
 Пanemizthmio Kympoy
 Tmhma Ma@hmatik Ω n kai Σ tatiztikhe

Ovoนateாต่vuนo
Api日pós tautótntos

$$
f_{Z}(z)=\frac{1}{2} \exp (-|z|), \quad z \in \mathbb{R} .
$$

(β) Z_{1} عivaı Эとtıкŋ́ tuxaía $\mu \varepsilon \tau а ß \lambda \eta \tau ท ่, ~ k a ı ~$

 ótı $\left|X_{n}\right| \leqslant Y \mu \varepsilon E(Y)<\infty$. Na aпобยıхเยí ó兀ı $E\left(X_{n}\right) \rightarrow E(X)$ av $n \rightarrow \infty$.
 $c g(x)$, үıа ка́ $\theta \varepsilon x \in[0,1]$. Na uподоүъбтві то ópı

$$
\lim _{n \rightarrow \infty} \underbrace{\int_{0}^{1} \cdots \int_{0}^{1}}_{n-\text { qpeis }} \frac{\sum_{i=1}^{n} f\left(x_{i}\right)}{\sum_{i=1}^{n} g\left(x_{i}\right)} d x_{1} \ldots d x_{n} .
$$

 Эavótทta, ótav $n \rightarrow \infty$, av kaı fóvo av $E\left(Y_{n}^{2} /\left(1+Y_{n}^{2}\right)\right) \rightarrow 0$, ótav $n \rightarrow \infty$.
(β) 'Eota $X_{1}, X_{2}, \ldots, X_{n}$ кavovıкés tuxaies $\mu \varepsilon \tau a b \lambda \eta \tau \varepsilon ́ S ~ \mu \varepsilon E\left(X_{i}\right)=0, E\left(X_{i}^{2}\right)=1$, Yıa ká $\theta \varepsilon i$, Kat

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)= \begin{cases}\rho, & |i-j|=1 \\ 0, & |i-j|>1\end{cases}
$$

$$
\left(\frac{a}{1+a}\right)\left(\frac{1+b}{b}\right) \geqslant 1 .
$$

 ouváptŋoŋ.

$$
\sqrt{n}\left(h\left(\bar{X}_{n}\right)-h(\mu)\right) \rightarrow N\left(0, \sigma^{2}\left(h^{\prime}(\mu)\right)^{2}\right)
$$

katá katavopń ótav $n \rightarrow \infty$.
 ótı

$$
n\left(h\left(\bar{X}_{n}\right)-h(\mu)\right) \rightarrow \frac{1}{2} \sigma^{2} h^{\prime \prime}(\mu) \chi_{1}^{2}
$$

кatá katavouń ótav $n \rightarrow \infty$.

 $\infty, i=1,2, \ldots$. © $\dot{\text { toupe }} S_{n}=\sum_{i=1}^{n} X_{i}$ каı $\tau_{n}^{2}=\operatorname{Var}\left(S_{n}\right) . \mathrm{A} \tau \tau_{n}^{-3} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} \rightarrow 0$,

 p_{k}). Na $\delta \varepsilon$ xx $\theta \varepsilon$ í ótı av $\sum_{k=1}^{\infty} p_{k}\left(1-p_{k}\right)=+\infty$ tóte $\left(S_{n}-\mu_{n}\right) / \tau_{n} \rightarrow N(0,1)$ katá katavouท́, ótav $n \rightarrow \infty$.

Пaveтıбти́иıо Kúтроu

- Eчариоб μ v́va MaӨпиатıкá (ПГЕ)
- Avá入uon (При́то Мغ́pos)

- Өewpía ПіӨavotи́таv

Пaveтıбти́циo Kútгои
Tцйна МаӨпиатіки́v каı ミтатıбтıки́s

－Е甲ариобнદ́va MaӨпиатіќ́（ПГЕ）
－Aváduã（При́тo Mर́pos）

Ovoцateтúvuиo： \qquad

Aváduou
Ma jübrar 3/4 Oefwara.

