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Abstract

How does digital technology affect the transmission of idiosyncratic shocks

to the gross domestic product? We show that shock amplification depends on

the elasticity of substitution and the relative abundance of inputs. Using an

IV approach, we find a positive effect of digital intensity on substitution elas-

ticities between capital and labor and between value-added and intermediate

inputs, respectively. We interpret our empirical results through the lens of the

technology choice literature, attributing the effect to a change in the curvature

of the technology frontier. We show that whether a higher elasticity of substi-

tution dampens the propagation of sectoral shocks or not depends on a simple

sufficient statistic, the relative abundance of intermediate inputs. Based on the

latter, our estimates suggest that many sectors in selected European economies

amplify shocks after digitalization, with a deteriorating trend in resilience be-

tween 1995 and 2017.
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1 Introduction

Digital technology is omnipresent in the production processes of industrial and
service sectors, and its continuous development as a general-purpose technology
has had a transformative impact on society.1 Despite these facts, our knowledge
about its effects on the macroeconomy is still scant. A substantial research effort
has been devoted to understanding the effects of information technology and au-
tomation on growth, and yet the evidence is mixed. The literature agrees that
digital technologies have had a positive impact on productivity, with a decreasing
pace after around the year 2000 (Stiroh (2002), Brynjolfsson and Hitt (2003), Gor-
don (2015), Cette, Clerc, and Bresson (2015), Graetz and Michaels (2018), Gallipoli
and Makridis (2018), Dauth, Findeisen, Suedekum, and Woessner (2021)). The ex-
istence and strength of the effects of digitalization on productivity might depend
on the measures used (Acemoglu, Dorn, Hanson, Price, et al. (2014)), their preci-
sion (Byrne, Fernald, and Reinsdorf, 2016) and the analyzed time frame (Van Ark
(2016)).

Setting aside these measurement issues, the fact that total factor productivity
growth has shown a rapid decline after its initial takeoff while digital intensity in
production has exhibited a secular rise may invite alternative and complementary
interpretations of the way technical change can have an impact on the economy.
As we will argue, one such relatively unexplored alternative is macroeconomic
resilience, defined as the ability of a system to mitigate the effects of an adverse
disaggregated shock. A recent strand of literature has investigated the extent to
which digitalization could mitigate disruptions based on sectoral responses to the
pandemic. Using firm-level data from developing countries, Comin, Cruz, Cirera,
Lee, and Torres (2022) shows that a higher pre-pandemic level of digitalization has
mitigated some of the initial negative impact on firms’ sales during the early stage
of the Covid shock. Complementary work has investigated the post-shock adop-
tion of digital technologies to alleviate the negative economic impact (e.g. Apedo-
Amah, Avdiu, Cirera, Cruz, Davies, Grover, Iacovone, Kilinc, Medvedev, Maduko,
et al. (2020), Bloom, Valero, and Van Reenen (2021) and Bellmann, Bourgeon, Gath-
mann, Kagerl, Marguerit, Martin, Pohlan, and Roth (2021)).

1See e.g. Bresnahan (2002) for the classification of digitalization as general purpose technology.
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This recent evidence raises some fundamental questions regarding the effects
of technical change on the macroeconomy that go beyond the transition we have
observed in recent years. In this paper, we take a new view and investigate which
factors determine macroeconomic resilience, how digitalization may be mapped
to these factors, and how data can be brought to bear on this question.

A suitable measure to quantify resilience and hence the overall effects of disag-
gregated shocks in a multi-sectoral economy is the Domar weight. The larger the
Domar weight of a specific sector, the more severe are GDP adjustments and thus
the smaller is economic resilience. We build our analytical model on Acemoglu,
Akcigit, and Kerr (2016) and generalize the results to a CES production function.
Consistent with Baqaee and Farhi (2019), Domar weights are no longer constant
and solely dependent on the parameters of a production function. Instead, input
expenditure shares - a central component of Domar weights - may vary. Compared
to the Cobb Douglas case, a higher expenditure share for intermediate inputs im-
plies an amplification of a shock and vice versa. In turn, the expenditure share itself
depends on two production parameters - the share parameter and the elasticity of
substitution - as well as the relative abundance of inputs. An immediate empirical
question is whether digitalization can have an impact through these components.

Using an instrumental variables approach, we find that digitalization has a sig-
nificantly positive impact on the elasticity of substitution between capital and la-
bor and between value-added and intermediate inputs, respectively. These results
corroborate the claim that the elasticity of substitution is not an immutable param-
eter but is shapeable by technology, amongst other factors (Knoblach and Stöckl,
2020). Oberfield and Raval (2021) finds that the elasticity of substitution evolves
over time, although they find a slight negative trend since the 1970s. Moreover, our
result that digitalization increases the elasticity of substitution between capital and
labor provides further empirical support to assumptions made in the recent liter-
ature on automation (see e.g. Alonso, Berg, Kothari, Papageorgiou, and Rehman
(2022)). Using data on robot imports, Adachi (2021) estimates a higher elasticity of
substitution between robots and labor, as compared to general capital goods. This
further supports our general findings, as robots is a specific type of digital capital
that combines both hardware and software.
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In addition, our estimates of the effect of digitalization on the elasticity of sub-
stitution between capital and labor are robust to accounting for the level of devel-
opment. We thus confirm Miyagiwa and Papageorgiou (2007)’s conclusion that the
aggregate elasticity of substitution between capital and labor is positively related
to the level of economic development. Digitalization’s effect cannot be simply cap-
tured by the overall level of development, which we take as a sign of a deeper
mechanism in place. We interpret our empirical results through the lens of the
technology choice literature by Jones (2005); Caselli and Coleman (2006); Growiec
(2008, 2013, 2018) and León-Ledesma and Satchi (2019), which motivates an en-
dogenous evolution of the elasticity of substitution based on technological change.
More specifically, we argue that digitalization has an impact on the curvature of
the technology frontier, altering the substitutability of input-specific technologies.

Moreover, we revisit our theoretical model to investigate the consequences of
a higher elasticity of substitution on Domar weights. We find that the effect on
resilience depends on the quantity ratio of intermediate inputs to value-added
and can thus be shock-reinforcing or -dampening. We quantify the impact of a
higher elasticity of substitution on resilience for several sectors in selected Euro-
pean economies and find that for most of the sectors resilience decreases. This ef-
fect is largely uniform across countries, reinforcing the idea that it largely depends
on technologies with a strong sector-specific component rather than a country-
specific idiosyncratic characteristic. We furthermore illustrate that there is a gen-
eral trend towards less resilience between 1995 and 2017. Sectors that would have
been classified as becoming more resilient with digitalization in the 1990s are grad-
ually becoming less resilient with digitalization post-2000.

Another key takeaway from our empirical results is that the effects are not
uniform across different components of digital technologies. We distinguish be-
tween information technology (IT), communication technology (CT) and software-
databases (SoftDB), whose capital stock intensity has exhibited different growth
rates over the last decades (see Figure 1). Among these three categories, only IT
intensity significantly increases the elasticity of substitution between capital and
labor, while both IT and SoftDB capital intensities contribute to an increase in the
elasticity of substitution between value-added and intermediate inputs.
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Figure 1: All series are computed using the EU KLEMS (2019). Total Factor Productivity

growth is available from the database and computed as the residual from a translog spec-

ification of the production function. We compute capital stock intensity by dividing the

capital stock per asset type (IT, CT, SoftDB) to the total stock (chain linked volumes).

Furthermore, we find that a higher investment intensity in data and software
leads to an increase in labor augmenting and capital augmenting productivity.

The paper is structured as follows: Section 2 presents the general equilibrium
model and the corresponding Domar weight. Sections 3 and 4 describe the em-
pirical methodology and present the results. Section 5 investigates the impact of
the elasticity of substitution on the Domar weight, the relevant conditions for am-
plification/dampening, and the corresponding empirical application. Section 6
provides a microfoundation for the empirical results on the elasticity of substitu-
tion and connects this to our empirical results regarding digitalization. Section 7
concludes.

2 Theory

In this section we develop the theoretical framework within which we will de-
fine resilience and how it depends on the production structure of the economy.
We focus on the simplest possible structure that is general enough to illustrate the
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mechanisms in place. We will thus focus on an efficient economy setup with a
representative household and n productive sectors, each populated by a represen-
tative producer.

2.1 General Equilibrium Model

2.1.1 Production and Factor Demand

Firms in each sector employ labor and intermediate goods to produce final out-
put, where intermediate goods are combined to an intermediate composite using
a Cobb-Douglas production function. Final output is a constant elasticity of sub-
stitution (CES) aggregate of value-added, which is labor intensive, and the inter-
mediate goods composite as follows:

yi,t = ezi,t

(1− λi)li,t
σi−1

σi + λi

[
∏

j=1..n
x

αi,j
i,j

] σi−1
σi


σi

σi−1

= ezi,t

(
(1− λi)li,t

σi,t−1
σi + λiX

σi−1
σi

i,t

) σi
σi−1

(1)

where σi ∈ [0, ∞) is the elasticity of substitution between the labor and the inter-
mediate good bundle and (λi, {αi,j}j=1..n) are the share parameters for the bundle
and its sub-components respectively. Productivity is assumed to be Hicks neu-
tral. Due to perfect competition in product markets the producers of the sector’s
final good take the price of their own good (pi,t) as given and choose labor and
intermediate inputs to maximize profits according to

max
li,t,xj,i

pi,tyi,t − wi,tli,t − ∑
j=1..n

pj,txi,j (2)

where pj,t is the price paid for the goods produced by producer j and wi,t is the
wage paid for labor services. Correspondingly, the total cost of intermediate inputs
is such that ∑j=1..n pjxi,j = pX

i Xi. At the optimal choice of each producer i, the
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marginal product of each input is equal to its real price as follows:

(1− λi)

(
li,t
yi,t

)− 1
σi

ezi,t

(
σi−1

σi

)
=

wi,t

pi,t
(3)

λi,t

(
Xi,t

yi,t

)− 1
σi,t

e
zi,t

(
σi,t−1

σi,t

)
=

pX
i,t

pi,t
(4)

and the expenditure share of each xi,j is pinned down by
pj,t

pX
i

xi,j
Xi

= αi,j. Combining
the first order conditions (3) and (4), we get that that relative demand between
labor and the intermediates bundle is

Xd
i,t

ld
i,t

=

(
1− λi

λi

pX
i,t

wt

)−σi

(5)

The larger the elasticity of substitution σi the larger will be the adjustment to rela-
tive demand due to a change in relative prices.

