses maximum uncertainty with respect to all other matters.”

The ME density is obtained by maximizing the entropy subject to some moment con-

straints. Let x be a random variable distributed with a probability density function (pdf)

f (x), and X1, X2, ..., Xn be an i.i.d. random sample of size n generated according to f (x).

The unknown density f(x) is assumed to be continuously differentiable, positive on the in-

terval of support (usually the real line if there is no prior information on the support of the

density) and bounded. We maximize the entropy

max
f(x)

: W = −
∫

f (x) log f (x) dx,

subject to

∫
f (x) dx = 1,

∫
gk (x) f (x) dx = µ̂k, k = 1, 2, . . . , K,

where gk (x) is continuously differentiable and µ̂k = 1
n

∑n
i=1 gk (Xi). The solution takes the

form

f
(
x, θ̂

)
= exp

(
−θ̂0 −

K∑

k=1

θ̂kgk (x)

)
, (1)

where θ̂k is the Lagrangian multiplier associated with the kth moment constraint in the

optimization problem (see Zellner and Highfield, 1988, for details). To ensure f
(
x, θ̂

)
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integrates to one, we set

θ̂0 = log

(∫
exp

(
−

K∑

k=1

θ̂kgk (x)

)
dx

)
.

The maximized entropy W = θ̂0 +
∑K

k=1 θ̂kµ̂k.

The ME density is of the generalized exponential family and can be completely char-

acterized by the moments Egk (x) , k = 1, 2, . . . , K. We call these moments “characterizing

moments”, whose sample counterparts are the sufficient statistics of the estimated ME den-

sity f(x, θ̂). A wide range of distributions belong to this family. For example, the Pearson

family and its extensions described in Cobb et al. (1982), which nest the normal, beta,

gamma and inverse gamma densities as special cases, are all ME densities with simple char-

acterizing moments.

In general, there is no analytical solution for the ME density problem, and nonlinear op-

timization methods are required (Zellner and Highfield (1988), Ornermite and White (1999)

and Wu (2003)). We use Lagrange’s method to solve this problem by iteratively updating θ

θ̂(t+1) = θ̂(t) −H−1b,

where for the (t + 1)th stage of the updating, bk =
∫

gk (x) f
(
x, θ̂(t)

)
dx−µ̂k and the Hessian

matrix H takes the form

Hk,j =

∫
gk (x) gj (x) f

(
x, θ̂(t)

)
dx.

The positive-definitiveness of the Hessian ensures the existence and uniqueness of the solu-

tion.1

1Let γ′ = [γ0, γ1, . . . , γK ] be a non-zero vector and g0 (x) = 1, we have

γ′Hγ =
K∑

k=0

K∑

j=0

γkγj

∫
gk (x) gj (x) f (x, θ) dx

=
∫ (

K∑

k=0

γkgk (x)

)2

f (x, θ) dx > 0.

Hence, H is positive-definite.
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Given Equation (1), we can also estimate f (x, θ) using the MLE. The maximized log-

likelihood

l =
n∑

i=1

log f
(
xi, θ̂

)
= −

n∑
i=1

(
θ̂0 +

K∑

k=1

θ̂kgk (xi)

)

= −n

(
θ̂0 +

K∑

k=1

θ̂kµ̂k

)
= −nW.

Therefore, when the distribution is of the generalized exponential family, MLE and ME are

equivalent. Moreover, they are also equivalent to a method of moments (MM) estimator.

This ME/MLE/MM estimator only uses the sample characterizing moments.

Although the MLE and ME are equivalent in our case, there are some conceptual differ-

ences. For the MLE, the restricted estimates are obtained by imposing certain constraints

on the parameters. In contrast, for the ME, the dimension of the parameter is determined

by the number of moment restrictions imposed: the more moment restrictions, the more

complex and at the same time the more flexible the distribution is. To reconcile these two

methods, we note that a ME estimate with the first m moment restrictions has a solution of

the form

f (x, θ) = exp

(
−θ0 −

m∑

k=1

θkgk (x)

)
,

which implicitly sets θj, j = m + 1,m + 2, . . . , to be zero. When we impose more moment

restrictions, say,
∫

gm+1 (x) f (x, θ) dx = µ̂m+1, we let the data choose the appropriate value

of θm+1.
2 In this sense, the estimate with more moment restrictions is in fact less restricted,

or more flexible. The ME and MLE share the same objective function (up to a proportion)

which is determined by the moment restrictions of the maximum entropy problem. Therefore,

one can regard the ME approach as a method of model selection, which generates a MLE

solution.