Lebesque

$$
f(x)=\frac{w+x}{x}
$$

eivan odounupúotiu oró Sidivzufa [0,00[
2. Na euptoti 20 epro

$$
\lim _{x \rightarrow \infty} \int_{0}^{1} \frac{n x \log x}{1+4^{2} x^{2}} d x
$$

3. Eom o xupos $u \in$ uirpo $(X, A) \mu)$

* Ever fía odocinupürifn ouvápzuon
$f: X \rightarrow \mathbb{R} \quad N a i$ siftur on eav

$$
\int_{E} f(x) d \mu(x) \geqslant 0 \quad \forall E \in A
$$

Qout $f(x) \geqslant 0$ na oxtoór oda na $x \in X$.
4. Evw o xípos $\mu \in \mu \in i n p o(X, A, \mu)$ (u) Eow Hia perpuioipu ouvápznon $f: x \rightarrow \mathbb{R}$.
Ynooirapt on $\mu(x)<\infty$,ou $f \geqslant 0$.
ג) Mint exufe

$$
\lim _{x \rightarrow \infty} \int_{x} f^{4}(x) d \mu(x)=\infty ?
$$

b) Ná Sriterr on càv $0 \leq f(x) \leq 1$ vía oxeoor oda ráa $x \in X$ rórt

$$
\lim _{x \rightarrow \infty} \int_{x} f^{4}(x) d \mu(x)=\mu(\{x \in X: f(x)=1\})
$$

Пaveா！бти́quo Kúтрои
 Tци́на MaӨпиатıки́v каı ミтатıбтıки́s

- Avá入uã（Пра́то Мह́роऽ）
- Mıүaঠıкŋ́ Avá入uan（ Δ عútepo Mépos）

Ovoцaтеாய́vuцо：
Tautótпta：
BaӨно入оүі́a：

Aбкпоп 1:

$$
\int_{K(0,2)} \frac{1}{\sin \frac{\pi}{z}} d z
$$

Абкпбп 2:

 utrooúvoko tou C.

Пavemiotற́pio Kútpou Тии́иа МаӨпиатıки́v каı ミтатıбтıкп́s

Пєрıєктікદ́ऽ Е६єтáбદıऽ

－Ечар $о о \sigma \mu$ ह́va MaӨпиатıка́（ПГЕ）
－Avá入uã（При́то Мह́pos）
－Miyadikń Aváגuãn（ $\Delta \varepsilon$ útepo MÉpos）

Ovoцateாúvuцo：
 Tautótqta：

Bäно入оүі́a：

$$
u_{x}+y u_{y}=\mathrm{e}^{x}, \quad(x, y) \in \mathbb{R} \times \mathbb{R}
$$

 $\mu \varepsilon$ архıкク่ оuvӨn่кท

$$
u(0, y)=\cos y, \quad y \in \mathbb{R}
$$

$$
u(x, 0)=f(x), \quad x \in \mathbb{R} ;
$$

$$
u(x, 1)=f(x), \quad x \in \mathbb{R}
$$

$$
\begin{aligned}
& u_{t t}=c^{2} u_{x x}+x^{2}, \quad(x, t) \in \mathbb{R} \times(0, \infty) \\
& u(x, 0)=x, \quad u_{t}(x, 0)=-1, \quad x \in \mathbb{R} .
\end{aligned}
$$

Пaveтıoти́нio Kútpou
 Т $\mu \not ́ \mu a$ МаӨпиатіки́v каı ミтатוбтіки́s

- Aváduãn (При́то Мह́pos)

Ovoцateாти́vuцо:
Tаито́тףта:
BaӨно入оүі́a:

ПалЕПİTHMIO KYПPOY
 TMHMA MA@HMATIK Ω N KAI Σ TATILTIKH亡

Tenikes Metamtyxiakes Eeetareis

API@MHTIKH EПIAYรH $\Delta I A \Phi O P I K \Omega N ~ E E I \Sigma \Omega \Sigma E \Omega N$