2.1.2 Household Consumption and Labor Supply

The representative agent chooses how much to work and consume by maximizing
utility according to

max
li,t,ci,t

γ(lt) ∏
i=1..n

cβi
i,t (6)

s.t. ∑
i=1..n

pi,tci,t = ∑
i=1..n

wi,tli,t

∑
i=1..n

li,t = lt

where γ(lt) is disutility from hours worked and consumption utility is a Cobb-
Douglas aggregate over goods produced from sectors i = 1..n, with ∑i=1..n βi = 1.
In each period, the household decides how much consumption to allocate in each
good and how much to work in each sector. Combining the first order conditions
for goods i and j yields that their relative expenditure is pinned down by

pi,tci,t

pj,tcj,t
=

βi

β j
(7)
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Correspondingly, the expenditure share for good j is pinned down by 2

pj,tcj,t

∑i=1..n wli,t
= β j (8)

In Appendix A1., we show that aggregate labor supply lt by the representative
household in this economy will be constant.

2.1.3 Competitive Equilibrium

Goods markets: Each sector’s output can be used either for consumption or as inter-
mediate good in the production of another sector:

yi,t = ci,t + ∑
j=1..n

xj,i (9)

Labor markets: With a constant aggregate supply and full mobility of labor, wages
are equalized across industries.3 Hence, the common wage w is determined by
aggregate demand and supply of labor while equilibrium hours worked in each
industry will be pinned down by labor demand:

l̄s = ∑
i=1..n

ld
i

2.1.4 Aggregate Demand

Final demand, which will be equal to the Gross Domestic Product, is measured by
the constant returns aggregator over individual goods at the optimal household
choice:

Yt = ∏
i=1..n

(
c?i,t
)βi

2.2 Shock propagation and GDP resilience

Shock propagation in a multi-sector model is channeled by inter-sectoral demand
and supply as well as by consumption behavior. A well known result by Hulten
(1978) states that the first order impact on GDP of a productivity shock in sector j

2Relaxing the unit elasticity of substitution between goods would also introduce interesting
non-linearities on the consumption side but this goes beyond the scope of this paper.

3Please see Appendix A1.
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can be summarized by the sector’s Domar weight, which is the sales share of sector
i in total consumption (GDP):

dln(Y)
dzj,t

=
pj,tyj,t

∑i,t pi,tci,t
(10)

This is a non-parametric result as it holds for a general class of constant returns to
scale production functions, while it is exact when production functions have unit
elasticity of substitution such as in the Cobb-Douglas case. In the latter case, the
sales share and the input-output matrix is constant.4 What this implies is that the
transmission mechanism of the shock is constant, shutting down interesting non-
linearities. In our setup, the CES form of the production function leads to a non-
constant transmission mechanism, and hence resilience will be affected by inter-
sectoral trade and sectoral production possibilities. The following result derives
the Domar weight consistent with the general equilibrium model presented above.

Proposition 1: In a multisectoral economy with CES production functions and com-
petitive markets, the Domar weight of each sector equals:

pj,tyj,t

∑i,t pi,tci,t
= β j + ∑

i=1..n
βiαi,j

yi,t

ci,t
φi,t

where

φi,t ≡
λi

λi + (1− λi)
(

li,t
Xi,t

) σi−1
σi

=
pX

i,tXi,t

wtli,t + pX
i,tXi,t

is the expenditure share of intermediate goods.
Proof: Please see Appendix A1.

The impact of a sectoral Hicks neutral shock on GDP is thus equal to

dln(Y)
dzj,t

:= Dj,t = β j + ∑
i=1..n

αi,jφi,tDi,t (11)

The Domar weight (Dj,t) depends on the constant consumption share β j, which
measures the direct impact of a shock to sector j, and the indirect effects of the
shock to other sectors, which are customer industries of sector j. Supply shocks

4Baqaee and Farhi (2019) have generalized Hulten (1978)’s result to second order effects and
highlighted the importance of the microeconomic details of the production structures.
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propagate only downstream and upstream suppliers remain unaffected5. More
compactly, the vector of sectoral Domar weights Dt is determined as follows

Dt = (I −AΦt)
−1b (12)

where AΦt is the state dependent input-output matrix.6

When the production function takes the Cobb-Douglas form, the expenditure
share in Proposition 1 is constant and equal to the share parameter, λi. In this
case the Domar weight does not depend on labor or intermediate goods supply
(li,t, Xi,t), which implies the absence of higher order effects. When the elasticity of
substitution between labor and intermediate goods deviates from unity, the prop-
agation of the shock is no longer deterministic. It is therefore important to analyze
how the propagation of the shock differs from the Cobb Douglas case and under
which conditions the propagation is relatively muted or amplified.

Since the expenditure share of intermediate goods is equal to λi in the Cobb-
Douglas specification, it is immediate that the propagation of the shock is smaller
(larger) when the expenditure share is smaller (larger) than λi. Expressing φi,t

in terms of the relative expenditure share and rearranging, we must have that
dampening (amplification) holds when the marginal rate of technical substitution
(MRTS) is lower (higher) than the one that corresponds to the Cobb-Douglas case:

MRTS ≡
∂yi,t
∂xi,t

∂yi,t
∂li,t

≶
λi

1− λi

li,t
Xi,t

(13)

This is also a non-parametric result, which if specialized to the CES production
function, it boils down to whether the following conditions are satisfied:(

σi − 1
σi

)
ln
(

Xi,t

li,t

)
≶ 0

When σi = 1, the relative abundance of the two factors is irrelevant for the propa-
gation of the shock and symmetrically, when Xi,t = li,t, the elasticity of substitution
is also irrelevant. Otherwise, when both σi and Xi,t/li,t deviate from unity, the am-

5See also Acemoglu, Akcigit, and Kerr (2016) for upstream vs. downstream propagation.
6We define the I-O matrix as the matrix of expenditure shares of intermediate inputs, which are

by construction equal to the expenditure share of the intermediate composite φi,t weighted by αi,j.
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plification or dampening depends on the interplay between the curvature of the
production isoquant and the relative abundance of the two factors. In Table 1 we
spell out the conditions for amplification (φ > λ) or dampening (φ < λ).

Xi,t
li,t

> 1 Xi,t
li,t

< 1

σi < 1 φi,t < λi φi,t > λi

σi > 1 φi,t > λi φi,t < λi

Table 1: Amplification versus Dampening

To build intuition, we consider these cases in Figure 2, which presents the iso-
quants that correspond to a CES production function with gross substitutability
(blue) and gross complementarity (red). The Cobb Douglas case would be a hor-
izontal line, representing the case in which the relative cost share stays constant -
independently of ln(X/L).

ln
(X

l
)

ln
(

pXX
wl

)
σ > 1

σ < 1

λ
1−λ

Figure 2: When σ > 1, the relative cost share pXX
wl is an increasing function of

relative quantity, as a higher relative quantity does not decrease much the marginal
rate of technical substitution, and hence the relative cost increases. When σ <

1, a higher relative quantity decreases the marginal rate of technical substitution
more than proportionately, and hence the relative cost decreases. When σ = 1, the
relative cost share is constant at (λ/(1− λ)) for all values of the relative quantities.
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If inputs are gross substitutes, a producer tries to maximize the use of the
cheaper input and minimize the use of the more expensive factor. If X > l, inter-
mediate products are relatively less expensive, an increase of pX would still yield
the producer to demand as much as possible X, which results in a larger exposure
to the intermediate factor and thus increases the Domar weight. On the contrary,
if X < l, intermediate inputs are relatively more expensive, a shock results in a
decrease in demand, resulting in a reduction of the Domar weight.

3 Empirical Methodology

In the previous section, we have shown that the production parameters that influ-
ence Domar weights are the elasticity of substitution and the share parameter. In
this section we empirically explore the effects of digitalization on these parame-
ters. We will therefore allow the latter to vary over time and space. As a byproduct
of our empirical approach, we also explore the effects of digitalization on input-
specific productivities. By employing standard production theory, we will rely
on a quasi-structural approach to identify unobserved elements of the production
process. In contrast to the theoretical model, in this section we generalize the pro-
duction structure by accommodating for input-specific productivities, as well as
a value-added production function that utilizes capital. This allows for a more
realistic specification that is in line with the way the data we use were constructed.

Production in Sector i, yi,t, is described by a two level constant elasticity of
substitution (CES) production function as follows7:

yi,t :=

(
(1− λi,t)(ν

VA
i,t VAi,t)

σi,t−1
σi,t + λi,t(ν

X
i,tXi,t)

σi,t−1
σi,t

) σi,t
σi,t−1

(14)

where VAi,t is value-added and Xi,t are intermediate inputs in the higher level
nesting. λi,t and σi,t are the share parameter of effective intermediate inputs and the
elasticity of substitution, respectively. In turn, in the lower level nesting, value-
added itself is a result of firm decisions about the employment of capital and labor.