We can use the ME approach for distribution tests. Consider a M dimension parameter

space ΘM . Suppose we want to test the hypothesis that θ ∈ Θm, a subspace of ΘM , where

2Denote θm = [θ1, . . . , θm]. The only case that θm+1 = 0 is when the moment restriction∫
gm+1(x)f (x, θm) dx = µ̂m+1 is not binding, or the (m + 1)th moment is identical to its prediction based

on the ME density f (x, θm) from the first m moments. In this case, the (m + 1)th moment does not contain
any additional information that can further reduce the entropy.
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m ≤ M. Because of the equivalence between the ME and MLE, we can use the traditional

LR, Wald and LM principles to construct test statistics.3 For j = m,M, let θj be the MLE

estimates in Θj, lj and Wj be their corresponding log-likelihood and maximized entropy, we

have

−
∫

f (x, θm) log f (x, θm) dx

=

∫ (
m∑

k=0

θm,kgk (x)

)
f (x, θm) dx

=
m∑

k=0

θm,k

∫
gk (x) f (x, θm) dx

=
m∑

k=0

θm,k

∫
gk (x) f (x, θM) dx

=

∫ (
m∑

k=0

θm,kgk (x)

)
f (x, θM) dx

=−
∫

f (x, θM) log f (x, θm) dx.

The fourth equality follows because the first m moments of f (x, θm) are identical to those

of f (x, θM) . Consequently, the log-likelihood ratio

R = −2 (lm − lM) = −2n (Wm −WM)

= −2n

(∫
f (x, θm) log f (x, θm) dx−

∫
f (x, θM) log f (x, θM) dx

)

= −2n

(∫
f (x, θM) log f (x, θm) dx−

∫
f (x, θM) log f (x, θM) dx

)

= 2n

∫
f (x, θM) log

f (x, θM)

f (x, θm)
dx,

which is the Kullback-Leibler distance statistic between f (x, θM) and f (x, θm) multiplied

by twice of the sample size. Consequently, if the true model f (x, θM) nests f (x, θm) , the

quasi-MLE estimate f (x, θm) minimizes the Kullback-Leibler statistic between f (x, θM)

3Imbens et al. (1998) proposes similar tests in the information-theoretic generalized empirical likeli-
hood framework. The proposed tests differ from their tests, which minimize the discrete Kullback-Leibler
information criterion (cross entropy) or other Cressie-Read family statistics subject to moment constraints.
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and f (x, θm), as shown in White (1982).

If we partition θu = (θm, θM−m) = (θ1u,θ2u) for the unrestricted model and similarly

θr = (θ1r, 0) for the restricted model, then the score function

S (x, θm,θM−m) =




∂ ln f

∂θm
(x, θm,θM−m)

∂ ln f

∂θM−m
(x, θm,θM−m)


 ,

and the Hessian

H (x, θm,θM−m) =




∂2 ln f

∂θm∂θ′m
(x, θm,θM−m) ∂2 ln f

∂θm∂θ′M−m

(x, θm,θM−m)

∂2 ln f

∂θM−m∂θ′m
(x, θm,θM−m) ∂2 ln f

∂θM−m∂θ′M−m

(x, θm,θM−m)


 .

If we partition similarly the inverse of the information matrix I = −E (H) as

I−1 =


 I11 I12

I21 I22


 ,

then the Wald test is defined as

WD = nθ̂
′
2u

(
Î22

)−1

θ̂2u,

whereas the Lagrange Multiplier test is defined as

LM =
1

n

n∑
i=1

Ŝ
(
xi, θ̂1r, 0

)′
Î22

n∑
i=1

Ŝ
(
xi, θ̂1r, 0

)
.

All three tests are asymptotically equivalent and distributed as χ2 with (M −m) degrees of

freedom under the null hypothesis (see for example, Engle, 1984).

3 Tests of Normality

In this section, we use the proposed ME method to derive tests for normality. Since the LR

and Wald procedures require the estimation of the unrestricted ME density, which in general
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has no analytical solution and can be computationally involved, we focus on the LM test,

which reduces surprisingly to a test statistic with a simple closed form.