$27 \Sigma \varepsilon \pi \tau \varepsilon \mu \beta$ píov 2008

ONOMA: \qquad

Абкпбๆ	1	2	B $\alpha \theta \mu$ ós
Movó $\delta \varsigma \varsigma ~$			

$$
\begin{equation*}
y^{\prime}=A y+g(t), \quad t>0, \quad y(0)=\alpha, \tag{1}
\end{equation*}
$$

ó π оv A $\sigma \tau \alpha \theta \varepsilon$ ро́ $\varsigma \times N \pi$ ivaкас.
 $\alpha \rho \chi \iota \ldots ́ v \tau \tau \mu \dot{v}$ (1).

(iv) $\Theta \varepsilon \omega \rho о ข ์ \mu \varepsilon$ то $\pi \rho o ́ \beta \lambda \eta \mu \alpha \alpha \rho \chi\llcorner\kappa \dot{\nu} \tau \tau \mu \omega ́ v$

$$
\begin{equation*}
2 y^{\prime \prime}+5 y^{\prime}+2 y=1, \quad t>0, \quad y(0)=\frac{1}{2}, \quad y^{\prime}(0)=0 . \tag{2}
\end{equation*}
$$

To $\pi \rho o ́ \beta \lambda \eta \mu \alpha$ (2) $v \alpha \mu \varepsilon \tau \alpha \tau \rho \alpha \pi \varepsilon i ́ \sigma \varepsilon \sigma v ́ \sigma \tau \eta \mu \alpha \pi \rho \dot{\tau} \tau \eta \varsigma \tau \alpha \dot{\alpha} \xi \varepsilon \omega \varsigma \tau \eta \varsigma \mu о \rho \varphi \eta \varsigma(1)$.

2.
(Mová $\delta \varsigma \varsigma 50)$
 $\omega \sigma \tau \varepsilon$

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=f\left(x_{1}, x_{2}\right) \sigma \tau \sigma \Omega=(0,1) \times(0,1), \tag{3}\\
& u=0 \sigma \tau \sigma \partial \Omega \tag{4}
\end{align*}
$$

 $\pi \rho o ́ \beta \lambda \eta \mu \alpha$. N $\alpha \beta \rho \varepsilon \theta \varepsilon i ́ ~ \tau о ~ \mu \varepsilon \tau \alpha \beta о \lambda ı к o ́ ~ \pi \rho o ́ \beta \lambda \eta \mu \alpha ~ \pi о v ~ \alpha v \tau \iota \sigma \tau о ч \chi \varepsilon i ́ ~ \sigma \tau о ~ \pi \rho o ́ \beta \lambda \eta \mu \alpha$

 $\beta \rho \eta ́ \kappa \alpha \tau \varepsilon ~ \sigma \tau о$ (i).
(iii) $\Gamma 1 \alpha$ va $\lambda v ́ \sigma o v \mu \varepsilon \tau о \pi \rho o ́ \beta \lambda \eta \mu \alpha$ (3)-(4) $\mu \varepsilon \tau \eta \mu \varepsilon ́ \theta \circ \delta o \pi \varepsilon \pi \varepsilon \rho \alpha \sigma \mu \varepsilon ́ v \omega \nu \nu \tau \alpha \varphi о \rho \omega ́ v$

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right) \approx \frac{u\left(x_{1}+h, x_{2}\right)-2 u\left(x_{1}, x_{2}\right)+u\left(x_{1}-h, x_{2}\right)}{h^{2}} \\
& \frac{\partial^{2} u}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right) \approx \frac{u\left(x_{1}, x_{2}+h\right)-2 u\left(x_{1}, x_{2}\right)+u\left(x_{1}, x_{2}-h\right)}{h^{2}}
\end{aligned}
$$

 $h=0.2$.