7This nested structure of CES production functions avoids issues with elasticity interpretation
arising in production functions with more than two inputs, see e.g. Sato (1967).
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In particular, the production function for value-added is as follows:

VAi,t =

(
αi,t(ν

k
i,tki,t)

γi,t−1
γi,t + (1− αi,t)(ν

l
i,tli,t)

γi,t−1
γi,t

) γi,t
γi,t−1

(15)

where αi,t and γi,t are the share parameter of effective capital and the elasticity of
substitution between effective capital and labor, respectively. Finally, (νVA

i,t , νX
i,t, νk

i,t, νl
i,t)

are the factor specific productivities which are assumed to follow an idiosyncratic
but deterministic growth path: ln(v)q

i,t = ln(v)q
i,t−1 + gq

i , for q ∈ {VA, X, k, l}. 8

3.1 Two stage budgeting

Instead of relying on a primal approach, we follow the expenditure minimization
(dual) approach. This has several advantages, including the fact that we do not
have to specify the demand side of the market (yd

i,t), and can therefore accommo-
date imperfect competition in product markets as well as price rigidities.

More particularly, each representative firm in sector j engages in a two stage
budget allocation, where it first decides about how much to produce internally and
how much to procure as intermediate inputs, and then, given a determined alloca-
tion for value-added production, it chooses how much capital and labor to employ.
Analytically, the representative firm chooses inputs to minimize total costs:

min
VA,Xt

pVA
i,t VAi,t + pX

i,tXi,t (16)

s.t. yi,t ≥ yd
i,t

where pVA
i,t VAi,t + pX

i,tXi,t is the total cost of production. Dividing the first and the
second first order conditions, we get

1− λi,t

λi,t

(
VAi,t

Xi,t

)− 1
σi,t

(
νVA

i,t

νX
i,t

)1− 1
σi,t

=
pVA

i,t

pX
i,t

(17)

Given an optimal choice for VAi,t, denoted by VAopt
i,t , the representative firm solves

8We follow the literature in assuming a specific functional form for the exogenous productivity
processes as joint identification of the bias in technical progress and the elasticity of substitution is
impossible (Diamond, McFadden, and Rodriguez, 1978).
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the following second stage problem:

min
ki,t,li,t

wi,tli,t + pk
i,tki,t (18)

s.t. VAi,t ≥ VAopt
i,t

Dividing the first order condition with respect to capital and labor yields

αi,t

1− αi,t

(
ki,t

li,t

)− 1
γi,t

(
νK

i,t

νl
i,t

)1− 1
γi,t

=
pk

i,t

wi,t
(19)

Expressions (19) and (17) are going to form the basis of our empirical approach.
Taking logs results in the following relative input demand functions, where we
have normalized initial productivities to be equal, zk

i,0 = zl
i,0 and zVA

i,0 = zX
i,0:

ln
(

ki,t

li,t

)
= γi,tln

(
αi,t

1− αi,t

)
− γi,tln

(
pk

i,t

wi,t

)
+ (γi,t − 1)(gk

i − gl
i)t (20)

ln
(

VAi,t

Xi,t

)
= σi,tln

(
1− λi,t

λi,t

)
− σi,tln

(
pVA

i,t

pX
i,t

)
+ (σi,t − 1)(gVA

i − gX
i )t (21)

Relative factor demands for inputs are therefore decreasing in relative prices.
If inputs are gross substitutes, then biased technical progress increases further the
demand of the more productive input.

4 Econometric Model

Given data on relative quantities and prices for the factors of production, we can
in principle proceed with estimating the coefficients from the corresponding re-
duced form model. There are nevertheless two key challenges that we need to
address. The first challenge is that relative prices are endogenous due to the pres-
ence of unobserved demand and supply shocks. In order to identify the true slope
of these relative demand curves we need to resort to some form of exogenous vari-
ation to supply, such as a relative marginal cost shifter. Following the industrial
organization literature (see e.g. Hausman (1996) and Nevo (2001)), we will utilize
relative prices of the same aggregate goods in other geographic markets (in our
case U.S. data), which can be considered as proxies of marginal costs. The second
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challenge has to do with controlling the dimensions of these coefficients, as it is
infeasible to estimate elasticities and value shares that vary over time and space in
an unrestricted way. Since we are mostly interested in identifying the effect of dig-
italization on these coefficients, we will directly allow coefficients to be functions
of covariates Xi,t.

Allowing for functional coefficients results in the following econometric speci-
fication for equation (21):

ln
(

VAi,t

Xi,t

)
= c0(Xi,t) + c1(Xi,t)ln

(
pVA

i,t

pX
i,t

)
+ c2(X̄i,t)t + εi,t (22)

where X̄i,t is the time average of covariates Xi,t. Using a Taylor expansion around
X̃ , the centered values of vector X , and denoting by (cT

0,j, cT
1,j, cT

2,j)
T the vector of

Taylor coefficients for the jth order, the resulting empirical specification is: 9

ln
(

VAi,t

Xi,t

)
= ci

0,0 + cT
0,1X̃i,t + c1,0ln

(
pVA

i,t

pX
i,t

)
+ cT

1,1X̃i,t ⊗ ln

(
pVA

i,t

pX
i,t

)
+c2,0t + cT

2,1X̄i,t ⊗ t + ui,t

We estimate the reduced form coefficients (cT
0,1, c1,0, cT

1,1, c2,0, cT
2,1) using a within

group estimator. Hence, the implied estimate for the linearized form of the elas-
ticity of substitution between value added and intermediate inputs is equal to
σi,t = c1,0 + cT

1,1X̃i,t, while the relative growth rate of productivities is equal to
gVA/X

i := gVA
i − gX

i = c2,0 + cT
2,1X̄i,t. Share parameters αi,t are recovered using that

ln
(

1− λi,t

λi,t

)
=

1
σi,t

ln
(

VAi,t

Xi,t

)
+ ln

(
pVA

i,t

pX
i,t

)
− σi,t − 1

σi,t

[
(gVA

i,t − gX
i,t)t
]

(23)

and re-projecting on covariates X̃i,t using a fixed effects estimator to purge ci
0,0 and

ui,t. A similar approach is followed for estimating (γi,t, αi,t, gk/l
i ) in equation (20).

9While we have estimated specifications up to second order, in most cases only linear terms are
significant, if any. We thus only present the first order terms of the approximation. Employing
semi-parametric methods to estimate these functions could be an alternative approach (see e.g.
Hastie and Tibshirani (1993); Durlauf, Kourtellos, and Minkin (2001) for reduced form and Cai, Das,
Xiong, and Wu (2006) for instrumental variable varying coefficient models). Due to the relatively
large number of covariates, and more importantly, our desire to leverage conventional methods
for testing for weak identification and instrument exogeneity with panel data, we choose a global
approximation to these functions and not a local approximation, which is implied by the use of
kernel methods in the aforementioned approaches.
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4.1 Data and Measurements

We utilize country-industry data from the European Union capital, labor, energy,
materials, and service inputs database (also known as the EU KLEMS Growth and
Productivity accounts, see e.g. O’Mahony and Timmer (2009)). Our unit of analy-
sis, indexed by i, is at the country-industry level.10 While price indices for value-
added, gross output and intermediate goods are readily available, we need to im-
pute the sectoral wage rates and the rental rates of capital. We recover the price of
capital by dividing the estimated capital compensation by the chain linked volume
of the capital stock since CAPj,t = pk

j,tKj,t. In EU KLEMS, pk,j,t is computed using
the user cost of capital formula (see e.g. Jorgenson (2005)), which takes into ac-
count both the nominal rate of return, the rate of depreciation and changes in the
price of investment per industry. Similarly, we impute wages by dividing labor
compensation to hours worked for the employed.

We measure digitalization using three complementary measures that summa-
rize the intensity of use of such technologies in the production process: the lagged
share of the Information Technology (IT) capital stock to the total capital stock,
and the corresponding capital stock shares for Communication technology (CT)
and Software and Databases (SoftDB). Our classification is based on capital as op-
posed to labor, which is sometimes used in related literature (see e.g. Gallipoli
and Makridis (2018)) as we do not have information on the share of IT related oc-
cupations in the KLEMS database. The approach is nevertheless similar, as we are
looking at the digital intensity of one of the main factors of production to character-
ize the digital intensity of the production process. Focusing on capital has also the
advantage of looking at more granular classifications such as IT, CT and SoftDB.
In the case of SoftDB, we also investigate the share of investments in SoftDB out
of total investment because we consider data as highly depreciable, resulting in a
situation in which data from the last periods might have little value for production
in the current period.11

10We exclude sectors which may include non-market activities such as public sector, education,
health and home production. We also excluded the real estate sector due to large swings in prices.

11The depreciation rate of SoftDB in KLEMS is similar to that of IT capital, but this is an average
rate and includes software, which to our assessment has a lower depreciation rate than data.
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Expressing digitalization related capital as a fraction of the total capital stock is
important for distinguishing between economic growth due to capital deepening,
which may naturally lead to an increase in the use of digital technologies, and the
qualitative effect of structural change due to digital transformation. For more de-
tails on measurement please refer to the Appendix A3. In the set of covariates Xi,t

used for modeling the varying coefficients, we control for factors that might influ-
ence the elasticity of substitution at highly aggregated sectoral levels (at one/two
digits). Such factors can be the level of development, as measured by the lagged
capital to labor ratio, or exogenous business cycle developments, as captured by
the CBOE Volatility index (VIX).

Both factors reflect the idea that the aggregate elasticity of substitution in a one-
or two-digit industry will be influenced by intersectoral substitution in three- and
higher digit industries as a result of adjustments in consumption due to growth or
economic fluctuations (see e.g. Knoblach and Stöckl (2020)). Furthermore, we con-
trol for other technological factors such as investment in research and development
by including them as additional terms that interact with relative input prices.