3.1 Flexible ME Density Estimators

Suppose a density can be rewritten as or approximated by a sufficiently flexible ME density

f0 (x) = exp

(
−

2∑

k=0

θkx
k −

K∑

k=3

θkgk (x)

)
.

Two conditions are required to ensure that f0(x) is integrable over the real line. First, the

dominant term in the exponent must be an even function; otherwise, f0(x) will explode at

either tail as x → ∞ or x → −∞. The second condition is that the coefficient associated

with the dominant term, which is an even function by the first condition, must be positive;

otherwise f0(x) will explode to ∞ at both tails as |x| → ∞.

The LM test of normality amounts to testing θk = 0 for k = 3, . . . , K. In practice, only

a small number of generalized moments µ̂k = 1
n

∑n
i=1 gk (xi) are used for the test, especially

when the sample size is small. In this paper we consider three simple, yet flexible functional

forms. If we approximate f0(x) using the ME density subject to the first four arithmetic

moments, the solution takes the form

f1(x) = exp

(
−

4∑

k=0

θkx
k

)
.

This classical exponential quartic density was first discussed by Fisher (1922) and studied

in the maximum entropy framework in Zellner and Highfield (1988), Ornermite and White

(1999) and Wu (2003).

In practice, it is well known that the third and fourth sample moments can be sensitive

to outliers. In addition to the robustness consideration, Dalén (1987) shows that sample

moments are restricted by sample size, which makes higher order moments unsuitable for

small sample problem. A third problem with the quartic exponential form is that this

specification does not admit µ4 > 3 if µ3 = 0. To see this point denote µ = [µ1, . . . , µ4] .

Stohs (2003) shows that for the one-to-one mapping θ = M (µ), the gradient matrix H with
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Hij = µi+j − µiµj, 1 ≤ i, j ≤ 4, is positive definite and so is H−1. Denote H(4,4) the lower-

right-corner entry of H−1. It follows H(4,4) > 0. Consider a distribution with µ = [0, 1, 0, 3],

which are identical to the first four moments of the standard normal distribution. Clearly,

θ2 = 1/2 and θ1 = θ3 = θ4 = 0. Suppose we introduce a small disturbance dµ = [0, 0, 0, δ],

where δ > 0. Since dθ = −H−1dµ, we have dθ4 = −H(4,4)δ < 0. It then follows that θ4 < 0,

which renders the approximation f1(x) nonintegrable.

Although f1(x) is rather flexible, the restriction discussed above precludes the applica-

bility of the ME density to symmetric fat-tailed distributions, which occur frequently in

practice. Hence, we consider an alternative specification which is motivated by the fat-tailed

Student’s t distribution. We note that the t distribution with r degrees of freedom has the

density

Tr (x) =
Γ

(
r+1
2

)
√

rπΓ
(

r
2

) (
1 + x2

r

)(r+1)/2
=

Γ
(

r+1
2

)
√

rπΓ
(

r
2

) exp

{
−r + 1

2
log

(
1 +

x2

r

)}
,

which can be characterized as an exponential distribution with the general moment log
(
1 + x2

r

)
.

Accordingly, we can modify the normal density by adding the extra moment condition that

E log
(
1 + x2

r

)
be equal to its sample value. The resulting general ME density

f ′1(x) = exp

(
−

2∑

k=0

θkx
k − θ3 log

(
1 +

x2

r

))
,

where r > 0. Since log
(
1 + x2

r

)
= o (x) , x2 is the dominant term for all K > 0, which

implies that θ2 > 0 to ensure the integrability of f ′1(x) over the real line. The presence of

log(1 + x2

r
) allows the ME density to accommodate symmetric fat-tailed distributions.

To make the specification more flexible, we further introduce a term to capture skewness

and asymmetry. One possibility is to use tan−1 (x) which is an odd function and bounded

between (−1, 1). Formally, Lye and Martin (1993) derive the generalized t distribution from

the generalized Person family defined by

df

dx
= −

(∑2
k=1 θkx

k
)
f (x)

(r2 + x2)
.
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The solution takes the form

f2(x) = exp

(
−

2∑

k=0

θkx
k − θ3 tan−1

(x

r

)
− θ4 log

(
r2 + x2

)
)

, r > 0.