4.2 Identification

Given the final model specification in (22), the errors ui,t are likely to contain input
demand disturbances that we have not explicitly modelled, such as other stochas-
tic relative input demand shocks and wedges arising from input financing fric-
tions. An example of the latter arises in the value-added - intermediate input
choice, where limited commitment places an upper bound on how much of the
firm revenue (ηi) may be used to buy inputs. This leads to a constraint of the form
ζ1,iVAiPVA

i + ζ2,iXiPX
i ≤ ηi pi,tyi,t, where ηi is the share of revenue that can be used

to finance expenditure proportions ζ1,i on value-added and ζ2,i on intermediate in-
puts respectively.12 In our case this yields a relative demand equation distorted by
the Lagrange multiplier µi

1− λi

λi

(
VAi

Xi

)− 1
σi

(
νVA

i,t

νX
i,t

)1− 1
σi

=
pVA

i
pX

i
+

1− ζ1,iµi

1− ζ2,iµi
(24)

12See e.g. Bigio and La’O (2020) and Miranda-Pinto and Young (2022).
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In related literature (Atalay, 2017; Miranda-Pinto and Young, 2022) researchers de-
rived estimating equations based on total output, where total factor productiv-
ity (TFP) was part of the error, and a prime source of endogeneity as final out-
put prices are correlated with TFP shocks. This necessitated the use of demand
shifters such as military spending as instruments. In our case we use relative fac-
tor demand equations for estimating the elasticities of substitution. Any common
component of input-specific productivities which would feature as a total factor
productivity shock cancels out in 20 and 21.13

Moreover, our estimating equations feature relative input demand shocks. Hence,
identification necessitates the use of relative input supply shifters as instruments.
For this purpose, we utilize (lagged) relative prices in the United States, both for
the labor to capital price ratio and the value-added to intermediate input price
ratio. Variation in relative prices in the US should capture variation in relative
marginal costs of production for these inputs which can have a common compo-
nent with those in Europe. A justification for a strong common component would
be the common outsourcing of material and other inputs from East Asian countries
such as China. At the same time, relative input prices in the US should be uncor-
related with sectoral relative input demand disturbances in Europe. This would
be unlikely in the presence of global demand disturbances that affect relative in-
put demand in the US and in Europe. A specific example of this is the presence
if input financing frictions as in (24), where the distortion to the relative price of
value-added and intermediate goods in the US will be correlated with the distor-
tion in Europe. We control for such disturbances using time fixed effects and the
VIX in alternative specifications. The identifying assumption is that controlling for
time fixed effects or the VIX is sufficient to purge this common component.

Another source of endogeneity which is specific to the capital to labor demand
equation is that we allow for the lagged level of development (capital to labor ratio)
to affect the elasticity of substitution. Due to within differencing to remove fixed
effects, the error becomes correlated with the interaction term between relative
prices and the lagged capital to labor ratio.

13The only exception is the wedge of an input financing friction such as (24), which would re-
spond to a common input-specific shock in value-added and intermediate inputs if ζ1,i 6= ζ2,i.
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We instrument the latter using the corresponding variable in the US. We test
both for instrument relevance and instrument exogeneity. For both demand equa-
tions and all the reported specifications, we fail to reject the overidentifying restric-
tions and underidentification.14

4.3 Elasticities of Substitution and Digitalization

Table 2 presents the estimates for the elasticity of substitution between capital and
labor. The constant component of the elasticity yields a value for γ close to 0.191,
which is consistent with estimates in the literature (Gechert, Havranek, Irsova, and
Kolcunova, 2022) and implies gross complementarity between labor and capital.
IT capital intensity has a significantly positive impact, as a 1% increase in intensity
is associated with a 0.089 increase in the elasticity. CT intensity and Software-
database intensity have no significant impact. As we mentioned earlier in the pa-
per, we also find that the level of development (lagged capital to labor ratio) is also
associated with a higher elasticity of substitution, with a similar impact to IT inten-
sity. The mean estimate in the benchmark specification (2) is 0.096. To investigate
further the heterogeneity of these estimates within sectors, we estimate specifica-
tion (2) for service and non-service sectors. Restricting the sample to service sec-
tors yield similar estimates for the constant, IT and Development level components
(0.191, 0.073 and 0.111 respectively). For the non-service sectors the corresponding
estimates are 0.222, 0.076 and 0.089 (please see Table 5 for the classification).

Similar to the elasticity of substitution between capital and labor, the next set of
empirical results show that a larger share of Information Technology related capital
stocks brought forward from the last period have a positive effect on the elasticity
of substitution between value-added and intermediate inputs. In particular, the
marginal effect is estimated to be relatively large (0.128). Furthermore, there is
some evidence that a higher intensity in SoftDB and R&D are positively associated
with the elasticity of substitution.

14We have assessed the robustness of our results with respect to weak identification by employ-
ing identification robust inference procedures which are consistent with heteroscedasticity and au-
tocorrelation in the errors (see Finlay, Magnusson, and Schaffer (2013)). We report robust confi-
dence sets based on inverting the Conditional Likelihood Ratio test which has been shown to have
good power properties when the number of endogenous regressors increases (Moreira, 2003).
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(1) (2) (3) (4)

Capital to Labor ratio
(

k
l

)
w
pk 0.159∗∗ 0.191∗∗∗ 0.177∗∗∗ 0.101

[0.052,0.266] [0.105,0.277] [0.095,0.259] [-0.065,0.266]
(0.0939, 0.334)

IT share ×
(

w
pk

)
0.083∗ 0.089∗∗∗ 0.094∗∗∗

[0.003,0.164] [0.049,0.128] [0.053,0.136]
(0.044,0.169)

CT share ×
(

w
pk

)
0.000918

[-0.002,0.004]

Inv. share ×
(

w
pk

)
S&D -0.0133

[-0.098,0.072]

Cap. share ×
(

w
pk

)
S&D -0.005

[-0.079,0.070]

Devel. Level×
(

w
pk

)
0.093∗∗∗ 0.096∗∗∗ 0.107∗∗∗

[0.053,0.133] [0.066,0.126] [0.072,0.143]
(0.053,0.152)

VIX2 0.069∗ 0.056∗∗

[0.010,0.128] [0.015,0.097]

No. Observations 4371 4371 4371 4580

Count.-Sec. F.E. X X X X

Time FE - - X X

Constant γ - - - X

Table 2: Impact of Digitalization the Elasticity of Substitution between k and l. For brevity we do

not present the estimates on the interaction terms of digitalization intensities with the constant and

with time. Specification (1) includes all relevant interaction terms. Specification (2) drops jointly

insignificant terms while Specification (3) includes time fixed effects instead of the VIX. Specifica-

tion (4) reports the estimates obtained without controlling for digitalization related heterogeneity.

For the benchmark specification 2, in (, ) we report the projection of the robust 90% confidence set

based on inverting the Conditional Likelihood ratio test .
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(1) (2) (3) (4)
Value added to Intermediate Inputs ratio

pX

pVA 0.399∗∗∗ 0.534∗∗∗ 0.554∗∗∗ 0.662∗∗∗

[0.244,0.554] [0.380,0.688] [0.392,0.716] [0.473,0.851]
( 0.386, 0.681)

IT share ×
(

pX

pVA

)
0.061 0.128∗ 0.129∗

[-0.064,0.186] [0.007,0.249] [0.008,0.249]
( 0.005, 0.3138)

CT share ×
(

pX

pVA

)
-0.015

[-0.108,0.078]

Inv. share ×
(

pX

pVA

)
S&D -0.095

[-0.305,0.116]

Cap. share ×
(

pX

pVA

)
S&D 0.136 0.099 0.102∗

[-0.023,0.295] [-0.00001,0.198] [0.005,0.200]
(-0.041, 0.25)

R&D ×
(

pX

pVA

)
0.143∗ 0.139∗ 0.138∗

[0.028,0.260] [0.025,0.253] [0.025,0.251]
(0.032, 0.242)

VIX 0.013 0.018∗

[-0.003,0.029] [0.002,0.033]

No. Observations 4106 4106 4106 4106

C-S Fixed Effects X X X X

Time Fixed Effects - - X X

Constant Elasticity - - - X

Table 3: Impact on the Elasticity of Substitution between VA and X.

Sectors in which the existing capital share of IT technology as well as R&D in-
vestment share is higher, have higher substitution possibilities between production
that takes place within the firm and production outsourced to other firms. The rise
of IT technology has enabled firms to outsource part of their production process
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to other more efficient or specialized firms, while R&D is likely to have a positive
effect on the extensive margin i.e. the number of firms which are more prepared to
change this feature of their production process, and the number of firms which are
ready to provide such goods and services as intermediate inputs. Symmetrically,
what this implies is that should the price of doing so rises due to e.g. a nega-
tive productivity shock, firms will more likely substitute away from intermediate
goods and services.

Finally, despite allowing for heterogeneity in σ, the constant coefficient compo-
nent is also significant (0.534), indicating that part of this elasticity could be due
to other factors that do not vary across time and space. Switching down hetero-
geneity yields an elasticity of substitution of 0.662, while the mean estimate in the
benchmark specification with heterogeneity (specification 2) is 0.534.

4.3.1 Share Parameters

In our extensive estimation exercises, we have also investigated whether the share
parameters are affected by digitalization, with no apparent evidence of such a rela-
tionship. We relegate these results to Table 1 in the Online Appendix. The constant
estimates for α and λ are 0.3318 and 0.5744 respectively.

4.3.2 Productivity

Given the estimates of the elasticities of substitution, the share parameters and the
relative growth rates of productivities, we use the corresponding production func-
tions and the process for each productivity to back out their levels and growth
rates.15 Table 4 reports the results for each input-specific productivity we recov-
ered using our approach, as well as the estimates based on the total factor produc-
tivity in value-added provided in the KLEMS database.

A higher share of investment in software and databases leads to higher la-
bor and capital productivity growth, while higher capital intensity in information
and communications technology does not seem to positively contribute to input-
specific productivity growth. While this finding may be surprising at first sight,
we interpret this as evidence that the installation of digital hardware alone can-
not account for an increase of productivity, but it is the effective use of it through
software and data that drives productivity gains. Furthermore, we also find that

15Please see Appendix A4 for the way we recover unobserved productivities.

22



intermediate inputs’ productivity growth is positively affected by a higher share
of research and development in capital brought forward.16

Our results are indeed conditional on the way we recover these unobserved
productivities and our prior estimates of the model parameters. We have never-
theless checked the robustness of our finding by utilizing the sectoral total factor
productivity measure which is available in the KLEMS database, and we find very
similar results in the case of software and database investment intensity. Total fac-
tor productivity growth is also increasing in the corresponding capital intensity in
software and databases.