Since the “degrees of freedom” r is unknown, we set r = 1, which allows the maximum

degree of fat-tailedness.4 Therefore, the alternative ME density is defined as

f2(x) = exp

(
−

2∑

k=0

θkx
k − θ3 tan−1 (x)− θ4 log

(
1 + x2

)
)

.

We further notice an “asymmetry” between tan−1(x) and log(1 + x2) in the sense that

the former is bounded while the latter is unbounded. Therefore, we consider yet another

alternative wherein we replace log (1 + x2) by tan−1 (x2).5 Hence, our third ME density is

defined as

f3(x) = exp

(
−

2∑

k=0

θkx
k − θ3 tan−1 (x)− θ4 tan−1

(
x2

)
)

.

Since ∂ tan−1 (x) /∂x = 1 − [tan−1 (x)]
2

> 0, tan−1 (x) is monotonically increasing in x.

Similarly, ∂ tan−1 (x2) /∂x = 2x
{

1− [tan−1 (x2)]
2
}

, implying tan−1 (x2) monotonically in-

creasing in |x| . Therefore, tan−1 (x) and tan−1 (x2) are able to mimic the behavior of x3

and x4 yet at the same time remain bounded such that f3 (x) is able to accommodate dis-

tributions with exceptionally large skewness and kurtosis. Note that f3(x) is in spirit close

to Gallant (1981)’s flexible Fourier transformation where low-order polynomials are com-

bined with trigonometric series to achieve a balance of parsimony and flexibility. In Wu

and Stengos (2005), we also consider sin(x) and cos(x) for flexible ME densities. Generally,

using periodic functions like sin(x) and cos(x) requires rescaling the data to between [−π, π].

Although in principle they are equally suitable for density approximation, we do not con-

sider specifications with sin(x) and cos(x) in this study as rescaling the data to between

[−π, π], rather than standardizing them, requires us to calculate the asymptotic variance

under normality for each dataset.

4A t distribution with one degree of freedom is the Cauchy distribution, which has the fattest tail within
the family of t distribution.

5We also try
[
tan−1 (x)

]2
. The performance is essentially the same as that with tan−1

(
x2

)
.
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The introduction of general moments offers a considerably higher degree of flexibility as

we are not restricted to polynomials. Generally, by choosing general moments appropriately

from distributions that are known to accommodate the given moment conditions, we make

the ME density more robust and at the same time more flexible. As an illustration, Figure 1

shows the ME approximation to a χ2 distribution with five degrees of freedom by f1 (x) , f2 (x)

and f3 (x) . Although they have relatively simple functional forms, all three ME densities are

shown to capture the general shape of the χ2
5 density rather well.

3.2 Normality Tests

In this section we derive tests for normality based on the ME densities f1 (x) , f2 (x) and

f3 (x) presented in the previous section. When θ3 = θ4 = 0, all three densities reduce to the

standard normal density.6 The information matrix of f1 (x) under standard normality is

I1 =




1 0 1 0 3

0 1 0 3 0

1 0 3 0 15

0 3 0 15 0

3 0 15 0 105




,

and the score function under normality is Ŝ1 = n [0, 0, 0, µ̂3, µ̂4 − 3]. It follows that the LM

test statistic

t1 =
1

n
Ŝ ′1I−1

1 Ŝ1 = n

(
µ̂2

3

6
+

(µ̂4 − 3)2

24

)
.

This the familiar JB test of normality. Bera and Jarque (1981) derived this test as a Lagrange

Multiplier test for the Pearson family of distributions and White (1982) derived it as an

information matrix test. More recently, Bontemps and Meddahi (2005) applied the Stein

Equation to the mean of Hermite polynomials to arrive at the same test. However, Bai and Ng

(2005) suggests that the convergence of (µ̂4−3)2

24
could be rather slow and the sample kurtosis

6Shannon (1949) shows that among all distributions that possess a density function f (x) and have a
given variance σ2, the entropy W = − ∫

f (x) log f (x) dx is maximized by the normal distribution. The
entropy of the normal distribution with variance σ2 is log

(√
2πeσ

)
. Vasicek (1976) uses this property to

test a composite hypothesis of normality, based on a nonparametric estimates of sample entropy.
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can deviate substantially from its true value even with a large number of observations. Since

the kurtosis test has very low power, the power of normality test based on skewness and

kurtosis largely reflect the results of the skewness tests.

Instead of using the coefficients of skewness and kurtosis, whose small sample properties

are unsatisfactory, we consider tests based on alternative ME densities f2 (x) and f3 (x).

Under normality, the information matrix of f2 (x) takes the form

I2 =




1 0 1 0 0.5334532

0 1 0 0.6057055 0

1 0 3 0 1.2220941

0 0.6057055 0 0.3942945 0

0.5334532 0 1.2220941 0 0.5529086




,

and the score function under normality restriction is

Ŝ2 = n [0, 0, 0, µ̂a, µ̂b − 0.5334532]

where µ̂a = 1
n

∑n
i=1 tan−1(Xi) and µ̂b = 1

n

∑n
i=1 log (1 + X2

i ). The alternative LM test is

given by

t2 =
1

n
Ŝ ′2I−1

2 Ŝ2 = n
(
36.47595µ̂2

a + 32.027545 (µ̂b − 0.5334532)2) .

Similarly, the information matrix for f3 (x) is

I3 =




1 0 1 0 0.4741131

0 1 0 0.6057055 0

1 0 3 0 0.8692134

0 0.6057055 0 0.3942945 0

0.4741131 0 0.8692134 0 0.3620107




.

The score function

Ŝ3 = n [0, 0, 0, µ̂a, µ̂c − 0.4741131] ,
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where µ̂c = 1
n

∑n
i=1 tan−1(X2

i ). The LM test statistic is then calculated as

t3 =
1

n
Ŝ ′3I−1

3 Ŝ3 = n
(
36.47595µ̂2

a + 16.898926 (µ̂c − 0.4741131)2) .

The following theorem shows that all three tests are asymptotically distributed as χ2 with

two degrees of freedom under normality.

Theorem 1. Under the assumption that E|x|4+δ < ∞ for δ > 0, the test statistics t1, t2 and

t3 are distributed asymptotically as χ2 with two degrees of freedom under normality.

The proof is presented in the appendix.

Under normality, the correlation between µ̂3 and µ̂4 is practically zero, so is that between

µ̂a and µ̂b, and between µ̂a and µ̂c. However, we note that the correlation of |µ̂3| and µ̂4 is

0.65 and 0.53 from 10,000 repetitions of random normal samples with n = 20 and 50, while

the correlation of |µ̂a| and µ̂b is -0.25 and -0.14, the correlation between |µ̂a| and µ̂c is -0.19

and -0.13 for the same sample size. Therefore, we expect that t2 and t3 to have better small

sample performance than t1.

4 Simulations

In this section, we use Monte Carlo simulations to assess the size and power of the proposed

tests. Following Bai and Ng (2005), we consider well known distributions such as the normal,

the t and the χ2, as well as distributions from the generalized lambda family. The generalized

lambda distribution, denoted Fλ, is defined in terms of the inverse of the cumulative distri-

bution F−1 (u) = λ1 +
[
uλ3 − (1− u)λ4

]
/λ2, 0 < u < 1. This family nests a wide range of

symmetric and asymmetric distributions. In particular, we consider the following symmetric

and asymmetric distributions:

S1: N (0, 1)

S2: t distribution with 5 degrees of freedom

S3: e1I (z ≤ 0.5) + e2I (z > 0.5) , where z ∼ U (0, 1) , e1 ∼ N (−1, 1), and e2 ∼ N (1, 1)

12



S4: Fλ, λ1 = 0, λ2 = 0.19754, λ3 = 0.134915, λ4 = 0.134915

S5: Fλ, λ1 = 0, λ2 = −1, λ3 = −0.8, λ4 = −0.8

S6: Fλ, λ1 = 0, λ2 = −.397912, λ3 = −.16, λ4 = −.16

S7: Fλ, λ1 = 0, λ2 = −1, λ3 = −.24, λ4 = −.24

A1: lognormal: exp(e) , e ∼ N (0, 1)

A2: χ2 distribution with 3 degrees of freedom

A3: exponential: − ln (e) , e ∼ U (0, 1)