The empirical results can thus be summarized as follows: The intensity of dig-
italization as measured by the information technology share has an impact on the
elasticity of substitution between capital and labor and between value-added and
intermediate inputs, while higher intensity in software and databases has a uni-
form impact on labor and capital productivities.

Focusing on the effects on the elasticities of substitution between factor inputs,
the empirical evidence suggests that digitalization is one of the sources of struc-
tural change in the productive structure of the economy. In the rest of the paper
we will analyze the implications of this change for the ability of the productive
structure to mitigate the effects of sectoral shocks, while we will also provide a
microfoundation that can potentially explain the empirical relationship between
digital intensity and the elasticity of substitution.

Before doing so, we briefly comment on some other implications that our es-
timates have for understanding technologically biased technical change and the
labor share of income. The literature on the decline of the labor share is vast, and
involves several nuances, both theory and measurement related (see e.g. Gross-
man and Oberfield (2021)). We thus view our evidence on this debate as suggestive
and complementary at best. As can be seen from rearranging the relative demand
equations for capital and labor,

ln

(
ki,t pk

i,t

li,twi,t

)
= γi,tln

(
αi,t

1− αi,t

)
+ (1− γi,t)ln

(
pk

i,t

wi,t

)
+ (γi,t − 1)

[
(gk

i − gl
i)t
]

explaining the decline in the relative share of value-added by which labor is re-

16The same holds for value-added productivity growth, although the result is statistically signif-
icant once we drop the statistically insignificant lagged values of productivity growth.
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∆zVA ∆zX ∆zL ∆zK ∆zVA
KLEMS,TFP

IT cap. 0.150 0.066 0.010 0.005 0.006
[-0.06,0.36] [-0.03,0.16] [-0.05,0.07] [-0.06,0.07] [-0.024,0.037]

CT cap. 0.003 -0.047 -0.045 -0.038 -0.008
[-0.205,0.206] [-0.18,0.08] [-0.11,0.02] [-0.09,0.01] [-0.03,0.05]

Inv. share
R& D -0.066 -0.038 0.0153 0.007 0.003

[-0.14,0.02] [-0.09,0.01] [-0.01,0.04] [-0.01,0.02] [-0.01,0.02]
S&D -0.081 0.006 0.020∗ 0.025∗ 0.030∗

[-0.26,0.09] [-0.03,0.04] [0.001,0.04] [0.004,0.05] [0.01,0.05]

Cap. share
R&D 0.133 0.122∗ 0.011 0.024 0.011

[-0.01,0.28] [0.02,0.23] [-0.02,0.04] [-0.01,0.06] [-0.01,0.04]
S&D -0.037 -0.028 0.00724 -0.002 0.036∗

[-0.12,0.04] [-0.07,0.02] [-0.04,0.05] [-0.05,0.05] [0.01,0.07]

VIX -0.127 0.049 -0.054∗∗∗ -0.057∗∗∗ -0.061∗∗∗

[-0.48,0.22] [-0.06,0.16] [-0.07,-0.04] [-0.08,-0.03] [-0.08,-0.05]

Devel. Lev. 1.337 0.147 0.286∗∗ 0.258∗∗ 0.149∗∗

[-1.28,3.95] [-0.25,0.55] [0.09,0.48] [0.06,0.45] [0.05,0.25]
No.of Obs. 3602 3590 4768 4528 4646
C-S F.E. X X X X X
≥ 2 lags X X X X X
t & t2 X X X X X

Table 4: Impact of Digitization on Input Specific Productivity Growth.

munerated falls on either relative productivity growth or the decline in the price
of investment goods, such as in Karabarbounis and Neiman (2013). Our empirical
results suggest that productivity gains, at least for the type of digital technology
we are looking at, are unlikely to contribute to a decline in the labor share as the
effect we find are uniform across labor and capital productivity growth. In addi-
tion, since digitalization increases γi,t, it unconditionally decreases the labor share
through the first term as the share parameters are not affected, while it dampens the
effects of the decline in the price of investment goods.
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We believe that this is an additional source of variation to the labor share that
should be taken into account when discussing the implications of digitalization
and automation. How much this contributes to the overall effect is of course an
interesting question that goes beyond the scope of this paper. Finally, note that
while we do not explicitly account for markups, since markups do contribute to
a decline in both labor and capital shares (see De Loecker, Eeckhout, and Unger
(2020) for example), we expect the effect on the relative expenditure share to be
relatively muted.

5 Elasticity of substitution and resilience

In light of the empirical results of the previous section, we revisit our analytical
model of Section 2 and study the impact of a higher elasticity of substitution on
Domar weights, and hence the effect of a higher elasticity of substitution on the
propagation of a sectoral TFP shock to GDP. The fact that our empirical results for
the impact of digitalization on both γ and σ are qualitatively and quantitatively
similar makes our analytical model sufficient for this kind of exercise. Hence, we
consider capital as an intermediate input in this model.17

Based on Proposition 1, we can see that the question whether an increase in σi,t

propagates or dampens the effect of shocks depends on the change of φi,t, which is
the expenditure share of the intermediate good composite. Therefore, we focus on
how this expenditure share is affected by a higher elasticity of substitution:

Proposition 2: In the same economy as in Proposition 1, the impact of a marginal
increase of sectoral elasticity of substitution is equal to:

∂Dt

∂σj
= (I −AΦt)

−1A
∂Φt

∂σj
(I −AΦt)

−1b (25)

where the jth column of ∂Φt
∂σj

is nonzero, with its kth element equal to

αj,k
dφj,t

dσj,t
= −αj,k

φ3
j,t

1− φj,t

1
σj,t

ln

(
lj,t

Xj,t

)

Proof: Please see Appendix A2.

17This is consistent with the literature see e.g. Baqaee and Farhi (2019); Acemoglu, Akcigit, and
Kerr (2016); Baqaee and Rubbo (2022).
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While the magnitude of the effect does depend on structural parameters, its
sign does not, as it only depends on whether (li,t/Xi,t) is smaller or larger than
unity. If production is labor intensive, (li,t/Xi,t) > 1, shock propagation will be
dampened after an increase of the elasticity of substitution. If production uses
comparably little labor, (li,t/Xi,t) < 1, an increase in the elasticity of substitution
augments shock propagation in the economy. The intuition for these results can be
found by considering the relative expenditure share between intermediate inputs
and value-added, as φi,t is a monotone function of this share:

ln

(
Xi,t pX

i,t

li,twi,t

)
= ln

(
λi,t

1− λi,t

)
+

(
1− 1

σi,t

)
ln
(

Xi,t

li,t

)
(26)

When intermediate inputs are relatively abundant, their marginal product rel-
ative to that of value-added is low. An increase in the elasticity of substitution
enables the producer to use relatively more of the cheaper input (intermediate in-
puts) and maximize the impact of the more expensive factor (labor), which is going
to tilt the share of total expenditure towards intermediate inputs, decreasing re-
silience by increasing the exposure to the shocked sector. Conversely, when labor
is relatively abundant, an increase in the elasticity of substitution tilts the share of
total expenditure to labor and thus decreases the exposure to the shocked sector.

ln
( x

l
)

ln
(

pX

w

)

Dσ′

Dσ

Slow Shigh

λ
1−λ

Figure 3: An increase in σ to σ′ twists the relative demand curve. The position of
the relative supply curve is critical for the effect on relative prices and quantities.

Figure 3 describes the effects of an increase in the elasticity of substitution on
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the sectoral demand schedule and thus on equilibrium values for relative quan-
tities and price levels. We assume equilibrium values for the use of labor and
intermediate inputs in all other sectors, exposing the analyzed sector to different
supply curves for the factors. In the case of labor abundance (Slow), an increase of
the elasticity tilts the demand curve of the specific sector from blue to red and thus
decreases both the equilibrium values for relative quantities and relative prices.
The expenditure share of intermediate inputs falls. Conversely, a relatively high
supply of intermediate inputs (Shigh) yields a higher expenditure share.

5.1 Example economy

Despite the differences in sectoral levels of digitalization, all sectors tend to dig-
italize further. If all sectors feature a higher level of digitalization, what will be
the effect on resilience? Will higher elasticities of all sectors have an impact on
resilience? As an example, consider an economy with three sectors and a network
structure as shown in Figure (4). Sector 1 is sole customer to sector 2, and sector 3
is sole customer to sector 1.

21 3
λ1

λ3

Figure 4: Roundabout Economy with no links between sector 2 and 3

Sectoral production functions are thus given as follows:

y1 = ez1

(
(1− λ1)l1

σ1−1
σ1 + λ1x

σ1−1
σ1

2

) σ1
σ1−1

y2 = ez2

(
(1− λ2)l2

σ2−1
σ2 + λ2

) σ2
σ2−1

= ez2 l2

y3 = ez3

(
(1− λ3)l3

σ3−1
σ3 + λ3x

σ3−1
σ3

1

) σ3
σ3−1
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Taking the example of a shock to sector 1, the sectoral Domar weight is equal to

D1 =
dln(Y)

dz1
= β1 + β3

λ3

λ3 + (1− λ3)
(

l3
x3

) σ3−1
σ3

(27)

Due to the downstream-propagation of the shock, the indirect effect captures the
sales of sector 1 to sector 3. Hence, the level of digitalization of sector 3 affects the
domar weight of sector 1 by means of its elasticity of substitution. The change in
sector 1’s Domar weight then equals

dD1

dσ3
=

dln(Y)
dz1

dσ3
= β3

dφ1

dσ3
= −β3

(φ3)
3

1− φ3

1
σ3

ln
(

l3
x3

)
(28)

Consequently, higher levels of digitalization in sectors 1 (the shocked sector) and
sector 2 (supplying sector 1) have no effect on resilience. Only if sector 3 (supplied
by sector 1) enhances its level of digitization, resilience will be higher or lower,
depending on the relative quantities in production.