A4: Fλ, λ1 = 0, λ2 = 1, λ3 = 1.4, λ4 = 0.25

A5: Fλ, λ1 = 0, λ2 = −1, λ3 = −0.0075, λ4 = −0.03

A6: Fλ, λ1 = 0, λ2 = −1, λ3 = −.1, λ4 = −.18

A7: Fλ, λ1 = 0, λ2 = −1, λ3 = −.001, λ4 = −.13

A8: Fλ, λ1 = 0, λ2 = −1, λ3 = −.0001, λ4 = −.17

The first seven distributions are symmetric and the next eight are asymmetric, which

have a wide range of skewness and kurtosis as shown in Table 1. For each distribution, we

draw 10,000 random samples of size n = 20, 50, 100 respectively and compute the normality

test statistics discussed above. For the sake of comparison, we also compute the commonly

used Kolmogorov-Smirnov test. We note that the general-purpose KS test has very low

power. Instead, we use the Lillie test, which is a special version of KS test tailored for the

case of normality (see Thode, 2002).

Table 1 reports the results for the normality tests at the 5 per cent significance level.

The first row reflects the size and the rest show the power of the tests. All the four tests

have similar desirable size, except that the KS test is slightly oversized when n = 20.

For n = 20, t2 and t3 have higher power than t1 for all distributions considered in the

simulation. The powers of t2 and t3 are similar except for S3 and A4. For the thin-tailed S3,

the power of t2 and t3 is respectively three and five times of that of t1. For the distribution
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A4 with a relatively large skewness and a thin tail, the power of t2 and t3 is respectively ten

and fourteen times of that of t1. On the other hand, the power of the KS test is generally

lower than that of t2 and especially t3, except for S4, where the KS test has a power of 0.06,

larger than the power of t3 test, which is 0.04.

As n increases, the size of all tests converge to the theoretical level and their powers

generally increase. For the distribution S3, where the t3 and KS test have comparable

powers when n = 20, we note that the power of t3 test is 43% higher than that of the KS

test when n = 50 and 90% higher when n increases to 100. Also, for the distribution S4,

the t3 and KS test have comparable powers when n = 50 and 100. Since this distribution

shares the same first four moments with the standard normal distribution, the powers of all

four tests are similar to their respective size, reflecting the difficulty in distinguishes S4 from

the normal distribution. This difficulty is also reported in Bai and Ng (2005). We also note

that for A4, the power of t2 and t3 increases rapidly, while the power of the t1 test is still

considerably lower than other tests when n = 50.

Overall, our results suggest that the proposed tests are comparable to and often outper-

form the commonly used JB test and KS test, especially when the sample size is small.

5 Extensions

In addition to their simplicity, a major advantage of the proposed tests is its generality. In

this section, we briefly discuss some easy-to-implement extensions of the tests.

Firstly, we note that we can incorporate higher order polynomials xk for k > 4 and

higher order trigonometric terms such as tan−1
(
xk

)
for k > 2. Usually, addition of higher

order terms will improve the approximation of the underlying distribution. However, we note

that it does not necessarily improve the test. We experimented with adding x5 and x6 to

f2 (x) and tan−1 (x3) and tan−1 (x4) to f3 (x) and derived tests based on four instead of two

moment conditions.7 These alternative tests are distributed asymptotically according to a χ2
4

distribution under normality. However, we note that the powers are generally lower than tests

based on two moment conditions. This is to be expected as the test statistics are distributed

according to a non-central χ2 distribution under alternative non-normal distributions. For a

7The first moments are zero and one by standardization.

14



given non-centrality parameter there is an inverse relationship between degrees of freedom

and power, see Das Gupta and Perlman (1974). One reason behind the loss in power in our

case is that with four moment conditions, the two even moments and two odd moments are

each correlated, which lowers the power of the tests when the sample size is small.

Secondly, we can use the proposed method for other distributions than the normal. For

example, the gamma distribution can be characterized as a ME distribution

f (x) = exp (−θ0 − θ1x− θ2 log x) , x > 0.

Because Ex and E log x are the characterizing moments for gamma distribution, the presence

of any additional terms in the exponent of f (x) rejects the hypothesis that x is distributed ac-

cording to a gamma distribution. Let fK (x) = exp
(
−θ0 − θ1x− θ2 log x−∑K

k=3 θkgk (x)
)
,

the test of θk = 0 for k ≥ 3 is then the LM test for gamma distribution. The discussions in

previous section suggest that the natural candidates for gk (x) may include polynomials of x

and log x, and trigonometric terms of x and log x.