5.2 Sectoral results

The analytical result in Proposition 2 proves to be useful, in the sense that de-
termining whether a sector amplifies or dampens supply shocks when it is more
digitalized depends on a simple sufficient statistic that does not depend on esti-
mated parameters. We next use this to classify sectors in our dataset by calculating
relative quantities of value-added and of the intermediate composite, ln(VAi/Xi)

for each sector in each country.
Figure 5 plots ln(Xi/VAi) = −ln(VAi/Xi), where the vertical axis varies over

country and the horizontal axis varies over sectors.18 For the sector classification,
please refer to Table 5 in Appendix A6. All negative values have a dark shade,
meaning that φi(σi) decreases with an increasing level of the elasticity of substitu-
tion. In these cases, a higher level of digitalization increases economic resilience.
All lighter shades represent country-sector combinations with an increasing φi(σi),
meaning that the higher elasticity of substitution increases the Domar weight of the
corresponding industry in the specific country.

18Data on shorter time periods can be seen in the Online appendix.
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Figure 5: Relative Intensity of Intermediate Inputs ln
( X

VA
)

The sign of ln(Xi/VAi) is positive for most 2-digit sectors, resulting in a re-
inforcing effect after a shock and lower resilience. 1-digit sectors show smaller
values, which results from the fact that intermediate goods within a 1-digit sector
are omitted whenever sectors are subsumed within one sector. Thus, the overall
impact is dependent on the level of aggregation. If firm-level data is regarded as
a first choice regarding the measurement of resilience, we can infer from our data
that the effect of digitalization on resilience will be mostly negative.

Generally, most sectors have quite homogeneous signs of ln(X/VA) across
countries, which reiterates the fact that resilience of sectors should be rather de-
pendent on the type of industry and not on country-specific characteristics. Over-
all, we can conclude from our results that an increase in unconditional elasticities
has a mixed impact on resilience.

5.2.1 Decreasing resilience over time

The evolution of the relative abundance of intermediate inputs to value-added
over time gives an indication of how the impact of higher digitalization on re-
silience changes. Figure 6 shows an increase of the ratio ln(Xi/VAi) over time
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Figure 6: Sectors and Resilience over time

and thus a trend towards lower resilience in most sectors, especially those with
negative values of ln(X/VA) at the beginning of the time horizon. Noticeable
exceptions are the wholesale sector, "total manufacturing", "agriculture, forestry
and fishing" and "information and communication". Their ratio of ln(X/VA) re-
mained rather constant across time. Three of these sectors are non-resilient sec-
tors, i.e. sectors with an amplifying effect to shocks if their level of digitaliza-
tion gets increased. Generally, we can classify the sectors as resilient sectors with
ln(X/VA) < 0, which are mainly service sectors. The group of non-resilient sec-
tors (ln(X/VA) > 0) consists of mainly sectors with industrial production. Sectors
which start with a dampening effect and show an amplifying effect at the end of
the sample ("switching sectors") include both services and industrial production.

We conclude that resilience decreased over time as a consequence of changes in
the elasticity of substitution, which are partially attributed to digitalization given
our earlier empirical results. Idiosyncratic shocks had more impact on GDP in
2017 compared to 1995. Consequently, a shock to an economy with a higher level
of digitalization resulted in larger consequences for GDP in 2017 than in 1995.
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6 Technology and the elasticity of factor substitution

Given the evidence that digitalization changes production structures and, more
precisely, it increases the flexibility of economies to choose between inputs to pro-
duction, we attempt to provide a coherent theoretical explanation in this section.
Our empirical measure of digitalization is its share in different types of capital
stocks, which is a result of adoption and utilization of digital technologies that
become available for commercial and industrial purposes. This is akin to a qual-
ity adjustment in the composition of the capital stock that does not alter the total
index, and hence the model presented earlier in the paper can be considered as
a reduced form of a deeper mechanism in place. The notion of a quality adjust-
ment in inputs can be rationalized by the choice of technologies from a technology
menu, which is changing because of the introduction of new digital technologies.
A framework which is useful to think about this issue is the one developed in the
endogenous technology choice literature, such as Jones (2005), Caselli and Cole-
man (2006), Growiec (2013), Growiec (2018) and León-Ledesma and Satchi (2019).
In this strand of literature, firms are considered to choose both the factor combi-
nation to be used in production as well as their augmentation by factor specific
productivities. The latter are chosen from a technology frontier, which consists of
the most efficient feasible combinations.

While technology is fixed in the very short run, it is more likely that in the
longer run firms will be able to optimally choose the technology they use. We think
of the introduction of new digital technologies as a force that changes the form
of the technology menu. Importantly, the literature has shown that the optimal
choice of technologies leads to an endogenous determination of the elasticity of
substitution between inputs. We deem that this framework provides a solid basis
for providing microfoundations to our empirical findings. Note that in contrast to
León-Ledesma and Satchi (2019), we do not attribute the increase in the elasticity
of substitution to the increased flexibility in technology choice over the long run,
but we rather consider changes in the technology frontier themselves. We think of
the latter as a more plausible explanation of our empirical findings.

Consider a representative firm of sector i having the possibility to choose their
inputs for different sets of technologies. In our setup, this translates to a choice

31



over value-added (labor) and intermediate inputs for different factor augmenting
productivities ezVA

i,t and ezX
i,t respectively. Each combination of technologies defines

a specific production function that firms can choose and for which they have to se-
lect combinations of inputs according to their profit maximization problem. Since
the choices of the firms are conditional on the technology combinations, we call
these production functions conditional production functions.19 Some of the condi-
tional production functions will be chosen by firms, whereas others are not optimal
and thus will not be applied. The set of all optimal conditional production func-
tions defines the unconditional production function.20 This function constitutes an
envelope of all choices of optimal conditional production functions and describes
the production function firms can choose if they are able to decide about both tech-
nologies and input quantities.

The set of technologies that firms can choose from are specified in the tech-
nology frontier in

(
ezVA

i,t , ezX
i,t

)
-space (cf. Caselli and Coleman (2006) and Growiec

(2008)), where ω, θ and B are exogenous parameters and strictly positive:(
ezVA

i,t

)ωi,t
+ θi,t

(
ezX

i,t

)ωi,t
= Bi,t (29)

B defines the overall level of productivity, whereas ω and θ change the shape and
thus the trade-off between both productivity parameters. Digitalization is an ex-
ogenous change to the technology frontier and can have an impact on all three
parameters. It results in a new set of techniques, which changes the trade-off be-
tween all existing technologies and thereby alters the level and curvature of the
technology frontier. Rearranging terms of the technology frontier yields(

ezVA
i,t B
− 1

ωi,t
i,t

)ωi,t

+ θi,t

(
ezX

i,t B
− 1

ωi,t
i,t

)ωi,t

= 1 (30)

We assume ez̃VA
i,t = ezVA

i,t B−
1
ω

i,t and ez̃X
i,t = ezX

i,t B−
1
ω

i,t to separate exogenous total factor

productivity, B
1
ω
i,t, and the productivities that can be chosen endogenously by firms

in the model, ezVA
i,t and ezX

i,t . The latter conforms to the trade-off of technologies

19This type of production function is also called local production function (as in Growiec (2018))
or short-run production function (as in León-Ledesma and Satchi (2019)).

20Equivalent to global production function (Growiec (2018)) or long-run production function
(León-Ledesma and Satchi (2019))

32



based on the endogenous choice framework introduced above. Furthermore, we
allow for factor specific exogenous productivity shocks νVA

i,t and νX
i,t respectively.

The conditional production function of becomes

yi,t := B
1

ωi,t
i,t

(
(1− λi,t)

(
νVA

i,t ez̃VA
i,t VAi,t

) σ̃i,t−1
σ̃i,t + λi,t

(
νX

i,te
z̃X

i,t Xi,t

) σ̃i,t−1
σ̃i,t

) σ̃i,t
σ̃i,t−1

(31)

This approach enables us to measure the resilience of an industry j after an exoge-

nous shock to TFP of another sector (B
1
ω
i,t) while taking both exogenous productiv-

ity shifts and endogenous technology choice into account. The latter is essential
since the digitalization-induced change of the elasticity of substitution requires
the inclusion of a technology frontier. In this case, the cost minimizing choice for
(ez̃VA

i,t , ez̃X
i,t , ez̃k

i,t , ez̃l
i,t) endogenizes the relative productivities as follows:

(
ezVA

i,t

ezX
i,t

)ωVA/X
i,t −

σ̃i,t−1
σ̃i,t

=
1− λi,t

λi,t
θX/VA

i,t

(
νVA

i,t VAi,t

νX
i,tXi,t

) σ̃i,t−1
σ̃i,t

(32)

(
ezk

i,t

ezl
i,t

)ωk/l
i,t −

γ̃i,t−1
γ̃i,t

=
αi,t

1− αi,t
θl/k

i,t

(
νk

i,tki,t

νl
i,tli,t

) γ̃i,t−1
γ̃i,t

(33)

The relative factor demand equations are similar to those in Section 2. Substituting
equations (32) and (33) in the relative demand equations for factors and assuming
that the relative share parameters and the frontier relative share are identical i.e.