Thirdly, we can generalize our tests to regression residuals within the framework of White

and McDonald (1980). Consider a classical linear model

Yi = Ziβ + εi, i = 1, . . . , n. (2)

Since the error term εi is not observed, one has to replace it with estimated ε̂i. The fol-

lowing theorem ensures that the test statistics computed from estimated ε̂i share the same

asymptotic distribution as those from true εi.

Theorem 2. Assume the following assumptions hold:

1. {Zi} is a sequence of uniformly bounded fixed 1 ×K vectors such that Z ′Z/n → MZ ,

a positive definite matrix, {εi} is a sequence of iid random variables with Eεi = 0,

Eε2
i = σ2

i < ∞, and β is an unknown K × 1 vector.

2. E|εi|4+δ < ∞ for δ > 0.

3. The density of εi, f (ε), is uniformly continuous, positive on the interval of support and

bounded.
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Define µ̂3 = 1
n

∑n
i=1 ε̂3

i , µ̂4 = 1
n

∑n
i=1 ε̂4

i , µ̂a = 1
n

∑n
i=1 tan−1 (ε̂i) , µ̂b = 1

n

∑n
i=1 log (1 + ε̂2

i )

and µ̂c = 1
n

∑n
i=1 tan−1 (ε̂2

i ) . Then under normality, the test statistics

t̂1 = n
(
µ̂2

3/6 + (µ̂4 − 3)2 /24
)
∼ χ2

2,

t̂2 = n
(
36.47595µ̂2

a + 32.027545 (µ̂b − 0.5334532)2) ∼ χ2
2,

t̂3 = n
(
36.47595µ̂2

a + 16.898926 (µ̂c − 0.4741131)2) ∼ χ2
2.

The proof is presented in the appendix.

Furthermore, for time series or heteroskedastic data, we can use the approach of Bai

and Ng (2005) or Bontemps and Meddahi (2005). In general, for non-iid data, to test the

Lagrange Multipliers associated with sample moments of gk (x) in the ME density being zero,

we need to estimate a Heteroskedastic-Autocorrelation-Consistent (HAC) covariance matrix

for those moments.

As an illustration, we apply the proposed normality tests to regression residuals. We use

data on the production cost of American electricity generating companies from Christensen

and Greene (1976). We estimate a flexible model with 123 observations:

c = β0 + β1q + β2q
2 + β3pf + β4pl + β5pk + β6qpf + β7qpk + β8qpl + ε,

where c is total cost, q is total output, pf , pl and pk is the price of fuel, labor and capital

respectively, and ε is the error term. All variables are in logarithm. It is expected that the

distribution of error terms from this stochastic production frontier model is skewed due to a

firm specific non-negative efficiency component in the error terms. Nonetheless, the KS rest

fails to reject the normality hypothesis. On the other hand, all three LM tests reject the

normality hypothesis with p−value at 0.03, 0.01 and 0.02 respectively.

6 Conclusion

In this paper we derive general distribution tests based on the method of maximum entropy

density. The proposed tests are derived from maximizing differential entropy subject to

moment constraints. By exploiting the equivalence between ME and ML estimates for the
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exponential family, we can use the conventional LR, Wald and LM testing principles in

the maximum entropy framework. Hence, our tests share the optimality properties of the

standard ML based tests. In particular, we show that the ME approach leads to simple

yet powerful LM tests for normality. We derive the asymptotic properties of the proposed

tests and show that they are asymptotically equivalent to the popular Jarque-Bera test. Our

Monte Carlo simulations show that the proposed tests have desirable small sample properties.

They are comparable and often outperform the JB test and Kolmogorov-Smirnov-Lillie test

for normality. Lastly, we show that the proposed method can be generalized to tests for other

distributions than the normal. Also, extensions to regression residuals and non-iid data are

immediate. We apply the proposed method to the residuals from a stochastic production

frontier model and reject the normality hypothesis.

Appendix

Proof of Theorem 1.

Proof. The assumption that E|x|4+δ < ∞ for δ > 0 ensures the existence of Eµ̂3 and Eµ̂4.

One can easily show that
√

nµ̂3 ∼ N (0, 6) and
√

n (µ̂4 − 3) ∼ N (0, 24) if xi is iid and

normally distributed (see for example, Stuart et al., 1994). Since cov(µ̂3, µ̂4) = 0, it follows

that under normality

t1 = n

(
µ̂2

3

6
+

(µ̂4 − 3)2

24

)
∼ χ2

2.

Similarly, since tan−1 (x) = o (x) , tan−1 (x2) = o (x) and log (1 + x2) = o (x) as |x| → ∞,

their expectations also exist under the assumption that E|x|4+δ < ∞ for δ > 0. We then have
√

nµ̂a ∼ N (0, 1/36.47595),
√

n (µ̂b − 0.5334532) ∼ N (0, 1/32.027545) and
√

n (µ̂c − 0.4741131) ∼

N (0, 1/16.898926) under normality. In addition, since cov(µ̂a, µ̂b) = 0 and cov(µ̂a, µ̂c) = 0,

it follows that under normality

t2 = n
(
36.47595µ̂2

a + 32.027545 (µ̂b − 0.5334532)2) ∼ χ2
2,

t3 = n
(
36.47595µ̂2

a + 16.898926 (µ̂c − 0.4741131)2) ∼ χ2
2. ¥
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Proof of Theorem 2.

Proof. Assumption 1 sets forth the classical linear model (except for the normality of εi)

and ensures that β̂n
as→ β0. Given assumption 1 and 2, one can show that |µ̂3 − µ3| as→ 0 and

|µ̂4 − µ4| as→ 0 using Lemma 1 and Lemma 2 of White and McDonald (1980). Using Corollary

A of Serfling (1980, p.19), one can show that since t̂1
as→ t1, t̂1

d→ t1 given Assumption 3.

Since t1 ∼ χ2
2 by Theorem 1 in Section 3, we have t̂1 ∼ χ2

2.

Similarly, since tan−1 (x) = o (x) , tan−1 (x) = o (x) and log (1 + x2) = o (x) as |x| → ∞,

Assumption 1 and 2 ensure that |µ̂a| as→ 0, |µ̂b − µb| as→ 0 and |µ̂c − µc| as→ 0. Using the similar

arguments as the proof for t̂1, one can show that t̂2
d→ χ2

2 and t̂3
d→ χ2

2. ¥
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Table 1: Size and Power of Normality Test (τ : skewness; κ: kurtosis)

n = 20 n = 50 n = 100
τ κ t1 t2 t3 KS t1 t2 t3 KS t1 t2 t3 KS

S1 0 3.0 0.03 0.04 0.04 0.06 0.04 0.04 0.05 0.05 0.04 0.05 0.05 0.05
S2 0 9.0 0.16 0.18 0.17 0.14 0.40 0.37 0.33 0.21 0.63 0.59 0.51 0.34
S3 0 2.5 0.01 0.03 0.05 0.05 0.01 0.07 0.10 0.07 0.01 0.16 0.19 0.10
S4 0 3.0 0.02 0.03 0.04 0.06 0.03 0.04 0.05 0.05 0.04 0.04 0.05 0.05
S5 0 6.0 0.16 0.18 0.17 0.14 0.39 0.37 0.33 0.20 0.63 0.61 0.54 0.35
S6 0 11.6 0.24 0.27 0.26 0.21 0.55 0.56 0.52 0.36 0.82 0.82 0.78 0.60
S7 0 126.0 0.33 0.38 0.37 0.29 0.71 0.71 0.68 0.54 0.92 0.93 0.91 0.80
A1 6.18 113.9 0.72 0.87 0.87 0.81 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
A2 2.0 9.0 0.49 0.69 0.70 0.60 0.95 0.99 0.99 0.96 1.00 1.00 1.00 1.00
A3 2.0 9.0 0.48 0.68 0.69 0.60 0.96 0.99 0.99 0.96 1.00 1.00 1.00 1.00
A4 5.0 2.2 0.02 0.19 0.28 0.20 0.08 0.74 0.79 0.52 0.80 0.99 0.99 0.90
A5 0.5 7.5 0.30 0.37 0.36 0.32 0.73 0.80 0.79 0.63 0.97 0.98 0.98 0.91
A6 2.0 21.2 0.31 0.33 0.32 0.29 0.68 0.70 0.67 0.53 0.91 0.92 0.91 0.81
A7 3.16 23.8 0.60 0.78 0.79 0.71 0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00
A8 3.8 40.7 0.64 0.82 0.82 0.75 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00
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Figure 1: Approximation of χ2
5 distribution: true distribution (solid), f1 (dash-dotted), f2

(dotted), f3 (dashed)
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