λi,t
1−λi,t

= θX/VA
i,t and αi,t

1−αi,t
= θl/k

i,t , the relative demand equations for factors are as
follows, and are identical to (20) and (21) (please see A5 for the derivation):

ln
(

VAi,t

Xi,t

)
=

ωVA/X
i,t σi,t − (σi,t − 1)

ωVA/X
i,t − (σi,t − 1)

ln
(

1− λi,t

λi,t

)
−

ωVA/X
i,t σi,t − (σi,t − 1)

ωVA/X
i,t − (σi,t − 1)

ln

(
pVA

i,t

pX
i,t

)

+
ωVA/X

i,t (σi,t − 1)

ωVA/X
i,t − (σi,t − 1)

ln

(
νVA

i,t

νX
i,t

)
(34)

ln
(

ki,t

li,t

)
=

ωl/k
i,t γi,t − (γi,t − 1)

ωl/k
i,t − (γi,t − 1)

ln
(

αi,t

1− αi,t

)
−

ωl/k
i,t γi,t − (γi,t − 1)

ωl/k
i,t − (γi,t − 1)

ln

(
pk

i,t

wi,t

)

+
ωl/k

i,t (γi,t − 1)

ωl/k
i,t − (γi,t − 1)

ln

(
νk

i,t

νl
i,t

)
(35)
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6.1 Digitalization and the technology frontier

Based on the description of the technology frontier above, we now link digitaliza-
tion to changes in the technology frontier and thus to increases of the unconditional
elasticity of substitution, which is the relation we have analyzed in our empirical
work.21 We define the reduced form for unconditional elasticities as σ and ω as

σi,t =
ωVA/X

i,t σ̃i,t − (σ̃i,t − 1)

ωVA/X
i,t − (σ̃i,t − 1)

= σ̃i,t +
(σ̃i,t − 1)2

ωVA/X
i,t − (σ̃i,t − 1)

γi,t =
ωl/k

i,t γ̃i,t − (γ̃i,t − 1)

ωl/k
i,t − (γ̃i,t − 1)

= γ̃i,t +
(γ̃i,t − 1)2

ωl/k
i,t − (γ̃i,t − 1)

The only way in which the technology frontier, and thus digitalization, can affect
the unconditional elasticity of substitution between factors is through its curva-
ture, ω. The conditional elasticities of substitution, σ̃i,t, are based on existing tech-
nologies and cannot be affected by the introduction of new technologies. Provided
that ωl/k > (γ̃− 1) and ωVA/X > (σ̃− 1) (which guarantees an interior solution
for productivities), the mere presence of curvature in the technology frontier (im-
perfect substitution or complementarity between technologies) implies a higher
unconditional elasticity of substitution between factors. An increase in the curva-
ture (lower ω), creates more complementarity between technologies and hence an
even higher elasticity of substitution between factors.

In Figure 7 we plot the average (over country-sector) log-technology frontiers
for every three years in our sample. We focus on the effects of digitalization and
keep those of non-digital factors constant. Clearly, digitalization shifts these log-
frontiers to the left and thus lowers ω. For a given conditional elasticity of substi-
tution between factors, a lower curvature of the technology frontier leads to more
flexibility in technology choice and hence increases the unconditional elasticity of
substitution, whether factors are complements or substitutes. The figures visu-
alize the positive impact of digitalization on the technology frontier’s curvature
and thus on the unconditional elasticity of substitution between value-added and
intermediate inputs as well as between labor and capital. More generally, the tech-
nology frontiers shift randomly due to other factors that affect ω or θ. The inner
plots show that a varying θ may also affect the log-frontiers.

21For a relation of the below elasticities to our econometric model, please refer to Appendix A7.
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Figure 7: Shifting technology frontiers for capital-labor (left) and value-added and
intermediate inputs (right)

The interpretation of complementarity of technologies is analogous to that of
input factors: The relative quantities (in case of input factors) or productivities (in
case of technologies) must remain fairly constant (within a small range of flexi-
bility). Consequently, digitalization must either have a uniform impact on both
productivity parameters within a production function (or their growth rates) or
have no impact on either productivity parameter. A significant impact of digi-
talization on only one factor productivity would be inconsistent with the finding
that digitalization fosters the complementarity of technologies. Assuming that the
endogenous and exogenous productivities have similar attributes, our results in
Table 4 support the finding of high complementarity between productivity param-
eters. Because digitalization has almost the same impact on the growth rates of
labor and capital productivity, this ensures that their ratio remains fairly constant
with higher levels of digital intensity. Furthermore, digitalization has no impact
on the productivity growth rates of value-added and the intermediate good, which
excludes the case of higher substitutability between technologies due to a higher
level of digitalization.
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7 Conclusion

In this paper, we have shown that digitalization has a significant impact on the
macroeconomic production function that goes beyond productivity growth. A
standard question explored in the literature is whether digitalization affects the
latter. We provide evidence that higher data intensity in digitalization positively
contributes to the growth rate of Hicks-neutral productivity in value-added. We
nevertheless also find that higher IT intensity increases the elasticity of substitution
between value-added and intermediate goods and the elasticity of substitution be-
tween capital and labor. Different types of digital intensity matter for alternative
components of the production function.

We have shown that a higher elasticity of substitution does not always warrant
a more resilient economy. A central result of the paper is that this crucially de-
pends on the relative abundance of value-added. Based on this sufficient statistic,
we find that many sectors in selected European economies amplify shocks after
digitalization, with a deteriorating trend in resilience between 1995 and 2017.

Our results point toward several directions that deserve further research. Since
the relative abundance of inputs decides on the impact of a higher elasticity of sub-
stitution on resilience, it is worthwhile to investigate the role of barriers to trade
between sectors and limited mobility of primary factors such as capital and labor.
Finally, our analytical results focused on the contemporaneous impact of digital-
ization. A higher elasticity of substitution between capital and labor should im-
pact the propagation of shocks to different sectors across time. This necessitates
studying resilience in a model with capital accumulation. We leave this interesting
extension for immediate future work.
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Appendix

A1: Household optimization

max
li,t,ci,t

γ(lt) ∏
i=1..n

cβi
i,t (36)

s.t. ∑
i=1..n

pi,tci,t = ∑
i=1..n

wli,t

∑
i=1..n

li,t = lt

First order conditions:

li,t : γ′(lt) ∏
i=1..n

cβi,t
i,t = λi,twi,t (37)

ci,t : u(c1, c2, ..., lt)βi,t = −λi,t pi,tci,t (38)

Combining two first order conditions for goods i and j, we have that pi,tci,t =

pj,tcj,t
βi,t
β j,t

, and summing over i, using that ∑i=1..n βi,t = 1 and the budget con-

straint, we get that ∑i=1..n wi,tli,t =
pj,tcj,t

β j,t
, and therefore pi,tci,t = βi,t ∑i=1..n wi,tli,t.

Plugging this back to the first order condition for good i, the lagrange multiplier
is pinned down by λi,t = −u(c1, c2, ..., lt) (∑i=1..n wi,tli,t)

−1. Multiplying 37 with
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li,t and summing over i yields ∑i=1..n li,tγ′(lt)∏i=1..n cβi,t
i,t = λi,t ∑i=1..n li,twi,t and

thus ltγ′(lt) = −γ(lt). Aggregate labor supply is therefore constant, lt = l̄t. Fur-
thermore, using that ltγ′(lt) = −γ(lt) in γ′(lt)∏i=1..n cβi,t

i,t = λi,twi,t yields that
wi = l̄t ∑ wili,t, which implies that wages are equalized across sectors due to unre-
stricted mobility.

A2: Results on the Domar weight

Proof of Proposition 1. Using 7 and 8, the sales share is equal to:

pj,tyj,t

∑i,t pi,tci,t
= β j,t

yj,t

cj,t
(39)

Using the goods market equilibrium, and dividing by cj,t:

yj,t

cj,t
= 1 + ∑

i=1..n

xi,j

cj,t
(40)

= 1 + ∑
i=1..n

αi,jλi,t

(
βi,tyi,t

β j,tci,t

(
Xi,t

yi,t

)(1− 1
σi,t

)

e
(zi,t(

σi,t−1
σi,t

)

)
(41)

= 1 + ∑
i=1..n

αi,jλi,t

(
βi,tyi,t

β j,tci,t

(
Xi,tezi,t

yi,t

)(1− 1
σi,t

)
)

= 1 + ∑
i=1..n

αi,jλi,t

βi,tyi,t

β j,tci,t

λi,t + (1− λi,t)

(
li,t
Xi,t

) σi,t−1
σi,t

−1
 (42)

= 1 + ∑
i=1..n

αi,j

(
βi,t

β j,t

pX
i,tXi,t

wtli,t + pX
i,tXi,t

)
yi,t

ci,t
(43)

where we used that
xi,j pj,t
pi,tyi,t

= λi,tαj,i,t

(
Xi,t
yi,t

)(1− 1
σi,t

)
ez

σi,t−1
σi,t

i,t , (5) and (7).

Proof of Proposition 2. The derivative of the vector of Domar weights follows
directly from rules of matrix differentation. Focusing on the derivative of the ex-
penditure share, and dropping subscripts to ease notation, denote the relative ex-
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penditure share by φ =

(
λ + (1− λ)

(
l
X

) σ−1
σ

)−1

. Then,

∂φ

∂σ
= −λ

(
λ + (1− λ)

(
l
X

) σ−1
σ

)−2

× (44)

−φ2 1− λ

λ

σ− 1
σ

∂
(

l
X

)
∂σ

(
l
X

)− 1
σ

+

(
l
X

) σ−1
σ 1

σ2 ln
(

l
X

)
= −φ2 1− λ

λ

(
l
X

)1− 1
σ

σ− 1
σ

∂ln
(

l
X

)
∂σ

+
1
σ2 ln

(
l
X

) (45)

= −φ2 1− λ

λ

(
l
X

)1− 1
σ
(

1
σ

ln
(

l
X

))
(46)

where the last line uses (5).

A3: Further description of data and transformations

KLEMS (2019) provides data on chain-linked volumes (reference year 2010) for
capital stocks of ten different asset categories per industry: Computing equip-
ment KIT, Communications equipment KCT, Computer software and databases
KSo f tDb, Transport Equipment KTraEq, Machinery and Equipment KOMAchOther, To-
tal Non-residential investment KOCon, Residential structures KRStruct, Cultivated
assets KCult, Research and development KRD, Other IPP assets KIPP. The total in-
dex KGFCG is then constructed using the Törnqvist index as follows, ∆ln(KGFCG) =

∑i=1..n v̄i∆ln(Ki), where v̄i are the weights given by the average of current and
lagged nominal expenditure shares of each type of capital where v̄i = 0.5(vi,t +

vi,t−1) and ∑i=1..10 v̄i = 1. The measures of digital intensity we use are then
given by KIT

KGFCG
, KCT

KGFCG
,

KSo f tDB
KGFCG

and correspondingly, our measure of R&D intensity
is KRD

KGFCG
. The same approach is followed for investment intensities. Instead of

ln
(

KIT
KGFCG

)
, one possibility would be to use the expenditure share vi,t (which is

provided in the KLEMS (2022) release.). Nevertheless, neither the current nor the
lagged expenditure shares are consistent measures of intensity. The former be-
cause it incorporates changes in current prices, and the latter because they feature
lagged quantities. Ideally, one would like to use the expenditure share using cur-
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rent quantities at constant prices. This is then almost equivalent to utilizing the
ratio of the volume index for a particular asset to the total index. The chain linked
volumes for each individual asset type are by construction independent of current
prices, and hence any change in the intensity will be due to a change in the quan-
tity. Correspondingly, since the change of KGFCG from period t− 1 to period t is
by construction a geometric average over the individual asset types, an increase in
ln
(

KIT
KGFCG

)
will reflect an increase in KIT relative to other asset types.

A4: Estimating labor and capital productivities, t > 0

Given the relative growth rate estimates and the normalization of initial relative
productivity to one, we compute relative productivity: ezi,t = egt. Using the (nor-
malized) value-added production function, we back out ezl

i,t−z̄l
i and ezk

i,t−z̄k
i :

VAi,t

V̄A
= (α(ezk

i,t−z̄k
i
ki,t

k̄i
)

γ−1
γ + (1− α)(ezl

i,t−z̄l
i
li,t
l̄i
)

γ−1
γ )

γ
γ−1

= ezl
i,t−z̄l

i
li,t
l̄i

α

(
ezi,t−z̄i

ki,t

li,t
k̄i

l̄i

) γ−1
γ

+ 1− α


γ

γ−1

and thus, ezl
i,t−z̄l

i = (VAi,t/V̄Ai)/

 li,t
l̄i

(
α
(

ezi,t−z̄i ki,t
li,t

k̄i
l̄i

) γ−1
γ

+ 1− α

) γ
γ−1
. Using

ezk
i,t−z̄k

i = egi(t−t̄)ezl
i,t−z̄l

i , we back out capital productivity.

A5: Microfounded relative demand equations

The relative demand equations for inputs are as follows:

1− λi,t

λi,t

(
VAi,t

Xi,t

)− 1
σi,t

νVA
i,t ezVA

i,t

νX
i,te

zX
i,t

1− 1
σi,t

=
pVA

i,t

pX
i,t

(47)

αi,t

1− αi,t

(
ki,t

li,t

)− 1
γi,t

νk
i,te

zk
i,t

νl
i,te

zl
i,t

1− 1
γi,t

=
pk

i,t

wi,t
(48)

Substituting equations (32) and (33) above we get that
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ln
(

VAi,t

Xi,t

)
=

ωVA/X
i,t σi,t

ωVA/X
i,t − (σi,t − 1)

ln
(

1− λi,t

λi,t

)
+

σi,t − 1

ωVA/X
i,t − (σi,t − 1)

ln(θX/VA
i,t )

−
ωVA/X

i,t σi,t − (σi,t − 1)

ωVA/X
i,t − (σi,t − 1)

ln

(
pVA

i,t

pX
i,t

)
+

ωVA/X
i,t (σi,t − 1)

ωVA/X
i,t − (σi,t − 1)

ln

(
νVA

i,t

νX
i,t

)

ln
(

ki,t

li,t

)
=

ωl/k
i,t γi,t

ωl/k
i,t − (γi,t − 1)

ln
(

αi,t

1− αi,t

)
+

γi,t − 1
γi,t − (γi,t − 1)

ln(θl/k
i,t )

−
ωl/k

i,t γi,t − (γi,t − 1)

ωl/k
i,t − (γi,t − 1)

ln

(
pk

i,t

wi,t

)
+

ωl/k
i,t (γi,t − 1)

ωl/k
i,t − (γi,t − 1)

ln

(
νk

i,t

νl
i,t

)

If we further assume that λi,t
1−λi,t

= θX/VA
i,t and αi,t

1−αi,t
= θl/k

i,t then these demand
equations simplify to (34) and (35).

A7: Relation of micro-founded elasticity of substitution

to econometric model

Expanding σi,t =
ωi,tσ̃i,t−(σ̃i,t−1)

ωi,t−(σ̃i,t−1) around σ̃i,t = σ̄ and ωi,t = ω̄, we get that

σi,t ≈
ω̄VA/Xσ̄− (σ̄− 1)
ω̄VA/X − (σ̄− 1)

− ω̄VA/X(σ̄− 1)2

(ω̄VA/X − (σ̄− 1))2 ω̂i,t +
ω̄[VA/X2]σ̄

(ω̄VA/X − (σ̄− 1))2 σ̂i,t

where ω̂ is the deviation of ω from ω̄ and σ̂ is the deviation of σ̃ from ¯̃σ. An iden-
tical expression may be derived for the capital-labor elasticity. All factors relating
to digital technology will be part of ω̂t and non- digital technology related factors
will be related to σ̂t. This is a microfounded version of the expansion we adopted
for the functional coefficients in the empirical specification. The estimated reduced
form coefficients for each factor are nonlinear functions of (ω̄, σ̄) and the structural
coefficients that relate (σ̂i,t, ω̂i,t) to those factors e.g. ω̂i,t = α1IT share + α2CT share.
For illustration purposes, we have employed the reduced form estimates obtained
from the relative demand equations to back out the implied estimates of σ̄ and σ̃i,t

using that σi,t ≈ σ̄ exp
(

ω̄[VA/X2]
(ω̄VA/X−(σ̄−1))2 σ̂i,t

)
and the corresponding estimates of ωi,t

using that ωi,t =
(σi,t−1)(σ̃i,t−1)

σi,t−(σ̃i,t)
. Since σ̂i,t depends on several non-technology fac-

tors, i.e. m factors, the reduced form estimates can identify only m− 1 coefficients.
Hence the coefficient of the first factor is normalized to one.

44



A6: Tables

Code Explanation S

A Agriculture, forestry & fishing
B Mining & quarrying
D-E Electricity, gas & water supply X

F Construction
I Accomodation & food service activities X

K Financial & insurance activities X

L Real estate activities X

M-N Professional, scientific, technical, admin. & support service activities X

R Arts, entertainment & recreation X

S Other service activities X

10-12 Food products, beverages & tobacco
13-15 Textiles, wearing apparel, leather & related products
16-18 Wood & paper products; printing & reprod. of recorded media
19 Coke & refined petroleum products
20-21 Chemicals & chemical products
22-23 Rubber & plastics products, & other non-metallic mineral products
24-25 Basic metals & fabricated metal products ( excl. machinery & equip.)
26-27 Electrical & optical equipment
28 Machinery & equipment n.e.c.
29-30 Transport equipment X

31-33 Other manufacturing; repair & installation of machinery & equipment X

45 Wholesale & retail trade & repair of motor vehicles & motorcycles X

46 Wholesale trade, except of motor vehicles & motorcycles X

47 Retail trade, except of motor vehicles & motorcycles X

49-52 Transport & storage X

53 Postal & courier activities X

58-60 Publishing, audiovisual & broadcasting activities X

61 Telecommunications X

62-63 IT & other information services X

Table 5: Sector codes, names & classification as service sector (S)
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(a) Further empirical results

Figure 1: Evolution of relative intensity of intermediate inputs ln
( X

VA
)

over sub-
samples.
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ln
(

α
1−α

)
ln
(

1−λ
λ

)
t 0.0587 0.0437∗

[-0.0261,0.144] [0.00263,0.0847]
IT share 0.215 0.0211

[-0.0562,0.486] [-0.100,0.143]
IT share 2 0.0675 -0.00218

[-0.0329,0.168] [-0.0356,0.0312]
CT share 0.415 -0.0155

[-0.0137,0.843] [-0.101,0.0697]
CT share 2 0.0876 0.0117

[-0.0247,0.200] [-0.0160,0.0394]
Inv. share: R&D 0.0557 -0.00123

[-0.0781,0.189] [-0.0817,0.0792]
S&D -0.0115 -0.0130

[-0.179,0.156] [-0.0901,0.0642]
Inv. share 2: R&D 0.00870 -0.0295

[-0.0223,0.0397] [-0.0609,0.00196]
S&D -0.0911∗ -0.000398

[-0.179,-0.00281] [-0.0413,0.0405]
Cap. share: R&D 0.198 0.103

[-0.174,0.569] [-0.0715,0.278]
S&D -0.248 -0.0336

[-0.763,0.266] [-0.138,0.0705]
Cap. share 2: R&D 0.0462 0.0114

[-0.0232,0.116] [-0.0612,0.0841]
S&D -0.0319 -0.00204

[-0.132,0.0680] [-0.0480,0.0439]
Constant -0.708 -0.333

[-1.543,0.127] [-0.935,0.269]

No. Observations 2744 2696
Country-Sector F.E. and ≥ 2 lags X X

Table 1: Impact of Digitization on relative share parameters (α, λ).
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(b) Estimation with a normalized production function

It can be shown that the first order conditions under normalization are

ln
(

ki,t

li,t

)
= (1 − γi,t)ln

(
k̄i,t

l̄i,t

)
− (gk

i − gl
i)t̄ + γi,tln

(
ᾱi,t

1 − ᾱi,t

)
(1)

−γi,tln

(
pk

i,t

wi,t

)
+ (γi,t − 1)

[(
zk

i,0 − zl
i,0

)
+ (gk

i − gl
i)t
]

where (k̄i,t, l̄i,t, ᾱi,t, t̄) are the normalization points. Since in the non-normalized
case we have already controlled for the potential covariates related to the relative
share, which are the same for γi,t, the regression estimates are robust to the pres-
ence of the additional terms (1 − γi,t)ln

(
k̄i,t
l̄i,t

)
− (gk

i − gl
i)t̄.
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